Net wor k Wor ki ng Group B. Kaduk
I nternet-Draft MT
I ntended status: |nformational February 19, 2015
Expi res: August 23, 2015

Structure of the GSS Negotiation Loop
draft-ietf-kitten-gss-Ioop-05

Abst r act

Thi s docunment specifies the generic structure of the negotiation |oop
to establish a GSS security context between initiator and acceptor
The control flow of the loop is indicated for both parties, including
error conditions, and indications are given for where application-
speci fic behavi or nust be specified.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on August 23, 2015.
Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Kaduk Expi res August 23, 2015 [Page 1]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

Tabl e of Contents

1. Introduction Ce e 2
2. Application Protocol Requirenents . 3
3. Loop Structure 4
3.1. Anonynous In|t|ators 4
3.2 GSS_I nit _sec_cont ext . 5
3.3 Sendlng frominitiator to Acceptor 6
3.4 Acceptor Sanity Checking 6
3.5. GSS_Accept _sec_cont ext . 7
3.6. Sending fronmAcceptor to Inltlator 8
3.7 Initiator input validation 8
3.8. Continue the Loop . . 9
4. After Security Context hbgotlatlon e e e 9
4.1. Authorization Checks 10
4.2. Using Partially Conplete Secur|ty Cbntexts 10
4.3. Additional Context Tokens
5. Sanple Code . . . e 2
5.1. GSS Appllcatlon Sanple Code e)
6. | ANA Considerations . . . <
7. Security Considerations 19
8. References . . . A 0|
8.1. Nornmtive References 24 0
8.2. Informational References 20
Appendi x A. Acknow edgenents 21
Author’s Address 2

I ntroduction

The Generic Security Service Application ProgramlInterface version 2
[RFC2743] provides a generic interface for security services, in the
formof an abstraction |layer over the underlying security nmechani sns
that an application may use. A GSS initiator and acceptor exchange
messages, called tokens, until a security context is established.
Such a security context allows for each party to authenticate the
other, the passing of confidential and/or integrity-protected
messages between the initiator and acceptor, the generation of

i dentical pseudo-randombit strings by both participants [RFC4401],
and nore.

During context establishment, security context tokens are exchanged
synchronously, one at a tine; the initiator sends the first context
token. The nunber of tokens which nust be exchanged between
initiator and acceptor in order to establish the security context is
dependent on the underlying nmechanismas well as the desired
properties of the security context, and is in general not known to
the application. Accordingly, the application's control flow nust
include a loop within which GSS security context tokens are

Kaduk Expi res August 23, 2015 [Page 2]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

exchanged, which term nates upon successful establishment of a
security context or an error condition. The GSS-API, together with
its security mechani snms, specifies the format and encodi ng of the
context tokens thensel ves, but the application protocol nust specify
the necessary framng for the application to determ ne what octet
strings constitute GSS security context tokens and pass theminto the
GSS- APl i npl enent ati on as appropri ate.

The GSS- APl C bindi ngs [RFC2744] provi de some exanpl e code for such a
negoti ati on | oop, but this code does not specify the application’s
behavi or on unexpected or error conditions. As such, individua
application protocol specifications have had to specify the structure
of their GSS negotiation |oops, including error handling, on a per-
protocol basis. [RFC4462], [RFC3645], [RFC5801], [RFC4752],

[RFC2203] This represents a substantial duplication of effort, and
the various specifications go into different |evels of detail and
describe different possible error conditions. It is therefore
preferable to have the structure of the GSS negotiation |oop
including error conditions and token passing, described in a single
speci fication, which can then be referred to from other docunents in
lieu of repeating the structure of the Ioop each tinme. This docunent
will performthat role.

The necessary requirenents for correctly perform ng a GSS negoti ation
| oop are essentially all included in [RFC2743], but they are
scattered in many different places. This docunent brings all the
requirenents together into one place for the conveni ence of

i mpl ement ors, even though the normative requirenments remain in
[RFC2743]. In a few places, this docunent notes additional behavior
which is useful for applications but is not mandated by [RFC2743].

2. Application Protocol Requirenments

Part of the purpose of this docunent is to guide the devel opnent of
new application protocols using the GSS-API, as well as the

devel opnent of new application software using such protocols. The
following list is features which are necessary or useful in such an
appl i cation protocol

o Away to frame and identify security context negotiation tokens in
the 1 oop.

o Error tokens should generally also get special fram ng, as the
reci pi ent may have no other way to distinguish unexpected error
cont ext tokens from per-nessage tokens.

o Failing that, a way to indicate error status from one peer to the
ot her, possibly acconpani ed by a descriptive string.

Kaduk Expi res August 23, 2015 [Page 3]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

3.

3.

o0 A protocol may use the negotiated GSS security context for per-
message operations; in such cases, the protocol will need a way to
frane and identify those per-nessage tokens and the nature of
their contents. For exanple, a protocol nessage nay be
acconpani ed by the output of GSS GetM C() over that nessage; the
protocol nust identify the location and size of that M C token
and indicate that it is a MC token and what cleartext it
corresponds to.

0 Applications are responsible for authorization of the
aut henti cated peer principal nanmes which are supplied by the GSS-
APl . Such nanes are nechani smspecific, and nmay cone froma
different portion of a federated identity schenme. Application
protocols may need to supply additional information to support the
aut hori zati on of access to a given resource, such as the SSHv2
"usernane" paraneter.

Loop Structure

The | oop is begun by the appropriately nanmed initiator, which calls
GSS Init_sec_context() with an enpty (zero-length) input_token and a
fixed set of input flags containing the desired attributes for the
security context. The initiator should not change any of the input
paraneters to GSS Init_sec _context() between calls to it during the
| oop, with the exception of the input_token parameter, which wll
contain a nmessage fromthe acceptor after the initial call, and the
i nput _cont ext _handl e, which nust be the result returned in the

out put _context_handl e of the previous call to GSS Init_sec_context()
(GSS_C NO CONTEXT for the first call). (In the C bindings, there is
only a single read/ nodify context handl e argunent, so the sane

vari abl e shoul d be passed for each call in the loop.) RFC 2743 only
requires that the claimant_cred_handl e argunent remai n constant over
all calls in the | oop, but the other non-excepted argunents shoul d
also remain fixed for reliable operation

The followi ng subsections will describe the various steps of the

| oop, without special consideration to whether a call to

GSS Init_sec_context() or GSS Accept_sec_context() is the first such
call in the I oop.

1. Anonynous lnitiators

If the initiator is requesting anonymty by setting the anon_req_flag
input to GSS I nit_sec_context(), then on non-error returns from

GSS Init_sec_context() (that is, when the major status is

GSS S COWPLETE or GSS_S CONTI NUE_NEEDED), the initiator nust verify
that the output value of anon_state fromGSS Init_sec_context() is
true before sending the security context token to the acceptor

Kaduk Expi res August 23, 2015 [Page 4]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

Failing to performthis check could cause the initiator to | ose
anonymty.

3.2. GSS Init_sec_context

The initiator calls GSS Init_sec_context(), using the

i nput _context _handle for the current security context being
established and its fixed set of input paraneters, and the

i nput _token received fromthe acceptor (if this is not the first
iteration of the loop). The presence or absence of a nonenpty
out put _token and the value of the nmmjor status code are the

i ndi cators for how to proceed:

o If the major status code is GSS S COWLETE and the output_token is
enpty, then the context negotiation is fully conplete and ready
for use by the initiator with no further actions.

o |If the major status code is GSS S COWLETE and the output token is
nonenpty, then the initiator’s portion of the security context
negotiation is conplete but the acceptor’s is not. The initiator
must send the output_token to the acceptor so that the acceptor
can establish its half of the security context.

o |If the major status code is GSS S CONTI NUE _NEEDED and the
out put _token is nonenpty, the context negotiation is inconplete.
The initiator nmust send the output_token to the acceptor and await
anot her input_token fromthe acceptor.

o |If the major status code is GSS S CONTI NUE _NEEDED and the
out put _token is enpty, the nechani sm has produced an out put which
is not conpliant with [RFC2743]. However, there are some known
i mpl ement ati ons of certain mechani sms such as NTLMSSP [NTLMSSP]
whi ch do produce enpty context negotiation tokens. For maxi num
interoperability, applications should be prepared to accept such
tokens, and should transnmit themto the acceptor if they are
gener at ed.

o |If the major status code is any other value, the context
negotiation has failed. |If the output_token is nonenpty, it is an
error token, and the initiator should send it to the acceptor. |If
the out put _token is enpty, then the initiator should indicate the
failure to the acceptor if an appropriate application-protoco
channel to do so is avail able.

Kaduk Expi res August 23, 2015 [Page 5]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

3.3. Sending fromlnitiator to Acceptor

The establishnent of a GSS security context between initiator and
acceptor requires sonme conmuni cati on channel by which to exchange the
context negotiation tokens. The nature of this channel is not

specified by the GSS specification -- it could be a dedicated TCP
channel , a UDP-based RPC protocol, or any other sort of channel. In
many cases, the channel will be multiplexed with non-GSS application

data; the application protocol mnust always provide sone neans by
whi ch the GSS context tokens can be identified (e.g., length and
start |ocation) and passed through to the nmechani smaccordingly. The
application protocol may also include a facility for indicating
errors fromone party to the other, which can be used to convey
errors resulting from GSS-API calls, when appropriate (such as when
no error token was generated by the GSS-API inplenentation). Note
that GSS maj or and minor status codes are specified by |anguage

bi ndi ngs, not the abstract API; sending a major status code and
optionally the display formof the two error codes nay be the best
that can be done in this case

However, even the presence of a conmunication channel does not
necessarily indicate that it is appropriate for the initiator to

i ndi cate such errors. For exanple, if the acceptor is a stateless or
near-statel ess UDP server, there is probably no need for the
initiator to explicitly indicate its failure to the acceptor
Conditions such as this can be treated in individual application

prot ocol specifications.

If a regular security context output_token is produced by the call to
GSS Init_sec_context(), the initiator nust transmit this token to the
acceptor over the application’ s comunication channel. If the cal

to GSS I nit_sec_context() returns an error token as output_token, it
is reconrended that the initiator transmt this token to the acceptor
over the application’s conmuni cation channel

3.4. Acceptor Sanity Checking

The acceptor’s half of the negotiation loop is triggered by the
recei pt of a context token fromthe initiator. Before calling

GSS _Accept _sec_context(), the acceptor may find it useful to perform
some sanity checks on the state of the negotiation | oop

If the acceptor receives a context token but was not expecting such a
token (for exanple, if the acceptor’s previous call to

GSS_Accept _sec_context() returned GSS S COVWLETE), this is probably
an error condition indicating that the initiator’s state is invalid.
See Section 4.3 for sone exceptional cases. It is likely appropriate

Kaduk Expi res August 23, 2015 [Page 6]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

for the acceptor to report this error condition to the initiator via
the application’s comunicati on channel

If the acceptor is expecting a context token (e.g., if the previous
call to GSS Accept _sec_context() returned GSS S CONTI NUE_NEEDED), but
does not receive such a token within a reasonabl e anpbunt of tine
after transmitting the previous output_token to the initiator, the
acceptor should assunme that the initiator’s state is invalid (tine
out) and fail the GSS negotiation. Again, it is likely appropriate
for the acceptor to report this error condition to the initiator via
the application’s conmmunicati on channel

3.5. GSS_Accept _sec_cont ext

The GSS acceptor responds to the actions of an initiator; as such
there should al ways be a nonenpty input_token to calls to

GSS _Accept _sec_context(). The input_context handl e paraneter will
al ways be given as the output _context handl e fromthe previous cal
to GSS_Accept_sec_context() in a given negotiation |oop, or
GSS_C NO CONTEXT on the first call, but the acceptor_cred_handl e and
chan_bi ndi ngs arguments should remain fixed over the course of a
given GSS negotiation |oop. [RFC2743] only requires that the
acceptor_cred_handl e renmain fixed throughout the | oop, but the
chan_bi ndi ngs argunent should also remain fixed for reliable
operati on.

The GSS acceptor calls GSS_Accept _sec_context(), using the

i nput _context _handle for the current security context being
established and the input_token received fromthe initiator. The
presence or absence of a nonenpty output token and the val ue of the
maj or status code are the indicators for how to proceed:

o If the major status code is GSS S COWLETE and the output_token is
enpty, then the context negotiation is fully conplete and ready
for use by the acceptor with no further actions.

o |If the major status code is GSS S COWLETE and the output_token is
nonenpty, then the acceptor’s portion of the security context
negotiation is conplete but the initiator’s is not. The acceptor
must send the output _token to the initiator so that the initiator
can establish its half of the security context.

o |If the major status code is GSS_S CONTI NUE_NEEDED and the
out put _token is nonenpty, the context negotiation is inconplete.
The acceptor nust send the output_token to the initiator and await
anot her input _token fromthe initiator.

Kaduk Expi res August 23, 2015 [Page 7]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

3.

3.

o |If the major status code is GSS_S CONTI NUE_NEEDED and the
out put _token is enpty, the nechani sm has produced an out put which
is not conpliant with [RFC2743]. However, there are some known
i npl ementations of certain mechani sns such as NTLVMSSP [NTLMSSP]
whi ch do produce enpty context negotiation tokens. For maxi num
interoperability, applications should be prepared to accept such
tokens, and should transmit themto the initiator if they are
gener at ed.

o |If the major status code is any other value, the context
negotiation has failed. |If the output_token is nonenpty, it is an
error token, and the acceptor should send it to the initiator. |If
the out put _token is enpty, then the acceptor should indicate the
failure to the initiator if an appropriate application-protocol
channel to do so is avail able.

6. Sending from Acceptor to Initiator

The mechani sm for sending the context token fromacceptor to
initiator will depend on the nature of the comunication channe
between the two parties. For a synchronous bidirectional channel, it
can be just another piece of data sent over the link, but for a
statel ess UDP RPC acceptor, the token will probably end up being sent
as an RPC out put paraneter. Application protocol specifications wll
need to specify the nature of this behavior

If the application protocol has the initiator driving the
application’s control flow, it is particularly helpful for the
acceptor to indicate a failure to the initiator, as nentioned in sone
of the above cases conditional on "an appropriate application-

prot ocol channel to do so".

If a regular security context output_token is produced by the call to
GSS _Accept _sec_context(), the acceptor nust transmt this token to
the initiator over the application’s comunication channel. If the
call to GSS Accept _sec_context() returns an error token as

output _token, it is recomended that the acceptor transmit this token
to the initiator over the application’s comrunication channel

7. Initiator input validation

The initiator’s half of the negotiation loop is triggered (after the
first call) by receipt of a context token fromthe acceptor. Before
calling GSS Init_sec_context(), the initiator may find it useful to
perform sone sanity checks on the state of the negotiation | oop

If the initiator receives a context token but was not expecting such
a token (for exanple, if the initiator's previous call to

Kaduk Expi res August 23, 2015 [Page 8]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

3.

4.

GSS Init_sec_context() returned GSS S COWLETE), this is probably an
error condition indicating that the acceptor’s state is invalid. See
Section 4.3 for sonme exceptional cases. It may be appropriate for
the initiator to report this error condition to the acceptor via the
application’s comunication channel

If the initiator is expecting a context token (that is, the previous
call to GSS Init_sec_context() returned GSS_S CONTI NUE_NEEDED), but
does not receive such a token within a reasonabl e anount of time
after transmitting the previous output_token to the acceptor, the
initiator should assunme that the acceptor’s state is invalid and fai
the GSS negotiation. Again, it may be appropriate for the initiator
to report this error condition to the acceptor via the application's
communi cati on channel

8. Continue the Loop

If the loop is in neither a success or failure condition, then the
| oop nmust continue. Control flowreturns to Section 3. 2.

After Security Context Negotiation

Once a party has conpleted its half of the security context and
fulfilled its obligations to the other party, the context is
conplete, but it is not necessarily ready and appropriate for use.
In particular, the security context flags may not be appropriate for
the given application’s use. |In sone cases the context may be ready
for use before the negotiation is conplete, see Section 4. 2.

The initiator specifies as part of its fixed set of inputs to

GSS Init_sec_context() values for all defined request flag bool eans,
anong them deleg_req_flag, mutual _req_flag, replay_det req_fl ag,
sequence_req_flag, conf_req_flag, and integ_req_flag. Upon

conpl etion of the security context negotiation, the initiator nust
verify that the values of the deleg state, nutual state

replay_det state, sequence_state, conf_avail, and integ avail (and
any additional flags added by extensions) fromthe last call to
GSS Init_sec_context() correspond to the requested flags. |If a flag

was requested but is not available, and that feature is necessary for
the appplication protocol, the initiator nust destroy the security
context and not use the security context for application traffic.

Application protocol specifications citing this docunent should
i ndi cate which context flags are required for their application
pr ot ocol

The acceptor receives as output the follow ng bool eans: del eg_state,
mut ual _state, replay_det state, sequence state, anon_state,

Kaduk Expi res August 23, 2015 [Page 9]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

trans_state, conf_avail, and integ_avail, and any additional flags
added by extensions to the GSS-API. The acceptor nust verify that
any flags necessary for the application protocol are set. |If a

necessary flag is not set, the acceptor nust destroy the security
context and not use the security context for application traffic.

4.1. Authorization Checks

The acceptor receives as one of the outputs of

GSS _Accept _sec_context() the name of the initiator which has

aut henticated during the security context negotiation. Applications
need to inplenment authorization checks on this received nanme
("client_name’ in the sanple code) before providing access to
restricted resources. |In particular, security context negotiation
can be successful when the client is anonynous or is froma different
identity real mthan the acceptor, depending on the details of the
mechani sm used by the GSS-API to establish the security context.
Acceptor applications can check which target name was used by the
initiator, but the details are out of scope for this docunent. See
[RFC2743] sections 2.2.6 and 1.1.5. Additional information can be
avail abl e in GSS-API Nam ng Extensions, [RFC6680].

4.2. Using Partially Conplete Security Contexts

For nechani smflag conbi nations that require nultiple token
exchanges, the GSS- APl specification [RFC2743] provides a
prot_ready_state output value from GSS Init_sec_context() and

GSS _Accept _sec_context (), which indicates when per-nessage operations
are avail able. However, nany nechani sminpl enentations do not
provide this functionality, and the analysis of the security
consequences of its use is rather conplicated, so it is not expected
to be useful in nost application protocols.

In particular, nutual authentication, replay protection, and other
services (if requested) are services which will be active when
GSS_ S COWPLETE is returned, but which are not necessarily active
before the security context is fully established.

4.3. Additional Context Tokens

Under sone conditions, a context token will be received by a party to
a security context negotiation after that party has conpleted the
negotiation (i.e., after GSS_Init_sec_context() or

GSS_Accept _sec_context() has returned GSS_S COWPLETE). Such tokens
must be passed to GSS _Process_context _token() for processing. It may
not al ways be necessary for a nechanisminplenentation to generate an
error token on the initiator side, or for an initiator application to
transmit that token to the acceptor; such decisions are out of scope

Kaduk Expi res August 23, 2015 [Page 10]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

for this docunent. Both peers should al ways be prepared to process
such tokens, and application protocols should provide nmeans by which
they can be transmtted.

Such tokens can be security context deletion tokens, enitted when the
renote party called GSS Del ete _sec_context() with a non-nul

out put _cont ext _token paraneter, or error tokens, emtted when the
renote party experiences an error processing the last token in a
security context negotiation exchange. FErrors experienced when
processing tokens earlier in the negotiation would be transnmtted as
normal security context tokens and processed by

GSS Init_sec_context() or GSS Accept _sec_context(), as appropriate.
Wth the GSS-API version 2, it is not recomended to use security
context deletion tokens, so error tokens are expected to be the nost
common form of additional context token for new application

pr ot ocol s.

GSS _Process_context _token() may indicate an error in its najor_status
field if an error is encountered locally during token processing, or
to indicate that an error was encountered on the peer and conveyed in
an error token. See [RFC2743] Errata #4151. Regardless of the

maj or _status output of GSS Process_context token(),

GSS I nquire_context () should be used after processing the extra
token, to query the status of the security context and whether it can
supply the features necessary for the application protocol

At present, all tokens which should be handl ed by

GSS _Process_context _token() will lead to the security context being
effectively unusable. Future extensions to the GSS-APlI may all ow for
applications to continue to function after a call to
GSS_Process_context _token(), and it is expected that the outputs of
GSS Inquire_context() will indicate whether it is safe to do so.
However, since there are no such extensions at present (error tokens
and del etion tokens both result in the security context being
essentially unusable), there is no guidance to give to applications
regarding this possibility at this tinme.

Even if GSS_Process_context _token() processes an error or deletion
token which renders the context essentially unusable, the resources
associated with the context nust eventually be freed with a call to
GSS Del ete_sec_context(), just as would be needed if

GSS Init_sec_context() or GSS Accept _sec_context() had returned an
error while processing an input context token and the

i nput _cont ext _handl e was not GSS _C NO CONTEXT. RFC 2743 has some
text which is slightly anbiguous in this regard, but the best
practice is to always call GSS Del ete _sec_context().

Kaduk Expi res August 23, 2015 [Page 11]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

5.

5.

#i
#i
#i
#i
#i
#i

Sanpl e Code

This section gives sanple code for the GSS negotiation | oop, both for
a regul ar application and for an application where the initiator

wi shes to renmi n anonynous. Since the code for the two cases is very
simlar, the anonynous-specific additions are wapped in a

condi tional check; that check and the conditional code may be ignored
i f anonymous processing is not needed.

Si nce the communi cation channel between the initiator and acceptor is
a matter for individual application protocols, it is inherently
unspecified at the GSS-API |evel, which can lead to exanples that are
| ess satisfying than may be desired. For exanple, the sanple code in
[RFC2744] uses an unspecified send_token_to_peer() routine. Fully
correct and general code to frame and transmt tokens requires a
substantial anount of error checking and woul d detract fromthe core
pur pose of this docunent, so we only present the function signature
for one exanple of what such functions mght be, and | eave sone
comrents in the otherw se-enpty function bodies.

This sanple code is witten in C using the GSS-API C bindings

[RFC2744]. It uses the macro GSS ERROR() to hel p unpack the various
sorts of information which can be stored in the najor status field;
suppl enentary informati on does not necessarily indicate an error
Applications witten in other |anguages will need to exercise care
that checks against the najor status value are witten correctly.

Thi s sanpl e code should be conpilable as a standal one program |inked
against a GSS-APlI library. 1In addition to supplying inplenentations
for the token transnission/receipt routines, in order for the program
to successfully run when |inked agai nst nost GSS-API libraries, the
initiator will need to specify an explicit target name for the
acceptor, which nmust match the credentials available to the acceptor.
A skeleton for how this may be done is provided, using a dunmy nane.

Thi s sanpl e code assunes v2 of the GSS-API. Applications wishing to
remai n conpatible with vl of the GSS-API may need to perform
addi tional checks in some |ocations.

1. GSS Application Sanple Code

ncl ude <uni std. h>

ncl ude <err. h>

ncl ude <stdio. h>

ncl ude <stdlib. h>

ncl ude <string. h>

ncl ude <gssapi/ gssapi. h>

Kaduk Expi res August 23, 2015 [Page 12]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

/*

* This helper is used only on buffers that we allocate ourselves (e.qg.
* fromreceive_token()). Buffers allocated by GSS routines nmust use
* gss_rel ease buffer().

*/

static void

rel ease_buffer(gss_buffer_t buf)

free(buf ->val ue);
buf - >val ue = NULL;
buf ->l ength = 0;

}
/*
* Hel per to send a token on the specified fd.
*
* |f errors are encountered, this routine nust not directly cause
* termnation of the process, because conpliant GSS applications
* must release resources allocated by the GSS |ibrary before
* exiting.
*

* Returns O on success, non-zero on failure.

*/
static int
send_t oken(int fd, gss_buffer_t token)
{
/*
* Supply token frami ng and transni ssion code here.
*
* |t is advisable for the application protocol to specify the
* | ength of the token being transmtted, unless the underlying
* transit does so inplicitly.
*
* |n addition to checking for error returns from whi chever
* syscall (s) are used to send data, applications should have
* a loop to handl e EINTR returns.
*/
return 1;
}
/*
* Hel per to receive a token on the specified fd.
*
* |f errors are encountered, this routine nust not directly cause
* termnation of the process, because conpliant GSS applications
* nmust rel ease resources allocated by the GSS library before
* exiting.
*

Kaduk Expi res August 23, 2015 [Page 13]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

* Returns O on success, non-zero on failure.

*/
static int
receive_token(int fd, gss_buffer_t token)
{
/*
* Supply token fram ng and transni ssion code here.
*
* |n addition to checking for error returns from whi chever
* syscall (s) are used to receive data, applications should have
* a |l oop to handl e EI NTR returns.
*
* This routine is assunmed to allocate nmenory for the | ocal copy
* of the received token, which nust be freed with rel ease_buffer().
*/
return 1,
}

static void

do_initiator(int readfd, int witefd, int anon)

{
int initiator_established = 0, ret;
gss_ctx id t ctx = GSS_C _NO CONTEXT;
OM uint32 major, mnor, req_flags, ret flags;
gss_buffer_desc input_token = GSS_C EMPTY_BUFFER
gss_buffer_desc output_token = GSS_C EMPTY_BUFFER
gss_buffer_desc name_buf = GSS_C EMPTY_BUFFER;
gss_nane_t target_nanme = GSS_C _NO NAME

/* Applications should set target nane to a real value. */
nane_buf . val ue = "<servi ce>@host nane. domai n>";
nane_buf .l ength = strl en(name_buf. val ue);
maj or = gss_i nport_name(&m nor, &nane_buf,
GSS_C_NT_HOSTBASED_SERVI CE, &t ar get _nane);

if (GSS_ERROR(mmjor)) {

warnx(1l, "Could not inport nane\n");

got o cl eanup;

}

/* Miutual authentication will require a token fromacceptor to
* initiator, and thus a second call to gss_init_sec _context(). */
req flags = GSS C MUTUAL FLAG | GSS C CONF_FLAG | GSS C | NTEG FLAG
i f (anon)

req_flags | = GSS_C ANON _FLAG

while (!linitiator_established) {

/* The initiator_cred_handl e, nmech_type, tine_req,
* input_chan_bindi ngs, actual mech_type, and tinme_rec

Kaduk Expi res August 23, 2015 [Page 14]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

Kaduk

* paraneters are not needed in many cases. W pass
* GSS_C _NO CREDENTI AL, GSS C NO O D, 0, NULL, NULL, and NULL
* for them respectively. */
maj or = gss_init_sec_context(&m nor, GSS C NO CREDENTI AL, &ct X,
target _nanme, GSS_C NO A D,
reqg_flags, 0, NULL, & nput _token
NULL, &output _token, &ret fl ags,
NULL) ;
/* This was allocated by receive_token() and is no | onger
* needed. Free it nowto avoid leaks if the |oop continues. */
rel ease_buffer (& nput _token);
if (anon) {
/[* Initiators which wish to remain anonynous nust check
* whet her their request has been honored before sending
* each token. */
if (!(ret_flags & GSS C ANON FLAG) {
war nx(" Anonynous requested but not avail able\n");
got o cl eanup;

}
}
/* Always send a token if we are expecting another input token
* (GSS_S CONTINUE NEEDED is set) or if it is nonenpty. */
if ((major & GSS_S_CONTI NUE_NEEDED) ||
out put _token.length > 0) {
ret = send_token(witefd, &output_token);
if (ret '=0)
got o cl eanup;
}
/* Check for errors after sending the token so that we will send
* error tokens. */
if (GSS_ERROR(nmjor)) {
warnx("gss_init_sec_context() error major Ox%\n", major);
got o cl eanup;
}
/* Free the output token's storage; we don’t need it anynore.
* gss _release buffer() is safe to call on the output buffer
* fromgss_int_sec_context(), even if there is no storage
*

associated with that buffer. */
(voi d)gss_rel ease_buffer (& nor, &output_token);

if (major & GSS_S CONTI NUE_NEEDED) ({
ret = receive_token(readfd, & nput_token);
if (ret 1'=0)
got o cl eanup;
} else if (major == GSS_S COWPLETE) {
initiator_established = 1;
} else {
/[* This situation is forbidden by RFC 2743. Bail out. */

Expi res August 23, 2015 [Page 15]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

war nx("maj or not conplete or continue but not error\n");
got o cl eanup;

}

} [* while (linitiator_established) */

if ((ret _flags & req_flags) !=req_flags) {
war nx(" Negoti at ed context does not support requested flags\n");
got o cl eanup;

printf("lnitiator’s context negotiation successful\n");
cl eanup:
/* W are required to rel ease storage for nonzero-|ength out put
* tokens. (gss release buffer() zeros the length, so we are
* will not attenpt to release the same buffer twi ce. */
i f (output_token.length > 0)
(voi d)gss_rel ease_buffer (& nor, &output_token);
/* Do not request a context del etion token; pass NULL. */
(voi d) gss_del ete_sec_context (&m nor, &ctx, NULL);
(voi d) gss_rel ease_nane(& nor, &target nane);

* Perform aut horization checks on the initiator’s GSS nane object.

* Returns O on success (the initiator is authorized) and nonzero
* when the initiator is not authorized.

*/
static int
check_aut hz(gss_nane_t client_nane)
{
/*
* Supply authorization checking code here.
*
* Options include bitw se conparison of the exported nane agai nst
* a |l ocal database, and introspection against name attri butes.
*/
return O;
}

static void
do_acceptor(int readfd, int witefd)

int acceptor_established = 0, ret;

gss_ctx_id t ctx = GSS_C _NO CONTEXT

OM uint32 major, ninor, ret_flags;

gss_buffer_desc input_token = GSS_C EMPTY_BUFFER
gss_buffer _desc output_token = GSS C EMPTY_BUFFER
gss_nane_t client_nane;

Kaduk Expi res August 23, 2015 [Page 16]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

maj or = GSS_S_CONTI NUE_NEEDED;

whil e (!acceptor_established) {

Kaduk

if (major & GSS_S CONTI NUE_NEEDED) ({
ret = receive_token(readfd, & nput_token);
if (ret '=0)
got o cl eanup;
} else if (major == GSS_S COWPLETE) {
accept or _establ i shed = 1;
br eak;
} else {
/[* This situation is forbi dden by RFC 2743. Bail out. */
war nx("maj or not conplete or continue but not error\n");
got o cl eanup;
}
/* We can use the default behavior or do not need the returned
* information for the paraneters acceptor_cred handl e,
i nput _chan_bi ndi ngs, nmech_type, tinme_rec, and
del egat ed_cred_handl e and pass the val ues
GSS_C _NO CREDENTI AL, NULL, NULL, NULL, and NULL,
respectively. In sone cases the src_nane will not be
needed, but nost likely it will be needed for sone
aut hori zation or logging functionality. */
maj or = gss_accept _sec_cont ext (& nor, &ctx,
GSS_C_NO_CREDENTI AL,
& nput _t oken, NULL,
&client _nanme, NULL,
&out put _token, &ret flags, NULL,
NULL) ;
/* This was allocated by receive_token() and is no | onger
* needed. Free it nowto avoid leaks if the |oop continues. */
rel ease_buffer (& nput _token);
/* Always send a token if we are expecting another input token
* (GSS_S CONTINUE NEEDED is set) or if it is nonenpty. */
if ((major & GSS_S_CONTI NUE_NEEDED) ||
out put _token.length > 0) {
ret = send_token(witefd, &output_token);
if (ret '=0)
got o cl eanup;

* Ok Ok Ok k%

}

/* Check for errors after sending the token so that we will send

* error tokens. */

if (GSS_ERROR(nmjor)) {
war nx("gss_accept _sec_context() error major Ox%\n", nmjor);
got o cl eanup;

}

/* Free the output token's storage; we don’t need it anynore.

* gss _release buffer() is safe to call on the output buffer

Expi res August 23, 2015 [Page 17]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

* from gss_accept_sec_context(), even if there is no storage
* associated with that buffer. */
(voi d)gss_rel ease_buffer (& nor, &output_token);
/* while (!acceptor_established) */

if (!(ret_flags & GSS C I NTEG FLAG) {
war nx(" Negoti at ed context does not support integrity\n");
got o cl eanup;

printf("Acceptor’s context negotiation successful\n");

ret = check _authz(client_nane);

if (ret '=0)

printf("Client is not authorized; rejecting access\n");
cl eanup:

rel ease_buffer (& nput _token);

/* W are required to rel ease storage for nonzero-|ength out put
* tokens. (gss release buffer() zeros the length, so we are
* will not attenpt to release the sanme buffer twice. */

i f (output_token.length > 0)

(voi d)gss_rel ease_buffer (& nor, &output_token);

/* Do not request a context deletion token, pass NULL. */

(voi d)gss_del ete_sec_cont ext (&m nor, &ctx, NULL);

(voi d)gss_rel ease_nane(&m nor, &client _nane);

}
i nt
mai n(voi d)
{
pidt pid;
int fdl = -1, fd2 = -1;
/* Create fds for reading/witing here. */
pid = fork();
if (pid == 0)
do_initiator(fdl, fd2, 0);
else if (pid > 0)
do_acceptor(fd2, fdl);
el se
err(1, "fork() failed\n");
exit(0);
}

6. | ANA Consi derati ons

Thi s docunent nmakes no request of | ANA

Kaduk Expi res August 23, 2015 [Page 18]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

7

Security Considerations

Thi s docunent provides a (reasonably) concise description and exanpl e
for correct construction of the GSS-APlI security context negotiation
| oop. Since everything relating to the construction and use of a GSS
security context is security-related, there are security-rel evant
consi derations throughout the docunment. It is useful to call out a
few things in this section, though

The GSS- APl uses a request-and-check nodel for features. An
application using the GSS-API requests certain features
(confidentiality protection for nessages, or anonynmity), but such a
request does not require the GSS inplenentation to provide that
feature. The application nmust check the returned flags to verify
whet her a requested feature is present; if the feature was non-
optional for the application, the application nust generate an error
Phrased differently, the GSS-API will not generate an error if it is
unabl e to satisfy the features requested by the application

In many cases it is convenient for GSS acceptors to accept security
contexts using multiple acceptor nanes (such as by using the default
credential set, as happens when GSS C NO CREDENTIAL is passed to
GSS _Accept _sec_context()). This allows acceptors to use any
credentials to which it has access for accepting security contexts,
whi ch may not be the desired behavior for a given application. (For
exanpl e, sshd may only wi sh to accept only using GSS _C NT_HOSTBASED
credential s of the form host @host nanme>, and not nfs@thost nanme>.)
Acceptor applications can check which target nane was used by the
initiator, but the details are out of scope for this docunent. See
[RFC2743] sections 2.2.6 and 1.1.5.

The C sanple code uses the macro GSS ERROR() to assess the return

val ue of gss_init_sec_context() and gss_accept_sec_context(). This
is done to indicate where checks are needed in witing code for other
| anguages and what the nature of those checks might be. The C code
could be nade sinpler by onmitting that macro. |n applications
expecting to receive protected octet streans, this macro should not
be used on the result of per-message operations, as it omts checking
for supplenmentary status val ues such as GSS_S DUPLI CATE_TOKEN,

GSS S OLD TOKEN, etc.. Use of the GSS ERROR() macro on the results
of GSS- APl per-nessage operations has resulted in security

vul nerabilities in existing software!

The security considerations from RFCs 2743 and 2744 remai n applicable
to consunmers of this docunent.

Kaduk Expi res August 23, 2015 [Page 19]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

8. References
8. 1. Nor mati ve Ref erences

[RFC2743] Linn, J., "Ceneric Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[RFC2744] Way, J., "Ceneric Security Service APl Version 2 :
C bi ndi ngs", RFC 2744, January 2000.

8.2. Infornmational References

[RFC4401] Wlliams, N., "A Pseudo- Random Function (PRF) API
Extension for the Generic Security Service Application
Program I nterface (GSS-API)", RFC 4401, February 2006.

[RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Wl ch,
"CGeneric Security Service Application ProgramInterface
(GSS- APl) Authentication and Key Exchange for the Secure
Shell (SSH) Protocol", RFC 4462, NMay 2006.

[RFC3645] Kwan, S., Garg, P., Glroy, J., Esibov, L., Wsthead, J.,
and R Hall, "Generic Security Service A gorithmfor
Secret Key Transaction Authentication for DNS (GSS-TSI G ",
RFC 3645, Cctober 2003.

[RFC5801] Josefsson, S. and N. WIllianms, "Using Generic Security
Service Application ProgramInterface (GSS-APlI) Mechanisns
in Sinple Authentication and Security Layer (SASL): The
GS2 Mechani sm Fanily", RFC 5801, July 2010.

[RFCA752] Melnikov, A, "The Kerberos V5 ("GSSAPI") Sinple
Aut hentication and Security Layer (SASL) Mechani sm', RFC
4752, Novenber 2006.

[RFC2203] Eisler, M, Chiu, A, and L. Ling, "RPCSEC GSS Protocol
Speci fication", RFC 2203, Septenber 1997.

[NTLMSSP] M crosoft Corporation, "[M5-NLMP]: NT LAN Manager (NTLM
Aut hentication Protocol", My 2014.

[RFC6680] W lliams, N., Johansson, L., Hartman, S., and S
Josefsson, "Generic Security Service Application
Programm ng Interface (GSS-API) Nam ng Extensions", RFC
6680, August 2012.

Kaduk Expi res August 23, 2015 [Page 20]

Internet-Draft Structure of the GSS Negotiation Loop February 2015

Appendi x A. Acknow edgenent s

Thanks to Nico WIllians and Jeff Hutzleman for pronpting nme to wite
thi s docunent.

Aut hor’ s Addr ess

Benj am n Kaduk
M T Ker beros Consortium

Emai | : kaduk@rit. edu

Kaduk Expi res August 23, 2015 [Page 21]

