NETCONF Dat a Mbdel i ng Language Worki ng G oup (netnod) E. Voit

Internet-Draft A Cemm
I ntended status: |nfornational Cisco Systens
Expires: Septenber 10, 2015 S. Mertens

Prisnmtech

March 9, 2015

Requi renments for Peer Munting of YANG subtrees from Renote Datastores
draft-voit-netnod- peer-nount-requirements-02

Abstract

Net work integrated applications want sinple ways to access YANG

obj ects and subtrees which m ght be distributed across network.
Performance requirements may dictate that it is unaffordable for a
subset of these applications to go through existing centralized
managenent brokers. For such applications, devel opnent conplexity
must be minimzed. Specific aspects of conplexity devel opers want to
i gnore incl ude:

0 whether authoritative information is actually sourced fromrenote
datastores (as well as how to get to those datastores),

o whether such information has been |ocally cached or not,

o whether there are zero, one, or nore controllers asserting
ownership of information, and

o whether there are interactions with other applications
concurrently running el sewhere

The solution requirenents described in this docunment detail what is
needed to support application access to authoritative network YANG
objects fromcontrollers (star) or peering network devices (mesh) in
such a way to neet these goals.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Voit, et al. Expi res Septenber 10, 2015 [Page 1]

Internet-Draft Peer Mbount Requirenents

March 2015

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite themother than as "work in progress."

This Internet-Draft will expire on Septenber

Copyright Notice

10, 2015.

Copyright (c) 2015 | ETF Trust and the persons identified as the

docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Legal

Provisions Relating to | ETF Documents

(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD License.
Tabl e of Contents

1. Business Problem

2. Term nol ogy .

3. Solution Context
3. 1. Peer Mbunt

3.2. Eventual Conél ét ency and YANG 1 1

4. Exanple Use Cases .
.1. Cdoud Policer . . .
.2. DDoS Threshol ding .

DD

Managenent
5. Requirenents

.3. Service Chain Cassifi catl on Load Bal anci ng and Capacity

5.1. Application Slrrpllf|cat|on

5.2. Caching . .

5.3. Subscri bi ng to Rem)te OOJ ect Updat es

5.4. Lifecycle of the Munt Topol ogy . . .
5.4.1. Discovery and Creation of Mount TopoI ogy
5.4.2. Restrictions on the Munt Topol ogy

5.5. Munt Filter . e e e

5.6. Auto-Negotiation of Peer Mount Cient QoS .

5.7. Datastore Qualification . e e

5.8. Local Mounting

5.9. Munt Cascades

5.10. Transport .

5.11. Security Consi der atl ons .

Voit, et al. Expi res Septenber 10, 2015

O©COOO~NOOULA~W

10

11
13
14
14
14
15

15
16
16
16
16
17

[Page 2]

Internet-Draft Peer Mbount Requirenents March 2015
5.12. High Availability . 17
5.12.1. Reliability . 18
5.12.2. Alignnent to late 10|n|ng peers 18
5.12.3. Liveliness . . Coe e 18
5.12.4. Merging of datasets .o 18
5.12.5. Distributed Munt Servers 19
5.13. Configuration . 19
5.14. Assurance and hbnltorlng 19
6. | ANA Considerations . . 19
7. Acknow edgenents 19
8. References . 20
8.1. Nornmtive References 20
8.2. Informative References 20
8.3. URIs 21
Aut hors’ Addr esses 21
1. Business Problem

Instrumenting Physical and Virtual Network El ements purely al ong

devi ce boundaries is insufficient for today’'s requirenents. |Instead,

users, applications, and operators are asking for the ability to
interact with varying subsets of network information at the highest

viabl e I evel of abstraction. Likew se applications that run locally

on devices may require access to data that transcends the boundarie
of the device they are deployed. Achieving this can be difficult

S

since a running network is conprised of a distributed mesh of object

ownership. (l.e., the authoritative device owning a particul ar
object will vary.) Solutions require the transparent assenbly of
different objects fromacross a network in order to provide
consol i dated, tinme synchronized, and consistent views required for
t hat abstraction.

Recent approaches have focused on a Network Controller as the arbit
of new network-w de abstractions. Controller based solutions are
supportabl e by requirenents outlined in this docunent. However th
is not the only deploynent nodel covered by this docunment. Equally
valid are depl oyment nodel s where Network El enents exchange
information in a way which all ows one or nore of those Elenments to
provi de the desired network | evel abstraction. This is not a new

i dea. Exanpl es of Network El enent based protocols which already do

er

S

network | evel abstractions include VRRP [RFC3768], nlLACP/ 1 CCP[I| CCP],
and Anycast-RP [RFC4610] . As network elements increase their conpute

power and support Linux based conpute virtualization, we should
expect additional |ocal applications to enmerge as well (such as
Distributed Analytics [1]).

Utinmately network application progranm ng nust be sinplified. To do

this:

Voit, et al. Expi res Septenber 10, 2015 [Page 3]

Internet-Draft Peer Mbount Requirenents March 2015

0 we nust provide APIs to both controller and network el enent based
applications in a way which all ows access to network objects as if
they were coming froma cloud,

0 we nust enable these local applications to interact with network
| evel abstractions,

o we nust hide the mesh of interdependenci es and consi st ency
enf orcement nmechani sns bet ween devices which will underpin a
particul ar abstraction,

o we nust enable flexible deployment nodels, in which applications
are able to run not only on controller and OSS franeworks but al so
on network devices wi thout requiring heavy middl eware with | arge
footprints, and

0 we need to naintain clear authoritative ownership of individua
data itens while not burdening applications with the need to
reconcil e and synchronize information replicated in different
systens, nor needing to maintain redundant data nodel s that
operate on the sane underlying data.

These steps will elinminate nmuch unnecessary overhead currently
requi red of today’ s network programmer.

2. Term nol ogy
The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [RFC2119].

Authoritative Datastore - A datastore containing the authoritative
copy of an object, i.e. the source and the "owner" of the object.

Client Datastore - a datastore containing an object whose source and
"owner" is a renpte datastore.

Data Node - An instance of managenment information in a YANG
dat ast or e.

Dat astore - A conceptual store of instantiated infornmation, wth
i ndi vidual data itens represented by data nodes which are arranged in
hi erar chi cal manner.

Data Subtree - An instantiated data node and the data nodes that are
hierarchically contained within it.

Voit, et al. Expi res Septenber 10, 2015 [Page 4]

Internet-Draft Peer Mbount Requirenents March 2015

Mount Client - The system at which the nount point resides, into
whi ch on or nmore renote subtrees may be nount ed.

Mount Binding - An instance of nounting froma specific Munt Point
to a renote datastore. Types include:

0 On-demand: Mount Cient only pulls information when application
requests

o Periodic: Munt Server pushes current state at a pre-defined
i nterval

0 Unsolicited: Munt Server nmaintains active bindings and sends to
client cache upon change

Mount Point - Point in the |local data store which may reference a
single renote subtree

Mount Server - The server with which the Munt Cient conmunicates
and whi ch provides the Mount Cient with access to the nmounted
i nformati on. Can be used synonynously w th Munt Target.

Peer Mount - The act of representing renpte objects in the |oca
dat astore

Target Data Node - Data Node on Munt Server agai nst which a Munt
Bi nding is established

3. Solution Context

YANG nodel i ng has energed as a preferred way to offer network
abstractions. The requirenments in this docunment can be enabl ed by
expandi ng of the syntax of YANG capabilities enbodied within RFC 6020
[RFC6020] and YANG 1.1 [rfc6020bis]. A conpanion draft to this one
whi ch details a potential set of YANG technol ogy extensions which can
support key requirenents within this docunent are contained in .
[draft-clemm nmount].

To date systens built upon YANG nodel s have been m ssing two
capabilities:

1. Peer Datastore Mount: Datastores have not been able to proxy
objects located el sewhere. This puts additional burden upon
applications which then need to find and access nultiple
(potentially renote) systens.

2. Eventual Consistency: YANG Datastore inplenentations have
typically assunmed ACID [2] transaction nodels. There is nothing

Voit, et al. Expi res Septenber 10, 2015 [Page 5]

Internet-Draft Peer Mbount Requirenents March 2015

i nherent in YANG itself which demands ACI D transactiona
guarantees. YANG nodel s can al so expose information which night
be in the process of undergoing convergence. Since |P networking
has been designed with convergence in mnd, this is a usefu
capability since sone types of applications nust participate
where there is dynanically changi ng state.

3. 1. Peer Mbunt

First this docunent will dive deeper into Peer Datastore Munt
(a.k.a., "Peer Mount"). Contrary to existing YANG datastores, where
hi erarchical datatree(s) are local in scope and only includes data
that is "owned" by the local system we need an agent or interface on
one systemwhich is able refer to managed resources that reside on
anot her system This allows applications on the sane system as the
YANG dat astore server, as well as renote clients that access the

dat astore through a managenent protocol such as NETCONF, to access
all data as if it were local to that sanme server. This nmust be done
in a manner that is transparent to users and applications. This nust
be done in a way which does not require a user or application to be
aware of the fact that sonme data resides in a different |ocation and
have themdirectly access that other system |In this way, the user
is projected an i mage of one virtual consolidated datastore.

The value in such a datastore conmes fromits under-the-covers
federation. The datastore transparently exposes information from

mul tiple systens across the network. The user does not need to be
aware of the precise distribution and ownership of data thensel ves,
nor is there a need for the application to discover those data
sources, nmaintain separate associations with them and partition its
operations to fit along renote system boundaries. The effect is that
a network device can broaden and custonize the information avail able
for |l ocal access. Life for the application is easier

Any bject type can be included in such a datastore. This can

i nclude configuration data that is either persistent or epheneral,
and which is valid within only a single device or across a donai n of
devices. This can include operational data that represents state
across a single device or across a nultiple devices.

Anot her useful aspect of "Peer Munt" is its ability to enbed

i nformati on from external YANG nodel s which haven’'t necessarily been
normalized. Normalization is a good thing. But the massive human
efforts invested in uber-data-nodels have never gained industry
traction due to the resulting nodels’ brittle nature and conplexity.
By nounting renpote trees/objects into |local datastores it is possible
to expose renote objects under a locally optinized hierarchy w thout
having to transpose renote objects into a separate |ocal nodel. Once

Voit, et al. Expi res Septenber 10, 2015 [Page 6]

Internet-Draft Peer Mbount Requirenents March 2015

this exists, object translation and normalizati on become optiona
capabilities which may al so be hidden

Anot her useful aspect of "Peer Muwunt" is its ability to nount renote
trees where the |ocal datastore does not know the full subtree being
installed. In fact, the renote datastore nmight be dynamically
changi ng the mounted tree. These dynam c changes can be reflected as
needed under the "attachment points" wthin the namespace hierarchy
where the data subtrees fromrenote systens have been nounted. In
this case, the precise details of what these subtrees exactly contain
does not need to be understood by the systeminpl enenting the
attachnent point, it sinply acts as a single point of entry and
"proxy" for the attached data.

3.2. Eventual Consistency and YANG 1.1

The CAP theorem [3] states that it is inpossible for a distributed
comput er systemto sinmultaneously provide Consistency, Availability,
and Partition tolerance. (l.e., distributed network state nmanagenent
is hard.) Mostly for this reason YANG i npl enent ati ons have shied
away fromdistributed datastore inplenentati ons where ACI D

transacti onal guarantees cannot be given. This of course limts the
uni verse of applicability for YANG technol ogy.

Leveragi ng YANG concepts, syntax, and nodels for objects which night
be happeni ng to undergo network convergence is valuable. Such reuse
greatly expands the universe of information visible to networking
applications. The good news is that there is nothing in YANG 1.1
syntax that prohibits its reapplication for distributed datastores.
Ext ensi ons are needed however.

Requirements described within this docunent can be used to define
technol ogy extensions to YANG 1.1 for renote datastore nounting.
Because of the CAP theorem it nust be recogni zed that systens built
upon t hese extensions MAY choose to support eventual consistency

rat her than ACI D guarantees. Sone applications do not denmand ACI D
guarantees (exanples are contained in this docunment’s Use Case
section). Therefore for certain classes of applications, eventua
consi stency [4] should be viewed as a cornerstone feature capability
rat her than a bug.

O her industries have been able to identify and realize the value in
such nodel. The Object Managenent G oup Data-Distribution Service
for Real -Tine Systens has even standardi zed these capabilities for
non- YANG depl oynents [OM> DDS]. Commerci al depl oyments exi st.

Voit, et al. Expi res Septenber 10, 2015 [Page 7]

Internet-Draft Peer Mbount Requirenents March 2015

4. Exanple Use Cases

Many types of applications can benefit fromthe sinple and quick
availability of objects from peer network devices. Because network
managenent and orchestrati on systens have been fulfilling a subset of
the requirements for decades, it is inportant to focus on what has
changed. Changes i ncl ude:

0 SDN applications wish to interact with |ocal datastore(s) as if
they represent the real-tine state of the distributed network.

0 |Independent sets of applications and SDN controllers m ght care
about the sane authoritative data node or subtree.

0 Changes in the real-tine state of objects can announce thensel ves
to subscribing applications.

o0 The union of an ever increasing nunber of abstractions provided
fromdifferent layers of the network are assuned to be consistent
with each other (at |east once a reasonabl e convergence tine has
been factored in).

0 CPU and VMinprovenents nakes running Li nux based applications on
network el ements viabl e.

Such changes can enable a new class of applications. These
applications are built upon fast-feedback-1oops which dynamically
tune the network based on iterative interactions upon a distributed
dat ast or e.

4.1. Cloud Policer

A Coud Policer enables a single aggregated data rate to tenants/
users of a data center cloud that applies across their VMs; a rate

i ndependent of where specific VMs are physically hosted. This works
by having edge router based traffic counters available to a
centralized application, which can then nmaintain an aggregate across
those counters. Based on the sum of the counters across the set of
edge routers, new values for each device based Policer can be
recal cul ated and installed. Effectively policing rates are
continuously rebal anced based on the nost recent traffic offered to
the aggregate set of edge devices.

The cl oud policer provides a very sinple cloud QS nodel. Many ot her
QS nodel s could al so be inplenented. Exanple extensions include:

0 C R PIR guarantees for a tenant,

Voit, et al. Expi res Septenber 10, 2015 [Page 8]

Internet-Draft Peer Mbount Requirenents March 2015

o hierarchical QS treatnent,

o providing traffic delivery guarantees for specific enterprise
branch offices, and

0 adjusting the prioritization of one application based on the
activity of another application which perhaps is in a conpletely
different | ocation.

It is possible to inplenent such a cloud policer application with
maxi mum appl i cati on devel oper sinplicity using peer nount. To do
this the application accesses a |ocal datastore which in turn does a
peer nmount from edge routers the objects which house current traffic
counter statistics. These counters are accessed as if they were part
of the local datastore structures, w thout concern for the fact that
the actual authoritative copies reside on renote systens.

Beyond this centralized counter collection peer nount, it is also
possi ble to have distributed edge routers mount information in the
reverse direction. In this case |ocal edge routers can peer nount
centrally calculated policer rates for the device, and access these
objects as if they were locally configured.

For both directions of nounting, the authoritative copy resides in a
single systemand is nounted by peers. Therefore issues with regards
to inconsistent configuration of the same redundant data across the
network are avoided. Also as can be seen in this use case, the sane
system can act as a nount client of sone objects while acting as
server for other objects.

4.2. DDoS Threshol di ng

Anot her extension of the "Cloud Policer"” application is the creation
of additional action thresholds at bandwi dth rates far greater than
m ght be expected. |If these higher thresholds are hit, it is

possi ble to connect in DDoS scrubbers to ingress traffic. This can
be done in seconds after a bandwi dth spike. This can also be done if
non- bandwi dt h counters are available. For exanple, if TCP flag
counts are available it is possible to | ook for changes in SYN ACK
rati os which mght signal a different type of attack. 1In all cases,
when network counters indicate a return to normal traffic profiles

t he DDoS Scrubbers can be automatically di sconnect ed.

Benefits of only connecting a DDoS scrubber in the rare event an
attack m ght be underway include

o marking down traffic for an out-of-profile tenant so that an
potential attack doesn’'t adversely inpact others,

Voit, et al. Expi res Septenber 10, 2015 [Page 9]

I nt

4. 3.

\oi

ernet-Draft Peer Mbount Requirenents March 2015

o applying DDoS Scrubbing across many devi ces when an attack is
detected in one,

0 reducing DDoS scrubber CPU, power, and licensing requirenents
(during the vast majority of tine, spikes are not occurring), and

o dynani c managenent and all ocation of scarce platformresources
(such as optimzing span port usage, or limting | P-FI X reporting
to |l evel s where devices can do full flow detail exporting).

Service Chain Cassification, Load Bal ancing and Capacity
Managenent
Service Chains will dynamically change ingress classification

filters, allocate paths from nmany ingress devices across shared
resources. This information needs to be updated in real tine as
avai l abl e capacity is allocated or failures are discovered. It is
possible to sinplify service chain configuration and dynanic topol ogy
mai nt enance by transparently updating renote cached topol ogi es when
an authoritative object is changed within a central repository. For
exanple if the CPU in one VM spikes, you mght want to recal cul ate
and adj ust many chained paths to relieve the pressure. O perhaps
after the recal culation you want to spin up a new VM and then adj ust
chai ns when that capacity is on-line.

A key value here is central calculation and transparent auto-
distribution. 1In other words, a change only need be updated by an
application in a single location, and the infrastructure wll
autonmati cal ly synchroni ze changes across any nunber of subscribing
devi ces wi thout application involvenent. |In fact, the application
need not even know many devi ces are nonitoring the object which has
been changed.

Beyond 1:n policy distribution, applications can step back from
aspects of failure recovery. What happens if a device is rebooting
or sinply misses a distribution of newinformation? Wth peer nount
there is no doubt as to where the authoritative information resides
i f things get out of synch.

While this ability is certainly useful for dynam c service chain
filtering classification and next hop mapping, this use case has nore
general applicability. Wth a distributed datastore, diverse
applications and hosts can locally access a single device' s current
VM CPU and Bandw dth values. They can do it wi thout needing to
explicitly query that renote machine. Updates froma device would
come froma periodic push of stats to a transparent cache to
subscribed, or via an unsolicited update which is only sent when

t hese val ue exceed established norns.

t, et al. Expi res Septenber 10, 2015 [Page 10]

Internet-Draft Peer Mbount Requirenents March 2015

5. Requirements

To achieve the objectives described above, the network needs to
support a nunber of requirenents

5.1. Application Sinplification

A maj or obstacle to network programmability are any requirements
whi ch force applications to use abstractions nore conplicated than
the devel oper cares to touch. To sinplify applications devel opnent
and reduce unnecessary code, the foll owi ng needs nust be net.

Applications MIST be able to access a | ocal datastore which includes
obj ects whose authoritative source is located in a renote datastore
hosted on a different server

Local datastores MJST be able to provide a hierarchical view of
obj ects assenbl ed from objects whose authoritative source nay
originate frompotentially different and overl appi ng nanespaces.

Applications MIST be able to access all objects of a datastore
wi t hout concern where the actual object is located, i.e. whether the
authoritative copy of the object is hosted on the sanme systemas the
| ocal datastore or whether it is hosted in a renpte datastore.

Wth two exceptions, a datastore’s application facing interfaces MJST
make no differentiati on whether individual objects exposed are
authoritatively owned by the datastore or nmounted fromrenote. This
i ncl udes Netconf and Restconf as well as other, possibly proprietary
interfaces (such as, CLI generated from correspondi ng YANG dat a

nmodel s). The two exceptions are that it is acceptable to nmake a

di stinction between an object authoritatively owned by the data store
and a renote object as follows:

0 Object updates / editing, creation and deletion. E.g. via edit-
config conditions and constraints are assessed at the
authoritative datastore when the update/create/delete is
conducted. Any conditions or constraints at renote client
dat astores are NOT assessed.

0 Locks obtained at a client datastore: It is conceivable for the
interface to distinguish between two | ock nodes: | ocking the
entire subtree including renote data (in which case the
datastore’s nmount client needs to explicitly obtain and rel ease
| ocks from nounted authoritative datastores), or locking only
authoritatively owned data, excluding renote data fromthe | ock.

Voit, et al. Expi res Septenber 10, 2015 [Page 11]

Internet-Draft Peer Mbount Requirenents March 2015

These exceptions should not be very problematic as non-authoritative
copies will typically be marked as read-only. This will not violate
any considerations of "no differentiation” of |ocal or renote.

When a change is nmade to an object, that change will be reflected in
any datastore in which the object is included. This neans that a
change nmade to the object through a renpte datastore will affect the
object in the authoritative datastore. Likew se, changes to an
object in the authoritative datastore will be reflected at any client
dat ast or es.

The distributed datastore MJST be able to include objects from
multiple renote datastores. The same object may be included in
multiple renote datastores; in other words, an object’s authoritative
dat astore MJST support multiple clients.

The distributed datastore infrastructure MJST enable to access to
some subset of the sane objects on different devices. (This includes
multiple controllers as well as nultiple physical and virtual peer
devi ces.)

Applications SHOULD be able to extract a tinme synchroni zed set of
operational data fromthe datastore. (lIn other words, the
application asks for a subset of network state at tinme-stanp or tine-
range "X'. The datastore would then deliver tine synchronized
snapshots of the network state per the request. The datastore may
work with NTP and operational counter to optinize the synchronization
results of such a query. It is understood that sone types of data

m ght be under goi ng convergence conditions.)

Authoritative datastore retain full ownership of "their" objects.
This means that while renpte datastores may access the data, any

nmodi fications to objects that are initiated at those renote

dat astores need to be authorized by the authoritative owner of the
data. Likew se, the authoritative owner of the data may nmake changes
to objects, including nodifications, additions, and del etions,

wi thout needing to first ask for permission fromrenote clients.

Applications MIST be designed to deal with inconplete data if renote
obj ects are not accessible, e.g. due to tenporal connectivity issues
preventing access to the authoritative source. (This will be true
for many protocols and progranmm ng | anguages. Munt is unlikely to
add anyt hing new here unl ess applications have extra error handling
routines to deal with when there is no response froma renote
system).

Voit, et al. Expi res Septenber 10, 2015 [Page 12]

Internet-Draft Peer Mbount Requirenents March 2015

5.2. Caching

Renote objects in a datastore can be accessed "on denmand”, when the
application interacting with the datastore demands it. In that case,
a request nmade to the |ocal datastore is forwarded to the renote
system The response fromthe renbte system e.g. the retrieved
data, is subsequently nerged and collated with the other data to
return a consolidated response to the invoking application

A downsi de of a datastore which is distributed across devices can be
the | atency i nduced when renote object acquisition is necessary.
There are plenty of applications which have requirenments which sinply
cannot be served when latency is introduced. The good news is that
the concept of caching lends itself well to distributed datastores.

It is possible to transparently store some types of objects locally

even when the authoritative copy is renote. Instead of fetching data
on denmand when an application demands it, the application is sinply
provided with the I ocal copy. It is then up to the datastore

infrastructure to keep selected replicated info in synch, e.g. by
prefetching informati on, or by having the renote system publish
updates which are then locally stored. At this point, it is expected
that a preferred nmethod of subscribing to and publishing updates will
be acconplished via [yang-pub-sub-reqts] and
[draft-cl enm dat astore-push]. Oher nethods could work equally wel

This is not a new idea. Caching and Content Delivery Networks (CDN)
have sped read access for objects within the Internet for years.
This has enabl ed greater performance and scale for certain content.
Just as inportant, these technol ogi es have been enpl oyed w thout end
user applications being explicitly aware of their involvenent. Such
concepts are applicable for scaling the performance of a distributed
dat ast ore.

Where caching occurs, it MJST be possible for the Mount Client to
store object copies of a renpte data node or subtree in such a way
that applications are unaware that any caching is occurring.

However, the interface to a datastore MAY provide applications with a
special node/flag to allow themto force a read-through

Where caching occurs, system administration facilities SHOULD al | ow

facilities to flush either the entire cache, or information
associ ated with sel ect Munt Points.

Voit, et al. Expi res Septenber 10, 2015 [Page 13]

Internet-Draft Peer Mbount Requirenents March 2015

5.3. Subscribing to Rempte Object Updates

When cachi ng occurs, data can go stale. [draft-clenm datastore-push]
provi des a nechani sm where changes in an authoritative data node or

subtree can be nonitored. |If changes occur, these changes can be
delivered to any subscribing datastores. In this way renote caches
can be kept up-to-date. 1In this way, directly nonitoring renote

applications can quickly receive notifications wthout continuous
pol I'i ng.

A Mount Server SHOULD support [draft-clemm datastore-push] Periodic
or On- Change pub/sub capabilities in which one or nore renpte clients
subscribe to updates of a target data node / subtree, which are then
automatically published by the Mount Server.

It MJUST be possible for Applications to bind to subscribed Data Node
/ Subtrees so that upon Muunt Cient receipt of subscribed
information, it is immediately passed to the application.

It MJUST be possible for a Target Data Node to support 1:n Munt
Bi ndi ngs to many subscri bed Mount Points.

5.4. Lifecycle of the Mount Topol ogy
Mount can drive a dynanmic and richly interconnected nesh of peer-to-
peer of object relationships. Each of these Munts will be

i ndependent |y established by a Mount dient.

It MJUST be possible to bootstrap the Mount dient by providing the
YANG pat hs to resources on the Mount Server.

There SHOULD be the ability to add Mount dient bindings during run-
time.

A Mount dient MIUST be able to be able to create, delete, and tineout
Mount Bi ndi ngs.

Any Subscription MJST be able to informthe Mount Cient of an
i ntentional/graceful disconnect.

A Mount dient MJUST be able to verify the status of Subscriptions,
and drive re-establishnent if it has disappeared.

5.4.1. Discovery and Creation of Munt Topol ogy
Application visibility into an ever-changi ng set of network objects

is not trivial. While sone applications can be easily configured to
know t he Devi ces and avail abl e Mount Points of interest, other

Voit, et al. Expi res Septenber 10, 2015 [Page 14]

Internet-Draft Peer Mbount Requirenents March 2015

applications will have to bal ance many aspects of dynam c device
availability, capabilities, and interconnectedness. For the nost
part, mai ntenance of these dynami c el enents can be done on the YANG
obj ects thensel ves wi thout anything needed new for Peer Munt.
Technol ogi es such as need reference are covered in other standards
initiatives. Therefore this draft does delve deeply into the needs
for Auto-discovery of YANG objects which nmay be adverti sed.

However it will likely become interesting for a network elenent to
limt the Data Subtrees which m ght be subscribed for Unsolicited and
Periodic Update. It is assuned these capabilities will be included

as part of [draft-clemm datastore-push]
5.4.2. Restrictions on the Munt Topol ogy

Mount Clients MJST NOT create recursive Munt bindings (i.e., the
Mount Client should not | oad any object or subtree which it has
already delivered to another in the role of a Mount Server.) Note:
bj ects nmounted froma controller as part of orchestration are *not*
consi dered the sane objects as those which m ght be nounted back from
a network device showi ng the actual running config.

5.5. Munt Filter

The Mbunt Server default MJST be to deliver the sane Data Node /
Subtree that woul d have been delivered via direct YANG access.

It SHOULD be possible for a Mount Cient to request sonething |ess
that the full subtree or a target node as defined in
[yang- pub- sub-reqt s].

5.6. Auto-Negotiation of Peer Mount dient QS

The interest that a Mount Cient expresses in a particular subtree
SHOULD i ncl ude the non-functional data delivery requirenments (QS) on
the data that is being nounted. Additionally, Munt Servers SHOULD
advertise their data delivery capabilities. Wth this information
the Mount dient can decide whether the quality of the delivered data
is sufficient to serve applications residing above the Mount dient.

An exanple here is reliability. A reliable protocol night be
overkill for a state that is republished with high frequency.
Therefore a Mount Server may sonetinmes choose to not provide a
reliable method of communication for certain objects. It is upto
the Mount Client to determ ne whether what is offered is sufficiently
reliable for its application. Only when the Munt Server is offering
data delivery QS better or equal to what is requested, shall a nount
bi ndi ng be establ i shed.

Voit, et al. Expi res Septenber 10, 2015 [Page 15]

Internet-Draft Peer Mbount Requirenents March 2015

Anot her exanple is where subscribed objects nmust be pushed fromthe
Mount Server within a certain interval fromwhen an object change is

identified. 1In such a scenario the interval period of the Munt
Server nust be equal or smaller than what is requested by a Mount
Client. |If this "deadline" is not net by the Mount Server the

infrastructure MAY take action to notify clients.
5.7. Datastore Qualification

It is conceivable to differentiate between different datastores on
the renote server, that is, to designate the nane of the actua
datastore to nount, e.g. "running" or "startup". |If on the target
node there are nultiple datastores avail able, but there has no
specific datastore identified by the Mount Client, then the running
or "effective" datastore is the assumed target.

It is conceivable to use such Datastore Qualification in conjunction
with epheneral datastores, to address requirenents being worked in
the 12RS WG [draft-haas].

5.8. Local Mounting

It is conceivable that the nount target does not reside in a renote
datastore, but that data nodes in the sanme datastore as the

mount poi nt are targeted for nounting. This anounts to introducing an
"aliasing" capability in a datastore. Whiile this is not the scenario
that is primarily targeted, it is supported and there may be valid
use cases for it.

5.9. Mbunt Cascades

It is possible for the nounted subtree to in turn contain a
mount poi nt. However, circular nmount relationships MIST NOT be
introduced. For this reason, a nounted subtree MJST NOT contain a
nmount poi nt that refers back to the nmounting systemwi th a nount
target that directly or indirectly contains the originating

nmount point. As part of a mount operation, the nount points of the
mount ed system need to be checked accordingly.

5.10. Transport
Many secured transports are viable assum ng transport, data security,
scal e, and perfornance objectives are net. Netconf is reconmended

for starting. Oher transports may be proposed over tine.

It MJUST be possible to support Netconf Transport of subscribed Nodes
and Subtrees.

Voit, et al. Expi res Septenber 10, 2015 [Page 16]

Internet-Draft Peer Mbount Requirenents March 2015

5.11. Security Considerations

Many security mechani snms exist to protect data access for CLI and API
on network devices. To the degree possible these nechani sns shoul d
transparently protect data when perforning a Peer Munt.

The sane nechani sns used to deternine whether a renote host has
access to a particular YANG Data Node or Subtree MJST be invoked to
determ ne whether a Mount Cient has access to that information.

The sane traditional transport |evel security nmechani smsecurity used
for YANG over a particular transport MJST be used for the delivery of
objects froma Munt Server to a Mount Cient.

A Mount Server inplementation MIUST NOT change any credentials passed
by the Mount Client systemfor any Mount Binding request.

The Mount Server MJST deliver no nore objects froma Data Node or
Subtree than all owabl e based on the security credentials provided by
the Mount Cient.

To ensure the ensuring maxi numscale limts, it MJST be possible to
for a Mount Server to linmt the nunber of bindings and transacti onal
limts

It SHOULD be possible to prioritize which Munt Binding instances
shoul d be serviced first if there is CPU, bandw dth, or other
capacity constraints.

5.12. High Availability

A key intent for Peer Mount is to allow access to an authoritative
copy of an object for a particular domain. O course system and
software failures or schedul ed upgrades m ght nmean that the primary
copy is not consistently accessible froma single device. In
addition, systemfailovers mght nean that the authoritative copy

m ght be housed on a different device than the one where the binding
was originally established. Peer Munt architectures nmust be built
to enable Mount Cients to transparently provide access to objects
where the authoritative copy noves due to dynanic network
reconfigurations .

A Peer Mount architecture MJST guarantee that mount bindi ngs between
a Mount Server and Mount Clients are eventually consistent. The
infrastructure providing this level of consistency MIST be able to
operate in scenarios where a systemis (tenporarily) not fully
connected. Furthernore, Muunt dients MAY have various requirenents

Voit, et al. Expi res Septenber 10, 2015 [Page 17]

Internet-Draft Peer Mbount Requirenents March 2015

on the boundari es under which eventual consistency is allowed to take
pl ace. This subject can be deconposed in the follow ng itens:

5.12.1. Reliability

Eventual consistency can only be guaranteed when peers are

communi cating using a reliable nmethod of data delivery. A scenario
that deserves attention in particular is when a subset of Munt
Clients receive a pushed subscription update. |If a Munt Server

| oses connectivity, cross network el enent consistency can be | ost.
In such a scenario Mount Cients MAY el ect a new desi gnated Munt
Server fromthe set of Muunt Cients which have received the |atest
st at e.

5.12.2. Alignnent to late joining peers

When a nount binding is established a Mount Server SHOULD provide the

Mount Client with the latest state of the requested data. [In order
to increase availability and fault tol erance an infrastructure MAY
support the capability to have multiple alignnent sources. In

(tenmporary) absence of a Muunt Server, Munt Cients MAY el ect a
tenporary Mount Server to service late joining Mount dients.

5.12. 3. Li vel i ness

Upon |l osing liveliness and being unable to refresh cached data
provided froma Munt Server, a Munt Cient MAY decide to purge the
nmount bindi ngs of that server. Purging nount bindings under such
condi ti ons however nakes a system vul nerable to | osing network-w de
consistency. A Munt dient can take proactive action based on the
assunption that the Munt Server is no |onger available. When
connectivity is only tenmporarily lost, this assunption could be fal se
for other datastores. This can introduce a potential for decision-
maki ng based on semantical disagreenent. To properly handl e these
scenari os, application behavior MIST be desi gned accordi ngly and
timeouts with regards to liveliness detection MUST be carefully

det er mi ned.

5.12.4. Merging of datasets

A traditional problemw th nmerging replicated datasets during the
fail over and recovery of Munt Servers is handling the corresponding
target data node lifecycle nmanagenent. Wen two replicas of a

dat aset experienced a prolonged | oss of connectivity a merge between
the two is required upon re-establishing connectivity. A replica

m ght have been nodi fying contents of the set, including deletion of
objects. A naive nerge of the two replicas would discard these

Voit, et al. Expi res Septenber 10, 2015 [Page 18]

Internet-Draft Peer Mbount Requirenents March 2015

deletes by aligning the now stale, deleted objects to the replica
that deleted them

Authoritative ownership is an elegant solution to this probl emsince
nodi fi cations of content can only take place at the owner. Therefore
a Mount dient SHOULD, upon reestablishing connectivity with a newy
authoritative Mount Server, replace any existing cache contents from
a mount binding with the [atest version.

5.12.5. Distributed Munt Servers

For sel ected objects, Munt Bindings SHOULD be all owed to Anycast
addresses so that a Distributed Muunt Server inplenentation can
transparently provide (a) availability during failure events to Munt
Clients, and (b) |oad bal ancing on behal f of Munt dients.

5.13. Configuration

At the Mount dient, it MJUST be possible for all Munt bindings to
configure the followi ng such that the application needs no know edge.
This will include a diverse list of elenents such as the YANG URI
path to the renote subtree.

5.14. Assurance and Mnitoring

APl usage for YANG should be tracked via existing nechanisns. There
is nointent to require additional transaction tracking than would
have been provided normally. However there are additional

requi renents which should allow the state of existing and historical
bi ndi ngs to be provided.

A Mount dient MIST be able to poll a Munt Server for the state of
Subsci pti ons mai ntai ned between the two devi ces.

A Mount Server MJST be able to publish the set of Subscriptions which
are currently established on or below any identified data node.

6. | ANA Consi derations
Thi s docunent nakes no request of | ANA

7. Acknow edgenent s
We wi sh to acknow edge the hel pful contributions, coments, and
suggestions that were received from Anbi ka Prasad Tripathy. Shashi
Kumar Bansal, Prabhakara Yellai, Dinkar Kunjikrishnan, Harish

Gunaste, Rohit M, Shruthi V. , Sudarshan Ganapathi, and Swar oop
Shastri .

Voit, et al. Expi res Septenber 10, 2015 [Page 19]

Internet-Draft Peer Mbount Requirenents March 2015

8. References
8. 1. Nor mati ve Ref erences

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[RFC3768] Hinden, R, "Virtual Router Redundancy Protocol (VRRP)",
RFC 3768, April 2004.

[RFC4610] Farinacci, D. and Y. Cai, "Anycast-RP Using Protocol
I ndependent Multicast (PIM", RFC 4610, August 2006.

[RFC6020] Bjorklund, M, "YANG - A Data Mdeling Language for the
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Cct ober 2010.

8.2. Informative References

[1CCP] Martini, Luca., "lInter-Chassis Comunication Protocol for
L2VPN PE Redundancy", March 2014,
<https://tools.ietf.org/htm/draft-ietf-pwe3-iccp-16>.

[OM>DDS] "Data Distribution Service for Real -tine Systens, version
1.2", January 2007, <http://ww.ong. org/spec/DDS/ 1.2/ >.

[draft-cl enm dat ast or e- push]
Clemm Alex., "Subscribing to datastore push updates”,
Mar ch 2015.

[draft-cl enm nount]
Cemm Alex., "Munting YANG Defined Information from
Renot e Dat astores”, Cctober 2014,
<http://tools.ietf.org/id/
draft-cl emm net mod- nmount - 02. t xt >.

[draft - haas]
Haas, J., "I2RS requirenents for netnod/netconf draft-
haas-i 2r s- net nod- net conf - requi rement s- 00", Septenber 2014,
<dr aft - haas-i 2r s- net nod- net conf - requi r ement s>.

[rfc6020bi s]
Bj orkl und, Martin., "YANG - A Data Mddel i ng Language for
the Network Configuration Protocol (NETCONF)", January
2015, <https://tools.ietf.org/htm/draft-ietf-netnod-
rf c6020bi s- 03>.

Voit, et al. Expi res Septenber 10, 2015 [Page 20]

Internet-Draft Peer Mbount Requirenents March 2015

[yang- pub- sub-reqt s]
Voit, Eric., Cemm Al ex., and Al berto. Gonzalez Prieto,
"Requirenments for Subscription to YANG Dat astores”, March
2015.
8.3. URIs

[1] http://thomaswdi nsnmore. com 2014/ 05/ 01/ di stri but ed- anal yti cs-
pri mer/

[2] http://en.w kipedia.org/w ki/AC D
[3] http://robertgreiner.com 2014/ 08/ cap-t heoremrevi sited/
[4] http://guide.couchdb. org/draft/consistency. htm

Aut hors’ Addresses

Eric Voit
Cisco Systens

Email: evoit @i sco.com
Al ex C emm

Ci sco Systens

Emai |l : al ex@i sco.com
Sander Mertens
Prismtech

Enmai | : sander.nmertens@ri sntech. com

Voit, et al. Expi res Septenber 10, 2015 [Page 21]

