
Network Working Group Y. Tsuzaki
Internet-Draft Kyoto University
Intended status: Informational R. Atarashi
Expires: September 10, 2015 IIJ Innovation Institute Inc.
 S. Suzuki
 Keio University
 K. Mitsuya
 K. Okada
 Lepidum Co. Ltd.
 March 09, 2015

 Network configuration Web API for Bandwidth Reservation
 draft-tsuzaki-netconfig-webapi-00.txt

Abstract

 This draft introduces a framework for a dynamic bandwidth reservation
 via Web API for Web applications. In this document, we propose Web
 APIs for Web clients to request bandwidth allocation to network
 controllers. The network controller could be both of SDN compliant
 or Non-SDN compliant one. In this document, a network specification
 definition language is also proposed.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Tsuzaki, et al. Expires September 10, 2015 [Page 1]

Internet-Draft netconfig-webapi March 2015

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirement . 3
 3. Terminology . 3
 4. System architecture . 4
 4.1. Management server . 4
 4.2. Media client . 5
 4.3. Program Server . 5
 4.4. Media Server . 5
 4.5. System components . 6
 5. API . 7
 5.1. Service definition language 7
 5.2. Web API . 9
 5.2.1. Resource usage report 9
 5.2.2. Resource request 11
 5.2.3. Keep-alive . 16
 6. Security Considerations 16
 7. IANA Considerations . 16
 8. Acknowledgement . 16
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 17
 Authors’ Addresses . 17

1. Introduction

 This draft proposes a framework for a dynamic bandwidth reservation
 via Web API for Web applications. We assume that there are network
 controllers to control the network devices and gather information
 about their control domain. Those controllers equip Web APIs so that
 Web clients can request bandwidth allocated virtual private paths
 between contents Web servers and the clients. Network administrators
 describe the service specifications with "service description
 language", and the bandwidth are allocated to the clients according
 to the service specifications. This draft explains the overview of
 this architecture and how resource reservations are made.

Tsuzaki, et al. Expires September 10, 2015 [Page 2]

Internet-Draft netconfig-webapi March 2015

2. Requirement

 o From the Viewpoint of Network Administrators
 Based on the service specifications configured by the
 administrators, network management controllers automatically
 respond to the client requests via Web APIs.

 o From the Viewpoint of Clients
 By accessing the Web API for the network resource reservations,
 clients can reserve QoS guaranteed communication bandwidth for Web
 contents downloads.

 o Use Case
 The network administrators prepare Web APIs for configuring
 network paths and bandwidth reservations. When a client need to
 download large contents from a Web server, the client send the
 requiring resource information to the network management server
 via Web APIs. The network management server construct a QoS
 guaranteed communication path for the client based on the
 information received from the client.

3. Terminology

 o Management Server: Servers which control the network devices in a
 domain. These servers also provide the application interfaces for
 Media Clients to signal resource requests. Administrators
 describe the network configurations and policies of networks by
 SDL/NDL and put them to Management Servers. Management servers
 are also referred as Network Management Servers.

 o Media server: Kind of a web server, which delivers media contents
 to Media Clients.

 o Media client: Client application run on a Web Browser, which
 receives and present media contents to an end user.

 o Service specification: the description of network service
 components described by SDL/NDL

 o Service Description Language (SDL): A language by which
 administrators describes network device information.
 Administrators describe SDL and put the descriptions to Management
 Servers.

 o Network Description Language (NDL): A language by which
 administrators describes network service information.
 Administrators describe NDL and put the descriptions to Management
 Servers.

Tsuzaki, et al. Expires September 10, 2015 [Page 3]

Internet-Draft netconfig-webapi March 2015

 o Resource request: action by which Media Clients obtain resource
 reserved communication path to Media Servers.

4. System architecture

 +----------------+
 | Management |
 Resource | server |
 Request +-+---+-------+--+-+
 +------> | WEB API | | |
 | +---------+ | | Path
 | | | Setup
 | | |
 | , - \+ +/- ,
 | , ’ \ / ’ ,
 | , \/ ,
 +----+---+ +-------------------------------+ +--------+
 | Media | Reserved | Media |
 | client | Path | server |
 +--------+ +-------------------------------+ +--------+
 , SDN/Non-SDN ,
 , BackBone ,
 , , ’
 ’ + , _ _ _ , ’

 Figure 1: System Architecture

 Figure 1 depicts the system overview of application triggered
 resource reservation architecture. All the network components except
 for the end clients in the domain (routers, servers) are under the
 control of the management server. The network management server
 gathers network management information such as status of network
 devices or links in the network, and also command those devices to
 set up QoS guaranteed communication paths between Media Servers and
 Media Clients.

 The scope of this architecture is to define Web interfaces to signal
 resource allocation from Web browser applications to management
 servers.

4.1. Management server

 Management servers are servers that control network components on the
 networks. Network administrators describe network device groups and
 network service description language with language called "service
 definition language". Service definition language is detailed in
 Section 5.1.

Tsuzaki, et al. Expires September 10, 2015 [Page 4]

Internet-Draft netconfig-webapi March 2015

 Management servers serves Web APIs for clients to make resource
 reservations. To trigger network resource reservations, Media
 Clients access these Web APIs on the management servers. Upon
 receiving requests from Media Clients, a management server calculate
 appropriate communication paths between Media Servers and Media
 Clients. The intermediate nodes (routers or switches) can be both of
 SDN compliant and Non-SDN compliant devices, but each of those
 devices have to be configurable by the management server via some
 remote configuration methods such as Netconf[RFC6241] or SSH.

4.2. Media client

 Media client is a client application program run on a Web browser,
 which receives and present media contents to an end user. Media
 client receives Media Program, which is a list of contents can be
 presented, from a Program Server. When the user selects a content
 from the presented list of contents, Media client start playing the
 content.

4.3. Program Server

 Program Server store and provides a Media Program, which is a list of
 available contents. We use HTTP to provide a Media Program to a
 Media Client.

 The content specified in the Media Program consists of the title of
 the content and URL of the content. We expect content URL point to a
 location of a MEPGDash[MPEGDASH] file. The Media Program can be
 generated either by statically or dynamically.

 At this moment, we do not define how Media client finds a Program
 Server. We assume this information is already available in Media
 client.

4.4. Media Server

 Media server is a server program which store and provide metadata of
 a program as a MPEGDash format, and the contents of each media
 referenced from the MPEGDash formatted metadata.

 Contents can be split into multiple segments by duration, or prepared
 in multiple bit rates.

 Since the links between Media Program, MPEGDash file and segmented
 contents are described as a URL, all types of contents can store on
 one Media Server or among multiple Media Servers.

Tsuzaki, et al. Expires September 10, 2015 [Page 5]

Internet-Draft netconfig-webapi March 2015

4.5. System components

 +----------------+ +--------------+
 |Media Client | |Program Server|
 +----------------+ +--------------+
+------------+		+---------+				
	Program +---------->	Program				
	Information				List	
	Manager +--------+	+---------+				
+--+---------+		+--------------+				
v		+--------------+				
+------------+			Media Server			
	Resource			+--------------+		
	Manager +----+		+----------+			
+--+---------+		+->	Media			
 +----|------^----+ +-----> | Contents | |
 | | | +----------+ |
 | +-------+ +--------------+
 | |
 +----|--------------|--------------------+
 | | | Management Server |
 +----v--------------|--------------------+
 | +------+ +-+-------+ |
 | | Web | | Client | |
 | | APIs | | Manager | |
 | +------+ +---------+ |
 | +---------+ ^ |
 | v | |
 | +----------+ +------+-----+ |
 | | Topology +-->| Topology | |
 | | Database | | Calculator | |
 | +----------+ +------------+ |
 +--+

 Figure 2: System component

 Figure 2 shows a simple component diagram of this architecture. When
 a Media Client starts to obtain media contents from Media Servers,
 the program information manager of the client first get the program
 list from program servers. The program lists are described in the
 media presentation description(MPD) format of MPEGDash. The resource
 manager then access to the resource usage request Web API on the
 management server. When received a request from a client, the
 management server calculate the allocatable bandwidth between the
 Media Client and the Media Server via the topology calculator. Then
 the client manager of the management server respond a resource usage
 report to the Media Client. Based on the information in the resource

Tsuzaki, et al. Expires September 10, 2015 [Page 6]

Internet-Draft netconfig-webapi March 2015

 usage report, the Media Client trigger resource allocation by
 accessing the resource request Web API on the management server.
 Then the management server allocate bandwidth to the client via the
 topology calculator and send success message back to the client.

5. API

5.1. Service definition language

 Network administrators define the service specifications utilizing
 the service specification language, Network Description Language(NDL)
 and Service Description Language(SDL). NDL is to define the group of
 network components such as router groups. With SDL, administrators
 can define service specifications on the network. Service
 specifications are the descriptions which define the relationship
 between network devices or network groups that compose network
 services. Examples of service definitions are network configurations
 such as segment IP address blocks or VLAN id for the segment. An
 example of NDL/SDL is shown in Figure 3 and Figure 4

 node {
 ovs1;
 ovs2;
 media1;
 media2;
 pc11;
 pc12;
 pc13;
 pc14;
 pc21;
 pc22;
 pc23;
 pc24;
 }
 location {
 loc1 {
 media1;
 ovs1;
 pc11;
 pc12;
 pc13;
 pc14;
 }
 loc2 {
 media2;
 ovs2;
 pc21;
 pc22;

Tsuzaki, et al. Expires September 10, 2015 [Page 7]

Internet-Draft netconfig-webapi March 2015

 pc23;
 pc24;
 }
 }
 group {
 group101 {
 media1;
 media2;
 pc11;
 pc12;
 pc13;
 pc14;
 pc21;
 pc22;
 pc23;
 pc24;
 ovs1;
 ovs2;
 }
 group1623 {
 ovs1;
 ovs2;
 }
 group1624 {
 ovs1;
 ovs2;
 }
 group1625 {
 ovs1;
 ovs2;
 }
 }
 link {
 type = layer1;
 edge1 = pc11;
 edge2 = pc12;
 }

 Figure 3: Example of NDL

Tsuzaki, et al. Expires September 10, 2015 [Page 8]

Internet-Draft netconfig-webapi March 2015

 networks {
 network group101 {
 address = "192.168.1.0/24";
 vlan = 101;

 device ovs1 {
 type = L2Switch;
 address = "192.168.1.1";
 }

 device ovs2 {
 type = L2Switch;
 address = "192.168.1.2";
 }

 device media1 {
 type = Server;
 address = "192.168.1.30";
 }

 device media2 {
 type = Server;
 address = "102.168.1.31";
 }
 }
 }

 Figure 4: Example of SDL

 SDL also enables registrations of events on the network and event
 bound actions. For example, if the traffics from certain source IP
 address exceeds the defined per-flow bandwidth limitation on the
 certain physical link, the traffic can be automatically shaped
 according to the definitions of SDL. Administrators define resource
 usage limitation using this functionality of SDL. For example,
 administrators can limit the usage of bandwidth per the domain to
 which user equipments attached. The bandwidth allocation for each
 user is determined based on these service specifications.

5.2. Web API

5.2.1. Resource usage report

 Media servers advertise resource usage of links to Media Servers.
 The resource usage reports have two types. One is periodic resource
 usage reports broadcasted from management servers. Periodic usage
 reports include the uplink bandwidth usage of each servers(Figure 5).
 Another resource usage type is solicited usage report which is

Tsuzaki, et al. Expires September 10, 2015 [Page 9]

Internet-Draft netconfig-webapi March 2015

 delivered to clients through WebAPI on the management servers. In a
 solicited usage report request(Figure 6), a Media Client specify the
 server from which it want to download media contents. The Media
 Server which received the solicited usage reports calculates the
 physical link set which connect the client and the server, and report
 available bandwidth the management server afford to allocate to the
 client(Figure 7). If multiple paths between the client and the
 server exist, the max available bandwidth will be returned to the
 client. At a solicited resource usage report request, a Media Client
 opens a web socket to the management server.

 {
 [
 {
 "server": <String>
 "resource": {
 "bandwidth": <Num> // Option
 "latency": <Num> // Option
 }
 },
 ...
]
 }

 Figure 5: Unsolicited resource usage report json format

 o server: server IP address or FQDN in string

 o resource: available resource of the server

 {

 "from": <String>
 "to": <String>
 }

 Figure 6: Solicited resource usage report request json format

 o from: from IP address or FQDN in string

 o to: to IP address or FQDN in string

Tsuzaki, et al. Expires September 10, 2015 [Page 10]

Internet-Draft netconfig-webapi March 2015

 {

 "resource": {
 "bandwidth": <Num> // Option
 "latency": <Num> // Option
 }
 }

 Figure 7: Solicited resource usage report response json format

 o resource: available resource of the server

5.2.2. Resource request

 Media clients acquire reserved communication paths by accessing
 resource requests API on the management server. The resource
 requests have three types, initial resource request, resource
 modification request from clients and management server trigger
 resource modification request. We explain these types of resource
 requests in this section. According to the session_id information in
 the request, management server associate the web socket object of the
 request source client and the session-id.

 The clients post json format requests on the reservation. Figure 8
 is the format of the resource request json.

 {
 "session_id": <String>
 "class": <Num>
 "type": <Num>
 "server": <String>
 "resource": {
 "bandwidth": <Num> // Option
 "latency": <Num> // Option
 }
 }

 Figure 8: Resource request json format

 o session_id: random created UUID to identify the session

 o class: user priority class in digit number

 o type: 0: Initial 1: Modification

 o server: the server to which the client willing to connect

 o resource: resource object contains bandwidth and latency

Tsuzaki, et al. Expires September 10, 2015 [Page 11]

Internet-Draft netconfig-webapi March 2015

5.2.2.1. Initial resource request

 +------+ +------------+ +------+
 |Media | | Management | |Media |
 |Client| | Server | |Server|
 +--+---+ +------------+ +------+
 | |
 | |

 | | |
 | RRRQ | |
 +---------------> | |
 | + |
 | |
 | RRRQR |
 +--------------------------------> |
 | |
 | + RRRQ |
 | | <--------------+
 | | |
 | | RRRS |
 | +--------------> |
 | | |
 | RRRS | |
 | <---------------+ |
 | + |
 | RRRQS |
 | <--------------------------------+
 | |
 + +

 Figure 9: Initial resource request sequence

 o RURR: Resource Usage Report Request

 o RURA: Resource Usage Report Advertisement

 o RRRQ: Resource Reservation ReQuest

 o RRRS: Resource Reservation ReSponse

 o RRRQR: Resource Reservation ReQuest Request

 o RRRQS: Resource Reservation ReQuest Response

 A Media Client initially obtains a contents list on the Media Server.
 This contents list is described in the media presentation description
 (MPD) format of MpegDash. The acquisition of contents list is done

Tsuzaki, et al. Expires September 10, 2015 [Page 12]

Internet-Draft netconfig-webapi March 2015

 by ordinal HTTP GET method. Then the client request resource usage
 reports to the management server as mentioned in Section 5.2.1.
 Based on information in the resource usage report and contents list,
 the client determine the contents bitrate and send a resource request
 to the management server based on the determined contents bitrate.
 The resource request contains a session-id randomly generated on
 clients(ex) UUID). The client simultaneously send a resource
 reservation request request to Media Server to trigger Media Server
 to send a request to the management server. The RRRQR also contains
 same session-id as resource request. The management server verify
 the request from the Media Server and the Media Client, and send
 response to both side if the information from the client and the
 server correspond. The management server stores the session-id, web
 socket information and allocated resources. These information are
 used for resource modifications and keep-alive. After received RRRS
 indicating the resource reservation was done successfully, the Media
 Server send RRRQS to the Media Client. Then the client get to be
 able to download the media contents with guaranteed quality.

5.2.2.2. Client trigger resource modification request

 A Media Client MAY offer resource modification requests when resource
 usage reports say the uplink capacity of the Media Server from which
 the client downloads the media contents.

Tsuzaki, et al. Expires September 10, 2015 [Page 13]

Internet-Draft netconfig-webapi March 2015

 +------+ +------------+ +------+
 |Media | | Management | |Media |
 |Client| | Server | |Server|
 +--+---+ +------------+ +------+
 | |
 | RRRQ + |
 +---------------> | |
 | + |
 | |
 | RRRQR |
 +--------------------------------> |
 | |
 | + RRRQ |
 | | <--------------+
 | | |
 | | RRRS |
 | +--------------> |
 | | |
 | RRRS | |
 | <---------------+ |
 | + |
 | RRRQS |
 | <--------------------------------+
 | |
 + +

 Figure 10: Resource modification sequence (client trigger)

5.2.2.3. Management server trigger resource modification request

Tsuzaki, et al. Expires September 10, 2015 [Page 14]

Internet-Draft netconfig-webapi March 2015

 +------+ +------------+ +------+
 |Media | | Management | |Media |
 |Client| | Server | |Server|
 +--+---+ +------------+ +------+
 | |
 | RRMRQ + |
 | <---------------+ |
 | | |
 | RRRQ | |
 +---------------> | |
 | + |
 | |
 | RRRQR |
 +--------------------------------> |
 | |
 | + RRRQ |
 | | <--------------+
 | | |
 | | RRRS |
 | +--------------> |
 | | |
 | RRRS | |
 | <---------------+ |
 | + |
 | RRRQS |
 | <--------------------------------+
 | |
 + +

 Figure 11: Resource modification sequence (management server trigger)

 RRMRQ: Resource reservation modification request.

 Management servers MAY trigger resource downgrade/upgrade requests to
 Media Clients, when the used bandwidth of a certain link saturate or
 become to have room. This push messaging can be done by Web sockets
 or WebRTC. As resource reservation modification request contains
 available resource for the received client, client determine the
 contents bitrate based on the information contained in RRMRQ and pre-
 downloaded contents list information at the initial resource
 reservation. The following process is similar to the initial
 resource reservation described in Section 5.2.2.1.

5.2.2.4. Resource cancellation

 When a client do not need the allocated resources, the client can
 explicitly stop using the resource by posting a json described in
 Figure 12. Upon receiving cancellation message, the management

Tsuzaki, et al. Expires September 10, 2015 [Page 15]

Internet-Draft netconfig-webapi March 2015

 server disassociate session-id from the client websocket, and release
 the resource bound to the session-id.

 {
 "session_id": <String>
 }

 Figure 12: Resource cancel json format

5.2.3. Keep-alive

 Management servers MAY keep-alive the clients to keep monitoring the
 usage of the reserved resources. While the clients can send resource
 free messages explicitly at the end of media streaming, client
 computers tend to disconnect from the networks suddenly or the
 browser applications can be reloaded by user operations. To avoid
 such kind of wasted resources, management servers send keep-alive
 messages include the session-ids sent from the clients at the initial
 resource reservations. When received a keep-alive message, the
 client verify the session-id contained in the keep-alive message. If
 the keep-alive message is not the one the client stores, the client
 ignore the keep-alive messages. If the server do not receive the
 keep-alive responses from the client for certain configured times,
 the server free the resource bound to the session-id. By default,
 the keep-alive interval is 300 seconds and the default keep-alive
 timeout count is 3.

6. Security Considerations

 TBD

7. IANA Considerations

 TBD

8. Acknowledgement

 The author would like to thank Yasuo Okabe, Osamu Nakamura and Kaoru
 Maeda for their good contributions to this document.

9. References

9.1. Normative References

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
 6455, December 2011.

Tsuzaki, et al. Expires September 10, 2015 [Page 16]

Internet-Draft netconfig-webapi March 2015

9.2. Informative References

 [MPEGDASH]
 "ISO/IEC 23009-1:2014: Dynamic adaptive streaming over
 HTTP (DASH) -- Part 1: Media presentation description and
 segment formats", May 2014,
 <http://standards.iso.org/ittf/PubliclyAvailableStandards/
 index.html>.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC
 6241, June 2011.

Authors’ Addresses

 Yoshiharu Tsuzaki
 Kyoto University

 Email: tsuzakiyo@net.ist.i.kyoto-u.ac.jp

 Ray Atarashi
 IIJ Innovation Institute Inc.

 Email: ray@iijlab.net

 Shigeya Suzuki
 Keio University

 Email: shigeya@wide.ad.jp

 Koshiro Mitsuya
 Lepidum Co. Ltd.

 Email: mitsuya@lepidum.co.jp

 Kouji Okada
 Lepidum Co. Ltd.

 Email: okd@lepidum.co.jp

Tsuzaki, et al. Expires September 10, 2015 [Page 17]

