
Internet Engineering Task Force A. Popov
Internet-Draft M. Nystroem
Intended status: Standards Track Microsoft Corp.
Expires: April 16, 2015 D. Balfanz, Ed.
 A. Langley
 Google Inc.
 October 13, 2014

 Token Binding over HTTP
 draft-balfanz-https-token-binding-00

Abstract

 This document describes a collection of mechanisms that allow HTTP
 servers to cryptographically bind authentication tokens (such as
 cookies and OAuth tokens) to a TLS [RFC5246] connection.

 We describe both _first-party_ as well as _federated_ scenarios. In
 a first-party scenario, an HTTP server issues a security token (such
 as a cookie) to a client, and expects the client to send the security
 token back to the server at a later time in order to authenticate.
 Binding the token to the TLS connection between client and server
 protects the security token from theft, and ensures that the security
 token can only be used by the client that it was issued to.

 Federated token bindings, on the other hand, allow servers to
 cryptographically bind security tokens to a TLS [RFC5246] connection
 that the client has with a _different_ server than the one issuing
 the token.

 This Internet-Draft is a companion document to The Token Binding
 Protocol [DraftPopov]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Popov, et al. Expires April 16, 2015 [Page 1]

Internet-Draft Token Binding over HTTP October 2014

 This Internet-Draft will expire on April 16, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. The Token-Binding Header 3
 3. Federation Use Cases . 4
 3.1. Introduction . 4
 3.2. Overview . 4
 3.3. HTTP Redirects . 5
 3.4. Cross-Origin Resource Sharing 6
 3.5. Negotiated Key Parameters 7
 4. Security Considerations 7
 4.1. Security Token Replay 7
 4.2. Privacy Considerations 7
 4.3. Triple Handshake Vulnerability in TLS 8
 5. References . 8
 5.1. Normative References 8
 5.2. Informative References 9
 Authors’ Addresses . 9

1. Introduction

 The Token Binding Protocol [DraftPopov] defines a Token Binding ID
 for a TLS connection between a client and a server. The Token
 Binding ID of a TLS connection is related to a private key that the
 client proves possession of to the server, and is long-lived (i.e.,
 subsequent TLS connections between the same client and server have
 the same Token Binding ID). When issuing a security token (e.g. an
 HTTP cookie or an OAuth token) to a client, the server can include
 the Token Binding ID in the token, thus cryptographically binding the

Popov, et al. Expires April 16, 2015 [Page 2]

Internet-Draft Token Binding over HTTP October 2014

 token to TLS connections between that particular client and server,
 and inoculating the token against theft by attackers.

 While the Token Binding Protocol [DraftPopov] defines a message
 format for establishing a Token Binding ID, it doesn’t specify how
 this message is embedded in higher-level protocols. The purpose of
 this specification is to define how TokenBindingMessages are embedded
 in HTTP (both versions 1.1 [RFC2616] and 2 [I-D.ietf-httpbis-http2]).
 Note that TokenBindingMessages are only defined if the underlying
 transport uses TLS. This means that Token Binding over HTTP is only
 defined when the HTTP protocol is layered on top of TLS (commonly
 referred to as HTTPS).

 HTTP clients establish a Token Binding ID with a server by including
 a special HTTP header in HTTP requests. The HTTP header value is a
 TokenBindingMessage.

 TokenBindingMessages allow clients to establish multiple Token
 Binding IDs with the server, by including multiple TokenBinding
 structures in the TokenBindingMessage. By default, a client will
 establish a _provided_ Token Binding ID with the server, indicating a
 Token Binding ID that the client will persistently use with the
 server. Under certain conditions, the client can also include a
 referred Token Binding ID in the TokenBindingMessage, indicating a
 Token Binding ID that the client is using with a _different_ server
 than the one that the TokenBindingMessage is sent to. This is useful
 in federation scenarios.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The Token-Binding Header

 Once a client and server have negotiated the Token Binding Protocol
 with HTTP/1.1 or HTTP/2 (see The Token Binding Protocol
 [DraftPopov]), clients MUST include the following header in their
 HTTP requests:

 Token-Binding: EncodedTokenBindingMessage

 The EncodedTokenBindingMessage is a web-safe Base64-encoding of the
 TokenBindingMessage as defined in the TokenBindingProtocol
 [DraftPopov].

Popov, et al. Expires April 16, 2015 [Page 3]

Internet-Draft Token Binding over HTTP October 2014

 The TokenBindingMessage MUST contain a TokenBinding with
 TokenBindingType provided_token_binding, which MUST be signed with
 the Token Binding key used by the client for connections between
 itself and the server that the HTTP request is sent to (clients use
 different Token Binding keys for different servers). The Token
 Binding ID established by this TokenBinding is called a _Provided
 Token Binding ID_

 In HTTP/2, the client SHOULD use Header Compression
 [I-D.ietf-httpbis-header-compression] to avoid the overhead of
 repeating the same header in subsequent HTTP requests.

3. Federation Use Cases

3.1. Introduction

 For privacy reasons, clients use different private keys to establish
 Provided Token Binding IDs with different servers. As a result, a
 server cannot bind a security token (such as an OAuth token or an
 OpenID Connect identity token) to a TLS connection that the client
 has with a different server. This is, however, a common requirement
 in federation scenarios: For example, an Identity Provider may wish
 to issue an identity token to a client and cryptographically bind
 that token to the TLS connection between the client and a Relying
 Party.

 In this section we describe mechanisms to achieve this. The common
 idea among these mechanisms is that a server (called the _Token
 Consumer_ in this document) gives the client permission to reveal the
 Provided Token Binding ID that is used between the client and itself,
 to another server (called the _Token Provider_ in this document).
 Also common across the mechanisms is how the Token Binding ID is
 revealed to the Token Provider: The client uses the Token Binding
 Protocol [DraftPopov], and includes a TokenBinding structure in the
 Token-Binding HTTP header defined above. What differs between the
 various mechanisms is _how_ the Token Consumer grants the permission
 to reveal the Token Binding ID to the Token Provider.

3.2. Overview

 In a Federated Sign-On protocol, an Identity Provider issues an
 identity token to a client, which sends the identity token to a
 Relying Party to authenticate itself. Examples of this include
 OpenID Connect (where the identity token is called "ID Token") and
 SAML (where the identity token is a SAML assertion).

 To better protect the security of the identity token, the Identity
 Provider may wish to bind the identity token to the TLS connection

Popov, et al. Expires April 16, 2015 [Page 4]

Internet-Draft Token Binding over HTTP October 2014

 between the client and the Relying Party, thus ensuring that only
 said client can use the identity token: The Relying Party will
 compare the Token Binding ID in the identity token with the Token
 Binding ID of the TLS connection between it an the client.

 This is an example of a federation scenario, which more generally can
 be described as follows:

 o A Token Consumer causes the client to issue a token request to the
 Token Provider. The goal is for the client to obtain a token and
 then use it with the Token Consumer.

 o The client delivers the token request to the Token Provider.

 o The Token Provider issues the token. The token is issued for the
 specific Token Consumer who requested it (thus preventing
 malicious Token Consumers from using tokens with other Token
 Consumers). The token is, however, typically a bearer token,
 meaning that any client can use it with the Token Consumer, not
 just the client to which it was issued.

 o Therefore, in the previous step, the Token Provider may want to
 include the Token Binding ID of the TLS connection between the
 client and the Token Consumer in the token.

 o That Token Binding ID must therefore be communicated to the Token
 Provider along with the token request. Communicating a Token
 Binding ID involves proving possession of a private key and is
 described in the Token Binding Protocol [DraftPopov].

 The client will perform this last operation (proving possession of a
 private key that corresponds to a Token Binding ID between the client
 and the Token Consumer while delivering the token request to the
 Token Provider) only if the Token Consumer permits the client to do
 so.

 Below, we will enumerate a number of mechanisms available to Token
 Consumers to grant this permission.

3.3. HTTP Redirects

 When a Token Consumer redirects the client to a Token Provider as a
 means to deliver the token request, it SHOULD include the following
 HTTP response header in its HTTP response:

 Include-Referer-Token-Binding-ID: true

Popov, et al. Expires April 16, 2015 [Page 5]

Internet-Draft Token Binding over HTTP October 2014

 Including this response header signals to the client that it should
 reveal the Token Binding ID used between the client and the Token
 Consumer to the Token Provider. In the absence of this response
 header, the client will not disclose any information about the Token
 Binding used between the client and the Token Consumer to the Token
 Provider.

 This header has only meaning if the HTTP status code is 302 or 301,
 and MUST be ignored by the client for any other status codes. If the
 client supports the Token Binding Protocol, and has negotiated the
 Token Binding Protocol with both the Token Consumer and the Token
 Provider, it already sends the following header to the Token Provider
 with each HTTP request (see above):

 Token-Binding: EncodedTokenBindingMessage

 The TokenBindingMessage SHOULD contain a TokenBinding with
 TokenBindingType referred_token_binding. If included, this
 TokenBinding MUST be signed with the Token Binding key used by the
 client for connections between itself and the Token Consumer (more
 specifically, the web origin that issued the Include-Referer-Token-
 Binding-ID response header). The Token Binding ID established by
 this TokenBinding is called a _Referred Token Binding ID_.

 As described above, the TokenBindingMessage MUST additionally contain
 a Provided Token Binding ID, i.e., a TokenBinding structure with
 TokenBindingType provided_token_binding, which MUST be signed with
 the Token Binding key used by the client for connections between
 itself and the Token Privider (more specifically, the web origin that
 the token request sent to).

3.4. Cross-Origin Resource Sharing

 When issuing an XML HTTP request across origins to a Token Provider,
 a Token Consumer can reveal its Token Binding ID through the
 withRefererTokenBindingID property of the XmlHttpRequest object.
 Example:

 var xhr = new XMLHttpRequest();
 xhr.withCredentials = true; // send cookies
 xhr.withRefererTokenBindingID = true;
 xhr.open(method, url, true);

 The client SHOULD include the Token-Binding: header to the outgoing
 request as described above if:

Popov, et al. Expires April 16, 2015 [Page 6]

Internet-Draft Token Binding over HTTP October 2014

 o the withRefererTokenBindingID property of the XmlHttpRequest
 object is set to true, and

 o the client has negotiated the Token Binding Protocol both with the
 web origin that issued the XmlHttpRequest, and the web origin to
 which the XmlHttpRequest is addressed.

3.5. Negotiated Key Parameters

 The Token Binding Protocol [DraftPopov] allows the server and client
 to negotiate a signature algorithm used in the TokenBindingMessage.
 It is possible that the Token Binding ID used between the client and
 the Token Consumer, and the Token Binding ID used between the client
 and Token Provider, use different signature algorithms. The client
 MUST use the signature algorithm negotiated with the Token Consumer
 in the referred_token_binding TokenBinding of the
 TokenBindingMessage, even if that signature algorithm is different
 from the one negotiated with the origin that the header is sent to.

 Token Providers SHOULD support all the SignatureAndHashAlgorithms
 specified in the Token Binding Protocol [DraftPopov]. If a token
 provider does not support the SignatureAndHashAlgorithm specified in
 the referred_token_binding TokenBinding in the TokenBindingMessage,
 it MUST issue an unbound token.

4. Security Considerations

4.1. Security Token Replay

 The goal of the Federated Token Binding mechanisms is to prevent
 attackers from exporting and replaying tokens used in protocols
 between the client and Token Consumer, thereby impersonating
 legitimate users and gaining access to protected resources. Bound
 tokens can still be replayed by malware present in the client. In
 order to export the token to another machine and successfully replay
 it, the attacker also needs to export the corresponding private key.
 The Token Binding private key is therefore a high-value asset and
 MUST be strongly protected, ideally by generating it in a hardware
 security module that prevents key export.

4.2. Privacy Considerations

 The Token Binding protocol uses persistent, long-lived TLS Token
 Binding IDs. To protect privacy, TLS Token Binding IDs are never
 transmitted in clear text and can be reset by the user at any time,
 e.g. when clearing browser cookies. Unique Token Binding IDs MUST be
 generated for connections to different origins, so they cannot be
 used by cooperating servers to link user identities.

Popov, et al. Expires April 16, 2015 [Page 7]

Internet-Draft Token Binding over HTTP October 2014

4.3. Triple Handshake Vulnerability in TLS

 The Token Binding protocol relies on the tls_unique value to
 associate a TLS connection with a TLS Token Binding. The triple
 handshake attack [TRIPLE-HS] is a known TLS protocol vulnerability
 allowing the attacker to synchronize tls_unique values between TLS
 connections. The attacker can then successfully replay bound tokens.
 For this reason, the Token Binding protocol MUST NOT be negotiated
 unless the Extended Master Secret TLS extension
 [I-D.ietf-tls-session-hash] has also been negotiated.

5. References

5.1. Normative References

 [DraftPopov]
 Popov, A., "The Token Binding Protocol Version 1.0", 2014.

 [I-D.ietf-httpbis-header-compression]
 Peon, R. and H. Ruellan, "HPACK - Header Compression for
 HTTP/2", draft-ietf-httpbis-header-compression-09 (work in
 progress), July 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, July 2014.

Popov, et al. Expires April 16, 2015 [Page 8]

Internet-Draft Token Binding over HTTP October 2014

5.2. Informative References

 [I-D.ietf-httpbis-http2]
 Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol version 2", draft-ietf-httpbis-http2-14 (work in
 progress), July 2014.

 [I-D.ietf-tls-session-hash]
 Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", draft-ietf-
 tls-session-hash-02 (work in progress), October 2014.

 [TRIPLE-HS]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple Handshakes and Cookie Cutters:
 Breaking and Fixing Authentication over TLS. IEEE
 Symposium on Security and Privacy", 2014.

Authors’ Addresses

 Andrei Popov
 Microsoft Corp.
 USA

 Email: andreipo@microsoft.com

 Magnus Nystroem
 Microsoft Corp.
 USA

 Email: mnystrom@microsoft.com

 Dirk Balfanz (editor)
 Google Inc.
 USA

 Email: balfanz@google.com

 Adam Langley
 Google Inc.
 USA

 Email: agl@google.com

Popov, et al. Expires April 16, 2015 [Page 9]

