Net wor k Wor ki ng Group R Shakir

I nternet-Draft BT
I ntended status: |nformational A. Shai kh
Expi res: Septenber 10, 2015 M Hi nes

Googl e

March 9, 2015

Consi stent Mddeling of Operational State Data in YANG
dr af t - openconfi g- net nod- opst at e- 00

Abst ract

Thi s docunment proposes an approach for nodeling configuration and
operational state data in YANG that is geared toward network
managenent systens that require capabilities beyond those typically
envi sioned in a NETCONF- based nanagenent system The docunent
presents the requirenents of such systens and proposes a nodeling
approach to neet these requirenents, along with inplications and
design patterns for nodeling operational state in YANG

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on Septenber 10, 2015.
Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect

Shakir, et al. Expi res Septenber 10, 2015 [Page 1]

Internet-Draft Model i ng Operational State March 2015

to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

1. Introduction

Retrieving the operational state of a network elenent (NE) is a
critical process for a network operator, both because it determ nes
how the network is currently running (for exanple, how nmany errors
are occurring on a certain link, what is the load of that |ink); but
al so because it determ nes whether the intended configuration applied
by a network managenment systemis currently operational. Wilst
changi ng of the configuration of NE may be a process which occurs
relatively infrequently, the accessing of the state of the network is
significantly nore often - with knowl edge of the real-tine state of
the network by external analysis and di agnostic systens being desired
(implying reading of this data on the order of nmillisecond

ti mescal es).

It is desirable to nodel configuration and operational state within a
single schema. This allows a network operator or nmanagenent system
to retrieve information as to the intended state of the network
system (the configuration), and easily relate to this to the actua
running state. There are nunerous reasons that the intended state
may not be reflected by the running config:

o0 Protocol negotiations may be required for nultiple NEs to agree on
a certain running value - for exanple, the HOLDTI ME of a BGP
session is chosen by taking the mni mumvalue of the locally
configured and advertised value received fromthe renote speaker
The operational value of the HOLDTI ME may therefore be | ower than
the configured value on the |ocal system

0 \Where the application of a change is asynchronous - due to system
operations, or a pre-requisite for another event to occur before
the configuration value is applied (e.g., a protocol session
restart) - then the intended configuration value nay not determ ne
whet her the configuration has been conmitted to the running
configuration; or whether the pre-requisite event has occurred.

Based on such differences between intended and running state, the
operation of checking one state and then subsequently applying a
change is very conmon. For exanple, checking the current IGP netric
of a certain link, and if it is not reflective of the desired val ue,
subsequently applying a change. Rather than view ng configuration
and operational state separately, having both types of values in a
common | ocation within the sane data schena is advantageous. In this

Shakir, et al. Expi res Septenber 10, 2015 [Page 2]

Internet-Draft Model i ng Operational State March 2015

way, no conpl ex nmappi hg between the path where the value is read, and
the path by which it is configured is required.

The majority of existing designs of the |ayout and presentation of a
YANG [RFC6020] nodel considers only the semantics of the NETCONF
protocol - however, it is advantageous that any data nodel (expressed
in YANG should be suitable for use with nultiple protocols. Such
protocols may be alternatives to NETCONF - e.g., RESTCONF - but al so
may be specifically engineered for accessing particul ar operationa
data (e.g., streaned data froma network el enent, rather than ' SNWP-
Iike' polled nmechani sns).

Based on the inherent |ink between the configuration and state data
for a NE, and the inportance of state for a network operator, YANG s
focus solely on configuration data is suboptinmal [RFC6244]. W
therefore consider that there is a requirenent to consider (and
define conmmon approaches for) the definition of state and operationa
data within a YANG nodel. Such considerations shoul d be cogni sant of
the protocols used to interact with the data schenma.

2. QOperational requirenents

Qur proposal is notivated by a nunber of operational requirenents as
descri bed bel ow

2.1. Intended configuration as part of operational state

The definition of operational state in [RFC6244] includes read-only
transient data that is the result of system operation or protoco
interactions, and data that is typically thought of as counters or
statistics. |In many operational use cases it is also inportant to

di stingui sh between the intended value of a configuration variable
and its actual configured state, anal ogous to candi date and running
configuration, respectively, in NETCONF datastores. |n non-

transacti onal or asynchronous environnents, for exanple, these may be
different and it is inmportant to know when they are different or when
t hey have converged (see requirenent #2). For this reason, we

consi der the intended configuration as an additional inportant

el ement of the operational state. This is not considered in

[RFC6244] .

2.2. Support for both transactional, synchronous managenent systenms as
wel | as distributed, asynchronous managenent systens

In a synchronous system configuration changes are transactional and

conmmitted as an atomic unit. This inplies that the nmanagenent system
knows the success or failure of the configuration change based on the
return val ue, and hence knows that the intended configuration natches

Shakir, et al. Expi res Septenber 10, 2015 [Page 3]

I nt

2. 3.

2. 4.

ernet-Draft Model i ng Operational State March 2015

what is on the system In particular, the value of any configuration
vari abl e shoul d al ways reflect the (intended) configured val ue.
Synchronous operation is generally associated with a NETCONF- based
systemthat provides transactional semantics for all changes.

In an asynchronous system configuration changes to the system may
not be reflected i Mmedi ately, even though the change operation
returns success. Rather, the change is verified by observing the
state of the system for exanple based on notifications, or
continuously streaned val ues of the state. 1In this case, the value
of a configuration variable may not reflect the intended configured
val ue at a given point in tine.

The asynchronous use case is inportant because synchronous operation
may not al ways be possible. For exanple, in a large scale

envi ronnent, the nanagenent systemnmay not need to wait for al
changes to conplete if it is acceptable to proceed while sone
configuration values are being updated. 1In addition, not all devices
may support transactional changes, maki ng asynchronous operation a
requi renent. Mbreover, using observed state to infer the configured
val ue all ows the managenent systemto learn the tine taken to

conpl ete various configuration changes.

Separation of configuration and operational state data; ability to
retrieve themindependently

These requirenents are also nentioned in [RFC3535]:

0 It is necessary to nake a clear distinction between configuration
data, data that describes operational state and statistics.

o It isrequired to be able to fetch separately configuration data,
operational state data, and statistics fromdevices, and to be
abl e to conpare these between devices

Ability to retrieve operational state corresponding only to
derived val ues, statistics, etc.

When t he managenent system operates in synchronous node, it should be
able to retrieve only the operational state corresponding to the
system det erni ned val ues, such as negoti ated val ues, protoco

determi ned val ues, or statistics and counters. Since in synchronous
nmode the intended and actual configuration values are identical
sendi ng the intended configuration state is redundant.

Shakir, et al. Expi res Septenber 10, 2015 [Page 4]

Internet-Draft Model i ng Operational State March 2015

2.5. Consistent schema | ocations for configuration and correspondi ng
operational state data

This requirenent inplies that a comon convention is used throughout
the schema to locate configuration and state data so that the
management system can infer how to access one or the other w thout
needi ng significant external context. Wen considering intended
configuration as part of operational state (as discussed in

Section 2.1), it is simlarly required that the intended val ue vs.
actual value for a particular configuration variable should be
possible to locate with nmininal, if any, napping infornation.

Thi s requirenment becones nore evident when considering the
composition of individual data nodels into a higher-1level nodel for a
compl ete device (e.g., /device[nane=devXY]/protocols/routing/...) or
even higher |ayer nodels naintai ned by network operators (e.g., /ope
rat or X/ gl obal / conti nent [name=eur]/ pop[hame=pari s] / devi ce[nane=devXY]
[...). |If each nodel has it’'s own way to separate configuration and
state data, then this information nust be known at potentially every
subtree of the conposed nodel

3. Inplications on nodeling operational state

The requirenents in Section 2 give rise to a nunber of new
consi derations for nodeling operational state. Some of the key
i mplications are sumari zed bel ow.

3.1. Inclusion of intended configuration as part of operational state

This inplies that a copy of the configurable (i.e., witable) val ues
shoul d be included as read-only variables in containers for
operational state, in addition to the variables that are
traditionally thought of as state variables (counters, negotiated
val ues, etc.).

3.2. Corresponding | eaves for configuration and state

Any configuration | eaf should have a corresponding state leaf. The
opposite is clearly not true -- sone parts of the nodel may only have
derived state variables, for exanple the contents of a routing table
that is populated by a dynanic routing protocols like BGP or 1S 1S.

3.3. Retrieval of only the derived, or NE-generated part of the
operational state

YANG and NETCONF do not currently differentiate between state that is

derived by the NE, state representing statistics, and state
representing intended configuration -- all state is sinply marked as

Shakir, et al. Expi res Septenber 10, 2015 [Page 5]

Internet-Draft Model i ng Operational State March 2015

"config false’ or read-only. To retrieve only the state that is not
part of intended configuration, we require a new way to tag such
data. This is proposed in this docunent as a YANG extension

Al ternatively, as described in [RFC6244], a new NETCONF datastore for
operational state that is just for NE- generated state could also be
used to allow <get> (or simlar) operations to specify just that part
of the state.

3.4. Consistency and predictability in the paths where correspondi ng

3.

4.

state and configuration data may be retrieved

To avoid arbitrary placenent of state and configuration data

contai ners, the nost consistent options would be at the root of the
nmodel (as done in [YANGIF]) or at the leaves, i.e., at the start or
end of the paths. \When operators conmpose nodels into a higher |eve
nodel , the root of the nobdel is no |longer well-defined, and hence
neither is the start of the path. For these reasons, we propose

pl aci ng configuration and state separation at |eaves of the nodel.

5. Reuse of existing NETCONF conventions where applicable

1.

Though not a specific requirenent, nodels for operational state
shoul d take advant age of existing protocol nechani sns where possi bl e,
e.g., toretrieve configuration and state data.

Proposed operational state structure

Bel ow we show an exanpl e nodel structure that neets the requirenents
descri bed above for all four types of data we are considering:

o configuration (witable) data

0 operational state data on the NE that is derived, negotiated, set
by a protocol, etc.

0 operational state data for counters or statistics

0 operational state data representing intended configuration
Exanpl e nodel structure

The exanpl e bel ow shows a partial nodel (in ascii tree fornmat) for

managi ng Et hernet aggregate interfaces (leveraging data definitions
from[RFC7223]):

Shakir, et al. Expi res Septenber 10, 2015 [Page 6]

Internet-Draft

Model i ng Operational State

+--rwinterfaces
+--rwinterface* [nane]
+--rw name ->
+--rw config

../ config/ name

March 2015

|
+--ro0 State

+--r0 counters

I
| +--ro discontinuity-tine yang: dat e-and-ti ne
[+--ro in-octets? yang: count er 64
| +--ro in-unicast-pkts? yang: count er 64
| +--ro in-broadcast - pkts? yang: count er 64
| +--ro in-multicast-pkts? yang: count er 64
| +--ro in-discards? yang: count er 64
| +--ro in-errors? yang: count er 64
[+--r0 in-unknown- protos? yang: count er 64
| +--ro0 out-octets? yang: count er 64
| +--ro out-unicast-pkts? yang: count er 64
| +--ro out-broadcast - pkts? yang: count er 64
| +--ro out-multicast-pkts? yang: count er 64
| +--ro out-discards? yang: count er 64
[+--ro out-errors? yang: count er 64
+--rw aggregation!

+--rw config

| +--rwlag-type? aggregation-type

| +--rw min-links? uint16

+--ro state

| +--ro lag-type? aggregation-type

| +--ro min-links? uintl16

| +--ro nmenbers* ocif:interface-ref

+-rw |l acp
+--rw config

| +--rwinterval?

| acp

- period-type

+--rw nenbers* [interface]

| +--rwinterface
+--ro state

ocif:interface-ref

I
| +--ro activity? | acp-activity-type
| +--ro timeout? | acp-tineout-type
| +--ro synchronization? | acp- synch-type
[+--ro aggregat abl e? bool ean
| +--ro collecting? bool ean
| +--ro distributing? bool ean
+--ro state
+--ro interval ? | acp- peri od-type

In this nodel,

Shakir, et al

the path to the configurable (rw
aggregate interface | evel

is:

Expi res Sept enber

itens at the

10, 2015 [Page 7]

Internet-Draft Model i ng Operational State March 2015

linterfaces/interface[nane=if Nane]/aggregation/config/..
The correspondi ng operational state is |located at:
linterfaces/interface[nane=i f Nane]/ aggregati on/state/..

This container holds a read-only copy of the intended configuration
vari ables (lag-type and mn-links), as well as a generated |list of
menber interfaces (the nenbers leaf-list) for the aggregate that is
active when the lag-type indicates a statically configured aggregate.
Not e that although the paths to config and state containers are
symretric, the state container contains additional derived vari abl es.

The nmodel has an additional hierarchy |level for aggregate interfaces
that are maintai ned using LACP. For these, the configuration path
is:

linterfaces/interface[nane=i f Nane]/ aggregati on/l acp/config/..

with the corresponding state container (in this case with only the
state corresponding to the intended configuration) at:

linterfaces/interface[nane=i f Nane]/ aggregation/l acp/state/..

There is an additional list of nmenmbers for LACP-nanaged aggregates
with only a state container:

linterfaces/interface[nane=i f Nane] / aggr egati on/ | acp/
menber s[nane=i f Nane] / state/ ..

Note that it is not required that both a state and a config container
be present at every leaf. It may be convenient to include an enpty
config container to make it nore explicit to the managenent system
that there are no configuration variables at this location in the
data tree.

Finally, we can see that the generic interface object also has config
and state containers (these are abbreviated for clarity). The state
cont ai ner has a subcontainer for operational state corresponding to
counters and statistics that are valid for any interface type:
linterfaces/interface[nane=ifNane]/state/counters/..

5. Inpact on nodel authoring
One drawback of structuring operational and configuration data in

this way is the added conplexity in authoring the nodels, relative to
the way sonme nodels are currently built with state and config split

Shakir, et al. Expi res Septenber 10, 2015 [Page 8]

Internet-Draft Model i ng Operational State March 2015

at the root of the individual nodel (e.g., in [RFC7223], [RFC7317],
and [ETF-RTG). Moving the config and state containers to each |eaf
adds a one-tinme nodeling effort, which is somewhat dependent on the
nodel structure itself (how many |ayers of container hierarchy,
nunber of lists, etc.) However, we feel this effort is justified by
the resulting sinplicity with which managenent systenms can access and
correlate state and configuration data.

5.1. Mbddeling design patterns

We propose sone specific YANG nodel i ng design patterns that may be
useful for building nodels follow ng these conventions.

5.1.1. Basi ¢ structure

Since |l eaves that are created under the 'config container are
duplicated under the 'state’' container, it is recommended that the
foll owi ng conventions are used to ensure that the schema remain as
simpl e as possi bl e:

0 A grouping for the "config data itens is created - with a
specific nam ng convention to indicate that such variables are
configurable, such as a suffix like "-config’ or ' _config . For
exanpl e, the OpenConfig BGP nodel [OC-BGP] adopts the convention
of appending "_config" to the nane of the container

0 A grouping for the "state’ data itens is created, with a simlar
nam ng convention as above, i.e., with a suffix such as '-state
or ' _state’'. The BGP npdel uses " _state".

0 A structure grouping is created that instantiates both the
"config’" and 'state’ containers. The 'config container should
i nclude the "-config" grouping, whilst the state container has
both the "-config" and "-state" groupings, along with the "config
fal se’ statenent.

A sinple exanple in YANG is shown in Appendix B
5.1.2. Handling lists

In YANG 1.0, lists have requirenents that conplicate the creation of
the parallel configuration and state data structures. First, keys
must be children of the list; they cannot be further down the data
hi erarchy within a subsequent container. For exanple, the
"interface’ |ist cannot be keyed by /interfaces/interface/config/
nane. Second YANG requires that the list key is part of the
configuration or state data in each |list nmenber.

Shakir, et al. Expi res Septenber 10, 2015 [Page 9]

Internet-Draft Model i ng Operational State March 2015

We consider two possible approaches for lists:

1. list keys appear only at the top level of the list, i.e., not
duplicated under the "config or 'state' containers within the
Iist

2. the data represented by the Iist key appears in the config and
state containers, and a key with type leafref is used in the top
I evel of the Iist pointing to the corresponding data node in the
config (or state) container.

Option 1 has the advantage of not duplicating data, but treats the
data item (or itens) that are keys as special cases, i.e., not
included in the config or state containers. Option 2 is appealing in
that configurable data al ways appears in the config container, but
requires an arguably unnecessary key pointing to the data fromthe
top level of the list.

Appendi x C shows a sinple exanple of both options.
5.1.3. Selective use of state data from conmon groupi ngs

In a nunber of cases, it is desirable that the sane grouping be used
within different places in a nodel - but state information is only
rel evant in one of these paths. For exanple, considering BGP, peer
configuration is relevant to both a "neighbor" (i.e., an individua
BGP peer), and also to a peer-group (a set of peers). Counters
relating to the nunber of received prefixes, or queued nessages, are
relevant only within the 'state’ container of the peer (rather than
the peer-group). In this case, use of the 'augnment’ statenment to add
specific leaves to only one area of the tree is recommended, since it
all ows a comon container to be utilized otherw se.

5.1.4. Non-corresponding configuration and state data

There are sonme instances where only an operational state container is
rel evant without a correspondi ng configuration data container. For
exanple, the list of currently active nenber interfaces in a LACP-
managed LAG is typically reported by the system as operational state
that is governed by the LACP protocol. Such data is not directly
configured. Simlarly, counters and statistics do not have
correspondi ng configuration. In these cases, we can either onit the
config container fromsuch | eaves, or provide an enpty container as
described earlier. Wth both options, the nanagenent systemis able
to infer that such data is not configurable.

Shakir, et al. Expi res Septenber 10, 2015 [Page 10]

Internet-Draft Model i ng Operational State March 2015

6. YANG | anguage consi derati ons

I n adopting the approach described in this docunent for nodeling
operational state data in YANG we encounter several |anguage
limtations that are described below. W disucss some initia

t hought s on possi bl e changes to the | anguage to nore easily enable
the proposed nodel for operational state nodeling.

6.1. Distinguishing derived operational state data and intended
configuration

As mentioned in Section 2, we require a way to separately query
operational state that is not part of intended configuration (e.g.
protocol -determ ned data, counters, etc.). YANG and NETCONF do not

di stinguish types of operational state data, however. To overcone
this, we currently use a YANG | anguage extension to mark such data as

"operational: true'. Ideally, this could be generalized beyond the
current 'config: true / false’ to sonmething |ike "operational
false", "operational: intent", and "operational:true".

6.2. YANG lists as maps

YANG has two list constructs, the 'leaf-list’ whichis simlar to a
list of scalars in other progranm ng | anguages, and the 'list’ which
all ows a keyed list of conplex structures, where the key is al so part
of the data values. As described in Section [inmpact], the current
requirenents on YANG list keys require either duplication of data, or
treating sone data (i.e., those that conprise list keys) as a speci al
case. One solution is to generalize lists to be nore Iike map data
structures, where each list nmenber has a key that is not required to
part of the configuration or state data. This allows list keys to be
arbitrarily defined by the user if desired, or based on val ues of
data nodes. |In the latter case, the specification of which data
nodes are used in constructing the list key could be indicated in the
met a- dat a associated with the key.

6.3. Configuration and state data hierarchy

YANG does not allow read-wite configuration data to be child nodes
of read-only operational state data. This requires the definition of
separate state and config containers as descri bed above. However, it
may be desirable to sinplify the schema by 'flattening’, e.g., having
the operational state as the root of the data tree, with only config
contai ners needed to specify the variables that are witable (in
general, the configuration data is nuch smaller than operationa

state data). Naming the containers explicitly according the config /
state convention makes the intent of the data clear, and should all ow
rel axing of the current YANG restrictions. That is, a read-wite

Shakir, et al. Expi res Septenber 10, 2015 [Page 11]

Internet-Draft Model i ng Operational State March 2015

8.
8.

8.

config container makes explicit the nature of the enclosed data even
if the parent data nodes are read-only. This of course requires that
all data in a config container are in fact configurable -- this is
one of the notivations of pushing such containers as far down in the
schena hi erarchy as possible.

Security Considerations

Thi s docunent addresses the structure of configuration and
operational state data, both of which should be considered sensitive
froma security standpoint. Any data nodels that follows the
proposed structuring nmust be carefully carefully evaluated to
determine its security risks. |In general, access to both
configuration (wite) and operational state (read) data nust be
carefully controll ed through appropriate access control and

aut hori zati on nechani sns.

Ref erences
1. Nor mati ve references

[RFC6020] Bjorklund, M, "YANG - A Data Mdeling Language for the
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Cct ober 2010.

[RFC6244] Shafer, P., "An Architecture for Network Managenment Using
NETCONF and YANG', RFC 6244, June 2011.

[RFC3535] Schoenwael der, J., "Overview of the 2002 | AB Network
Managenment Wor kshop", RFC 3535, May 2003.

[RFC7223] Bjorklund, M, "A YANG Data Mdel for Interface
Management ", RFC 7223, May 2014.

[RFC7317] Biernman, A and M Bjorklund, "A YANG Data Mdel for
System Managenent", RFC 7317, August 2014.

2. Informati ve references

[1 ETF- RTG
Lhotka, L., "A YANG Data Mddel for Routing Managenent",
draft-ietf-netnod-routing-cfg-16 (work in progress),
Cct ober 2014.

[OC- BGP] Shai kh, A., D Souza, K., Bansal, D., and R Shakir, "BGP
Configuration Mddel for Service Provider Networks", draft-
shai kh-i dr - bgp- nodel -01 (work in progress), March 2015.

Shakir, et al. Expi res Septenber 10, 2015 [Page 12]

Internet-Draft Model i ng Operational State March 2015

Appendi x A. Acknow edgenent s

The authors are grateful for valuable input to this docunent from
Martin Bjorklund, Paul Borman, Chris Chase, Fei hong Chen, Josh
George, Carl Moberg, Jason Sterne, and Jim Uttaro.

Appendi x B. Exanpl e YANG base structure

Bel ow we show an exanpl e of the basic YANG buil ding bl ock for
organi zi ng configuration and operational state data as described in
Section 4

groupi ng exanpl e-config {
description "configuration data for exanple container"”;

| eaf conf-1 {
type enpty;

| eaf conf-2 {
type string;

}

groupi ng exanpl e-state {
description
"operational state data (derived, counters, etc.) for exanple
cont ai ner";

| eaf state-1 {
type bool ean;

| eaf state-2 {
type string;

cont ai ner counters {
description
"operational state counters for exanple container”;

| eaf counter-1 {
type uint32;
| eaf counter-2 {

type uint 64;

Shakir, et al. Expi res Septenber 10, 2015 [Page 13]

Internet-Draft Model i ng Operational State March 2015

}
}

groupi ng exanpl e-structure {
description

"top level grouping for the exanple container -- this is used
to put the config and state subtrees in the appropriate
| ocation";

cont ai ner exanpl e {
description
"top-1level container for the exanple data"

contai ner config {

uses exanpl e-confi g;

}

contai ner state {

config fal se

uses exanpl e-confi g;

uses exanpl e-st at e;
}

}
}

uses exanpl e-structure;
The correspondi ng YANG data tree is:

+--rw exanpl e
+--rw config
| +--rwconf-17? enpty
| +--rw conf-2? string
+--ro state

+--ro conf-1? enpty
+--ro conf-2? string
+--ro state-17? bool ean
+--ro state-2? string

+--ro counters
+--ro counter-1? ui nt 32
+--ro0 counter-2? ui nt 64

Shakir, et al. Expi res Septenber 10, 2015 [Page 14]

Internet-Draft Model i ng Operational State March 2015

Appendi x C. Exanple YANG list structure

As described in Section 5.1.2, there are two options we consider for
building lists according to the proposed structure. Both are shown
in the exanpl e YANG sni ppet below. The groupings defined above in
Appendi x B are reused here.

groupi ng exanpl e- no-conf 2-config {
description
"configuration data for exanple container but w thout the conf-2
data leaf which is used as a list key";

| eaf conf-1 {
type enpty;

}

groupi ng exanpl e-structure {
description

"top level grouping for the exanple container -- this is used
to put the config and state subtrees in the appropriate
| ocation";

list exanple {
key conf-2
description
"top-level list for the exanple data"
| eaf conf-2 {

type leafref {
path "../config/conf-2";
}

}

cont ai ner config {
uses exanpl e-confi g;

}

contai ner state {
config fal se

uses exanpl e-confi g;
uses exanpl e- st at e;

}

Shakir, et al. Expi res Septenber 10, 2015 [Page 15]

Internet-Draft Model i ng Operational State March 2015

}
list example2 {

key conf-2
description
"top-level list for the exanple data"

| eaf conf-2 {
type string;
contai ner config {

uses exanpl e- no-conf 2-confi g;

}

contai ner state {

config fal se
uses exanpl e- no-conf 2-confi g;
uses exanpl e-st at e;
}
}
}

uses exanpl e-structure;

The correspondi ng YANG data tree is shown bel ow for both styles of
lists.

Shakir, et al. Expi res Septenber 10, 2015 [Page 16]

Internet-Draft Model i ng Operational State March 2015

+--rw exanpl e* [conf-2]
| +--rwconf-2 -> ../config/conf-2
+--rw config
| +--rwconf-17? enpty
| +--rw conf-2? string
+--ro state

+--ro conf-1? enpty
+--ro0 state-1? bool ean
+--ro state-2? string

+--ro counters
+--ro counter-1? ui nt 32
+--ro counter-2? ui nt 64
+--rw exanpl e2* [conf-2]

+--rw conf-2 string

+--rw config

| +--rwconf-17? enpty

+--ro state

I
I
I
I
I
| +--ro conf-2? string
I
I
I
I
I

+--ro conf-1? enpty
+--ro state-17? bool ean
+--ro state-2? string

+--ro counters
+--ro counter-1? ui nt 32
+--ro0 counter-2? ui nt 64

Aut hors’ Addr esses

Rob Shaki r

BT

pp. C3L, BT Centre
81, Newgate Street
London EC1A 7AJ

UK
Emai | : rob. shakir@t.com
URI : http://ww. bt.conf

Anees Shai kh

Googl e

1600 Amphitheatre Pkwy
Mountain View, CA 94043
Us

Emai | : aashai kh@oogl e. com

Shakir, et al. Expi res Septenber 10, 2015 [Page 17]

Internet-Draft Model i ng Operational State March 2015

Mar cus Hi nes

Googl e

1600 Amphitheatre Pkwy
Mountain View, CA 94043
Us

Emai | : hi nes@oogl e. com

Shakir, et al. Expi res Septenber 10, 2015 [Page 18]

