NETMOD Wor ki ng Group L. Lhotka
I nternet-Draft CZ.NC
I ntended status: Standards Track February 24, 2015
Expi res: August 28, 2015

JSON Encodi ng of Data Moddel ed with YANG
draft-ietf-netnod-yang-json-03

Abst r act

Thi s docunent defines encoding rules for representing configuration,
state data, RPC input and output paranmeters, and notifications
defined using YANG as JavaScri pt Object Notation (JSON) text.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on August 28, 2015.
Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD Li cense.

Lhot ka Expi res August 28, 2015 [Page 1]

Internet-Draft JSON Encodi ng of YANG Dat a

Tabl e of Contents

1. Introduction ..
2. Term nol ogy and Not at| on
3 Val i dati on of JSON- encoded

I nstance Data .
4. Nanes and Nanespaces . .
5. Encodi ng of YANG Dat a Node Inst ances
The "l eaf"” Data Node .. .
The "contai ner” Data Node .
The "leaf-list" Data Node .
The "list" Data Node
The "anyxm " Data Node

agoaoaa

CONDURWNE AR WN R
D

Numeri c Types .

The "string" Type .

The "bool ean" Type

The "enuneration" Type

The "bits" Type .

The "binary" Type .

The "l eafref” Type

The "identityref" Type

The ' ‘enpty” Type

.10. The "union" Type . . .o

.11. The "instance-identi f| er" Type

I -JSON Conpliance . Ce e

Security Considerations .

Acknowl edgrents .

0. References . .

10.1. Normative Ref erences .
10. 2. Informative References .

Appendi x A. A Conpl ete Exanple .

Appendi x B. Change Log . . .
B.1. Changes Between Revi si ons —02 and 03 .
B. 2. Changes Between Revisions -01 and -02 .
B.3. Changes Between Revisions -00 and -01 .

Aut hor’ s Addr ess

000000000

"‘.©.°°.\'

1. I nt roduction

Mappi ng of YANG Dat a Typ.es.to JSO\I VaI ues

February 2015

wWN

COOWOWONNNOOOP~W

The NETCONF protocol [RFC6241] uses XM. [WBC. REC- xml - 20081126] for
encoding data in its Content Layer. O her nanagenent protocols night
want to use other encodings while still benefiting fromusing YANG

[RFC6020] as the data nodeling | anguage.

For exanple, the RESTCONF protocol [I-D.ietf-netconf-restconf]
supports two encodi ngs: XM. (nedia type "application/yang. data+xn")

and JSON (nedia type "application/yang. dat a+j son).

Lhot ka Expi res August 28, 2015

[Page 2]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

The specification of the YANG data nodel | i ng | anguage [RFC6020]
defines only XM. encoding for data instances, i.e. contents of
configuration datastores, state data, RFC input and out put
paraneters, and event notifications. The aimof this docunent is to
define rules for encoding the sane data as JavaScri pt Object Notation
(JSON) text [RFC7159].
In order to achieve maxi muminteroperability while all ow ng
i npl ementations to use a variety of available JSON parsers, the JSON
encoding rules follow, as nuch as possible, the constraints of the
|-JSON restricted profile [I-D.ietf-json-i-json]. Section 7
di scusses |-JSON conformance in nore detail

2. Term nol ogy and Notati on
The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].
The following ternms are defined in [RFC6020]:
o anyxmn
0 augnent
0 container
0o data node
o identity
0o instance identifier
o |eaf
o leaf-list
o list
0 nodul e
0 subnodul e

3. Validation of JSONencoded | nstance Data

I nstance data validation as defined in [RFC6020] is only applicable
to XM.-encoded data. For one, senmantic constraints in "nust"

Lhot ka Expi res August 28, 2015 [Page 3]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

statements are expressed using XPath 1.0 [WBC. REC- xpat h-19991116],
whi ch can be properly interpreted only in the XM. context.

Thi s docunent and the corresponding "XM. Mappi ng Rul es" sections from
[RFC6020] al so define an inplicit schema-driven mappi ng of JSONM
encoded instances to XM.-encoded instances (and vice versa). This
mapping is nostly straightforward. In cases where doubts could

ari se, this document gives explicit instructions for mappi ng JSON
encoded i nstances to XM.

In order to validate a JSON instance docunent, it MJST first be
mapped, at |east conceptually, to the corresponding XM instance
docunment. By definition, the JSON docunent is then valid if and only
if the XML docunent is valid according to the rules stated in

[RFC6020] .

4. Nanes and Nanespaces

I nstances of YANG data nodes (leafs, containers, leaf-lists, lists
and anyxm nodes) are al ways encoded as nenbers of a JSON object,
i.e., as nane/value pairs. This section defines how the nane part is
formed, and the followi ng sections deal with the val ue part.

Except in the cases specified below, the nenber nanme is identical to
the identifier of the correspondi ng YANG data node. Every such nane
bel ongs to a nanespace which is associated with the YANG nodul e where
the corresponding data node is defined. |f the data node is defined
in a subnodul e, then the nanespace is determ ned by the main nodul e
to which the subnodul e bel ongs.

If the nanmespace of a nmenber nane has to be explicitly specified, the
nmodul e name SHALL be used as a prefix to the (local) menber nane.
Both parts of the nenber name SHALL be separated with a col on
character (":"). In other words, the nanespace-qualified nane wll
have the following form
<nmodul e nanme>: <l ocal nane>

Figure 1: Encodi ng a nanespace identifier with a | ocal nane.
Nanes with nanespace identifiers in the formshow in Figure 1 are
used if and only if the parent data node belongs to a different
namespace, which also includes all top-level YANG data nodes.

For exanple, consider the follow ng YANG nodul e:

Lhot ka Expi res August 28, 2015 [Page 4]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

nmodul e foonod {

nanespace "http://exanpl e. com f oonod”;

prefix "foo

container top {

| eaf foo {
type uint8;

}
}

If the data nodel consists only of this nodule, then the following is
a valid JSON-encoded configuration

"foonod:top": {
"foo": 54
}
}

Note that the top-level container instance contains the nanespace
identifier (nmodule nane) but the "foo" |eaf doesn’'t because it is
defined in the sane nodule as its parent container

Now, assume the container "top" is augnmented from anot her nodul e,
" bar nod":

nmodul e barnod {
nanespace "http://exanpl e. conl bar nod";
prefix "bar";

i mport foonod {
prefix "foo";

}
augrment "/foo:top" {
| eaf bar {
type bool ean;
}

}

A valid JSON-encoded configuration containing both | eafs may then
| ook I'ike this:

Lhot ka Expi res August 28, 2015 [Page 5]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

"foonod:top": {
"foo": 54,
"barnod: bar": true
}
}

The nane of the "bar" leaf is prefixed with the nanespace identifier
because its parent is defined in a different nodule, hence it bel ongs
t o anot her nanespace.

Explicit namespace identifiers are sonetines needed when encodi ng

val ues of the "identityref" and "instances-identifier" types. The
same formas shown in Figure 1 is then used as well. See Sections
6.8 and 6. 11 for details.

5. Encodi ng of YANG Data Node | nstances

Every conpl ete JSON i nstance docunent, such as a configuration
datastore content, is an object. |Its nenbers are instances of al
top-1 evel data nodes defined by the YANG data nodel

Character encodi ng MJUST be UTF-8.

Any data node instance is encoded as a nane/val ue pair where the nane
is formed fromthe data node identifier using the rules of Section 4.
The val ue depends on the category of the data node as explained in
the follow ng subsections.

5.1. The "leaf" Data Node
A leaf instance is encoded as a nane/val ue pair where the val ue can
be a string, nunber, literal "true" or "false", or the special array
"[null]", depending on the type of the leaf (see Section 6 for the
type encodi ng rul es).
Exanpl e: For the |l eaf node definition
| eaf foo {

type uint8;

the following is a valid JSO\-encoded i nstance:

foo": 123

Lhot ka Expi res August 28, 2015 [Page 6]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

5.2. The "contai ner" Data Node

An container instance is encoded as a nane/object pair. The
container’s child data nodes are encoded as nmenbers of the object.

Exanpl e: For the container definition

cont ai ner bar {
| eaf foo {
type uint8;

}

the following is a valid instance:

"bar": {
"foo": 123
}

5.3. The "leaf-list" Data Node

A leaf-list is encoded as a nane/array pair, and the array el enents
are val ues of the same type, which can be a string, nunber, litera
"true" or "false", or the special array "[null]", depending on the
type of the leaf-list (see Section 6 for the type encoding rules).

The ordering of array elements follows the sane rules as the ordering
of XML elenents representing leaf-list entries in the XM. encodi ng.
Specifically, the "ordered-by" properties (sec. 7.7.5 in [RFC6020])
MJUST be observed.
Exanpl e: For the leaf-list definition
leaf-list foo {

type uint8;

the following is a valid instance:
"foo": [123, O]
5.4. The "list" Data Node

A list instance is encoded as a nane/array pair, and the array
el ements are JSON objects.

The ordering of array elenents follows the sane rules as the ordering
of XML elenments representing list entries in the XM. encodi ng.

Lhot ka Expi res August 28, 2015 [Page 7]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

Specifically, the "ordered-by" properties (sec. 7.7.5 in [RFC6020])
MUST be observed.

Unli ke the XML encodi ng, where |ist keys are required to precede any
other siblings within a list entry, and appear in the order specified
by the data nodel, the order of menbers in a JSON-encoded list entry
is arbitrary because JSON objects are fundanental |y unordered

col l ecti ons of menbers.

Exanpl e: For the list definition

list bar {
key foo;
| eaf foo {
type uint8;

| eaf baz {
type string;

}

the following is a valid instance:

"bar": [
{
"foo": 123,
"baz": "zig"

"baz": "zag",
"foo": O
}
]

5.5. The "anyxm " Data Node

An anyxm instance is encoded as a nane/val ue pair. The value can be
of any valid JSON type, i.e. an object, array, nunber, string or one
of the literals "true", "false" and "null"

Thi s docunent inposes no other restrictions on the contents of JSOM
encoded anyxm instances. It also doesn't define any universa
mappi ng between the contents of JSON- and XM.- encoded anyxm
instances - note that such a mapping is not needed for the purposes
of validation (Section 3) because anyxml contents are not subject to
YANG- based validation (see sec. 7.10 in [RFC6020]). However, each
definition of an anyxml node MAY specify, in its "description”

Lhot ka Expi res August 28, 2015 [Page 8]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015
statenment, appropriate syntactic, semantic and mapping rules for the
val ues of that anyxml data node.

Exanpl e: For the anyxnl definition
anyxm bar;

the following is a valid instance:

bar [true, null, true]

6. The Mappi ng of YANG Data Types to JSON Val ues
The type of the JSON value in an instance of the leaf or leaf-1list
dat a node depends on the type of that data node as specified in the
fol |l owi ng subsecti ons.

6.1. Nuneric Types

A value of the "int8", "intl1l6", "int32", "uint8", "uintl6" and
"uint32" is represented as a JSON number.

A value of the "int64", "uint64" or "decinal 64" type is encoded as a
JSON string whose contents is the |exical representation of that
numeric value as specified in sections 9.2.1 and 9.3.1 of [RFC6020].

For exanple, if the type of the leaf "foo" in Section 5.1 was
"ui nt 64" instead of "uint8", the instance would have to be encoded as

"foo": "123"

The special handling of 64-bit nunbers follows fromI-JSON
recomendati on to encode nunbers exceedi ng the | EEE 754- 2008 doubl e
preci sion range as strings, see sec. 2.2 in [I-D.ietf-json-i-json].

6.2. The "string" Type

A "string" value encoded as a JSON string, subject to JSON string
encodi ng rul es.

6.3. The "bool ean" Type

A "bool ean" value is mapped to the corresponding JSON literal name
"true" or "false".

Lhot ka Expi res August 28, 2015 [Page 9]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

6.4. The "enuneration" Type

An "enuneration” value is mapped in the sane way as a string except
that the permtted values are defined by "enunt statenents in YANG
See sec. 9.6 in [RFC6020].

6.5. The "bits" Type
A "bits" value is mapped to a JSON string identical to the |exica
representation of this value in XM., i.e., space-separated nanes
representing the individual bit values that are set. See sec. 9.7 in
[RFC6020] .

6.6. The "binary" Type
A "binary" value is nmapped to a JSON string identical to the |lexica
representation of this value in XM., i.e., base64-encoded binary
data. See sec. 9.8 in [RFC6020].

6.7. The "leafref" Type

A "leafref" value is mapped according to the sane rules as the type
of the | eaf being referred to.

6.8. The "identityref" Type
An "identityref"” value is mapped to a string representing the name of
an identity. |Its namespace MJST be expressed as shown in Figure 1 if
it is different fromthe nanespace of the | eaf node containing the
i dentityref value, and MAY be expressed ot herw se.
For exanple, consider the followi ng schematic nodul e:

nmodul e exnod {

iﬁbort ietf-interfaces {
prefix if;
}

import iana-if-type {
prefix ianaift;

}

iééf type {
type identityref {

base "if:interface-type"
}

}
}

Lhot ka Expi res August 28, 2015 [Page 10]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

A valid instance of the "type" leaf is then encoded as foll ows:
"type": "iana-if-type:ethernet Csmacd"

The nanespace identifier "iana-if-type" nust be present in this case
because the "ethernetCsnacd" identity is not defined in the sane
nmodul e as the "type" |eaf.

6.9. The "enpty" Type

An "enpty" value is mapped to "[null]", i.e., an array with the
"nul 1" literal being its only el enent.
Thi s encodi ng was chosen instead of using sinply "null" in order to

facilitate the use of enpty leafs in comon progranm ng | anguages.
When used in a bool ean context, the "[null]" value, unlike "null"
eval uates to true.

Exanpl e: For the leaf definition
| eaf foo {

type enpty;

a valid instance is

foo": [null]
6.10. The "union" Type

A value of the "union" type is encoded as the value of any of the
menber types.

Unli ke XM., JSON conveys part of the type information already in the
encodi ng. When validating a value of the "union" type, this
i nformati on MJUST al so be taken into account.

For exanple, consider the followi ng YANG definition
| eaf bar {
type union {

type uint 16;
type string;

Lhot ka Expi res August 28, 2015 [Page 11]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

In RESTCONF [I-D.ietf-netconf-restconf], it is fully acceptable to
set the value of "bar" in the followi ng way when using the
"application/yang. dat a+xm " nedi a type:

<bar >13. 5</ bar >

because the value may be interpreted as a string, i.e., the second
menber type of the union. When using the "application/
yang. dat a+j son" nedia type, however, this is an error

bar": 13.5

In this case, the JSON encodi ng indicates the value is supposed to be
a nunber rather than a string.

6.11. The "instance-identifier" Type

An "instance-identifier" value is encoded as a string that is
anal ogical to the lexical representation in XM encodi ng, see
sec. 9.13.3 in [RFC6020]. However, the encodi ng of nanmespaces in
instance-identifier values follows the rules stated in Section 4,
nanel y:

0 The nanmespace identifier is the nmodul e name where each data node
i s defined.

o The encoding of a node name with an explicit namespace is as shown
in Figure 1.

o The leftnost (top-level) node nane is always prefixed with the
nanespace identifier.

0 Any subsequent node nane has the namespace identifier if and only
if its parent node has a different nanespace. This also holds for
node nanes appearing in predicates.

For exanpl e,

lietf-interfaces:interfaces/interface[nane="ethO J/ietf-ip:ipvdlip

is avalid instance-identifer val ue because the data nodes

"interfaces", "interface" and "name" are defined in the nodule "ietf-

interfaces", whereas "ipv4" and "ip" are defined in "ietf-ip"

When translating an instance-identifier value fromJSON to XM, the

nanespace identifier (YANG nodul e nane) in each conponent of the
i nstance-identifier MIUST be replaced by an XM. nanespace prefix that

Lhot ka Expi res August 28, 2015 [Page 12]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

is associated with the nanespace URI reference of the nodule in the
scope of the el ement containing the instance-identifier val ue.

7. 1-JSON Conpliance

|-JSON [I-D.ietf-json-i-json] is a restricted profile of JSON that
guarantees maxi muminteroperability for protocols that use JSON in
their nessages, no matter what JSON encoders/decoders are used in
protocol inplenentations. The encoding defined in this docunent

t heref ore observes the |-JSON requirenents and reconmendati ons as
cl osely as possible.

In particular, the followi ng properties are guaranteed:

0 Character encoding is UTF-8.

o Menber nanes within the sanme JSON obj ect are al ways uni que
0 The order of JSON object nmenbers is never relied upon

0 Nunbers of any type supported by YANG can be exchanged reliably.
See Section 6.1 for details.

The only two cases where a JSON i nstance docunent encoded according
to this docunment may deviate fromI|-JSON were dictated by the need to
be able to encode the sanme instance data in both JSON and XM.. These
two exceptions are:

0 Leaf values encoded as strings nmay contain code points identifying
Noncharacters that belong to the XML character set (see sec. 2.2
in [WBC. REC-xm -20081126]). This issue is likely to be solved in
YANG 1.1 because noncharacters will not be allowed in string
val ues, see sec. 9.4 in [I-D.ietf-netnod-rfc6020bis].

o0 Values of the "binary" type are encoded with the base64 encoding
schene (Section 6.6), whereas |-JSON reconmends base64url instead.
Theoretically, values of the "binary" type m ght appear in UR
ref erences, such as Request-URI in RESTCONF, although in practice
the cases where it is really needed should be extrenely rare.

8. Security Considerations
Thi s docunent defines an alternative encoding for data nodeled in the
YANG dat a nmodel i ng | anguage. As such, it doesn’t contribute any new

security issues beyond those discussed in sec. 15 of [RFC6020].

JSON is rather different from XM, and JSON parsers may thus suffer
fromother types of vulnerabilities than their XM counterparts. To

Lhot ka Expi res August 28, 2015 [Page 13]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

10.

10.

10.

nmninize these security risks, it is inmportant that client and server
sof tware supporting JSON encodi ng behaves as required in sec. 3 of
[I-D.ietf-json-i-json]. That is, received JSON data that violate any
of 1-JSON strict constraints MJST NOT be trusted nor acted upon.

Viol ations due to the presence of Unicode Noncharacters in the data
(see Section 7) SHOULD be carefully examn ned.

Acknowl edgrent s

The aut hor wi shes to thank Andy Bi erman, Martin Bjorklund, Dean
Bogdanovi ¢, Bal azs Lengyel, Juergen Schoenwael der and Phil Shafer for
their hel pful comrents and suggesti ons.

Ref er ences
1. Normative References

[I-Dietf-json-i-json]
Bray, T., "The I-JSON Message Format", draft-ietf-json-
i-json-06 (work in progress), January 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC6020] Bjorklund, M, "YANG - A Data Mddeling Language for the
Net wor k Configuration Protocol (NETCONF)", RFC 6020,
Cct ober 2010.

[RFC6241] Enns, R, Bjorklund, M, Schoenwael der, J., and A
Bi erman, "Network Configuration Protocol (NETCONF)", RFC
6241, June 2011.

[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, March 2014.

[WBC. REC- xml - 20081126]
Bray, T., Paoli, J., Sperberg-MQueen, M, Miler, E, and
F. Yergeau, "Extensible Markup Language (XM.) 1.0 (Fifth
Edition)", Wrld Wde Wb Consortium Recormendati on REC
xm -20081126, Novenber 2008,
<htt p: // www. w3. or g/ TR/ 2008/ REC- xm - 20081126>.

2. Informative References

[I-D.ietf-netconf-restconf]
Bi erman, A, Bjorklund, M, and K Watsen, "RESTCONF
Protocol", draft-ietf-netconf-restconf-04 (work in
progress), January 2015.

Lhot ka Expi res August 28, 2015 [Page 14]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

[1-D.ietf-netnod-rfc6020bis]

[RFC7223]

Bj orklund, M, "YANG - A Data Mdeling Language for the
Net wor k Configuration Protocol (NETCONF)", draft-ietf-
net nod-r f c6020bi s-03 (work in progress), January 2015.

Bj orklund, M, "A YANG Data Mdel for Interface
Managenment", RFC 7223, May 2014.

[WBC. REC- xpat h- 19991116]

Appendi x A

Clark, J. and S. DeRose, "XM. Path Language (XPath)
Version 1.0", Wrld Wde Wb Consorti um Recomrmendati on
REC- xpat h- 19991116, Novenber 1999,

<http://ww. w3. org/ TR/ 1999/ REC- xpat h-19991116>

A Compl ete Exanpl e

The JSON docunent shown bel ow represents the sane data as the reply
to the NETCONF <get > request appearing in Appendix D of [RFC7223].
The data nodel is a conmbination of two YANG nodul es: "ietf-
interfaces" and "ex-vlan" (the latter is an exanple nodule from
Appendi x C of [RFC7223]). The "if-mb" feature defined in the "ietf-
interfaces" nmodule is considered to be active.

"ietf-interfaces:interfaces": {

Lhot ka

{

"interface": |

"nanme": "eth0",
"type": "iana-if-type:ethernetCsmacd",
"enabl ed": false

"name": "ethl",

"type": "iana-if-type:ethernetCsmacd",
"enabl ed": true,

"ex-vl an: vl an-taggi ng": true

"nanme": "ethl. 10",

"type": "iana-if-type:l2vlan",
"enabl ed": true,
"ex-vl an: base-interface": "ethl",

"ex-vlan:vlan-id": 10

"name": "lol",
"type": "iana-if-type: softwarelLoopback",
"enabl ed": true

Expi res August 28, 2015 [Page 15]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

}
]

"ietf-interfaces:interfaces-state": {
"interface": |

{
"name": "eth0",
"type": "iana-if-type:ethernetCsmacd",
"adm n-status": "down",
"oper-status": "down",
"if-index": 2,
"phys-address”: "00:01: 02: 03: 04: 05"
"statistics": {
"discontinuity-tine": "2013-04-01T03: 00: 00+00: 00"
}
b
{
"nanme": "ethl",
"type": "iana-if-type:ethernetCsmacd",
"adm n-status": "up",
"oper-status": "up",
"if-index": 7,
"phys-address”: "00:01:02: 03: 04: 06"
"hi gher-layer-if": [
"ethl. 10"
1,
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"
}
1
{
"name": "ethl. 10",
"type": "iana-if-type:l2vlan",
"adm n-status": "up",
"oper-status": "up",
"if-index": 9,
"lower-layer-if": [
"et h1"
1,
"statistics": {
"discontinuity-tine": "2013-04-01T03: 00: 00+00: 00"
}
1
{
"nanme": "eth2",
"type": "iana-if-type:ethernetCsmacd",
"admi n-status": "down",
"oper-status": "down",

Lhot ka Expi res August 28, 2015 [Page 16]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

"if-index": 8,
"phys-address”: "00:01:02: 03: 04: 07",
"statistics": {
"discontinuity-time": "2013-04-01T03: 00: 00+00: 00"

}
1
{
"name": "lol",
"type": "iana-if-type: softwareLoopback",
"adm n-status": "up",
"oper-status": "up",
"if-index": 1,
"statistics": {
"discontinuity-tine": "2013-04-01T03: 00: 00+00: 00"
}
}

Appendi x B. Change Log

RFC Editor: Renove this section upon publication as an RFC

B. 1.

(0]

(0]

B. 2.

Lhot ka

Changes Between Revisions -02 and -03

Nanespace encoding is defined wthout using RFC 2119 keywords.
Speci fication for anyxml nodes was extended and clarified.
Text about ordering of list entries was corrected.

Changes Between Revisions -01 and -02

Encodi ng of nanespaces in instance-identifiers was changed.

Text specifying the order of array elenents in leaf-list and |i st
i nstances was added.

Changes Between Revisions -00 and -01

Met adat a encodi ng was noved to a separate |-D, draft-1hotka-
net nod- yang- net adat a.

JSON encoding is now defined directly rather than via XM.-JSON
mappi ng.

Expi res August 28, 2015 [Page 17]

Internet-Draft JSON Encodi ng of YANG Dat a February 2015

o The rules for nanespace encodi ng has changed. This affect both
node i nstance nanes and instance-identifiers.
0 |-JSON-related changes. The nost significant is the string
encodi ng of 64-bit nunbers.
0 When validating union type, the partial type info present in JSON
encoding is taken into account.
0 Added section about |-JSON conpliance.
0 Updated the exanple in appendi x.
0 Wote Security Considerations.
0 Renoved | ANA Consi derations as there are none.
Aut hor’ s Address
Ladi sl av Lhot ka
CZ.NC
Emai | : | hot ka@i c. cz
Lhot ka Expi res August 28, 2015 [Page 18]

