
Network Working Group T. Terriberry
Internet-Draft Mozilla Corporation
Intended status: Informational July 6, 2015
Expires: January 7, 2016

 Overlapped Block Motion Compensation for NETVC
 draft-terriberry-netvc-obmc-00

Abstract

 This document proposes a scheme for overlapped block motion
 compensation that could be incorporated into a next-generation video
 codec. The scheme described is that currently used by Xiph’s Daala
 project, which supports variable block sizes without introducing any
 discontinuities at block boundaries. This makes the scheme suitable
 for use with lapped transforms or other techniques where encoding
 such discontinuities is expensive.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Terriberry Expires January 7, 2016 [Page 1]

Internet-Draft Coding Tools July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Adaptive Subdivision OBMC 3
 3. Implementation and Motion Estimation 7
 3.1. Initial Estimates . 10
 3.2. Adaptive Subdivision 10
 3.3. Iterative Refinement 12
 3.3.1. Rate and Distortion Changes 12
 3.3.2. Complexity Reduction 13
 3.3.3. Subpel Refinement 14
 4. References . 15
 4.1. Informative References 15
 4.2. URIs . 16
 Author’s Address . 16

1. Introduction

 Most current video codecs still use straightforward Block Matching
 Algorithms (BMA) to perform motion compensation, despite their
 simplicity. These algorithms simply copy a block of pixels from a
 reference frame, possibly after applying a sub-pixel (subpel) filter
 to allow for increased motion resolution. When the motion vectors
 (MVs) of two adjacent blocks differ, a discontinuity is likely to be
 created along the block edge. These discontinuities are expensive to
 correct with transform stages that do not themselves have
 discontinuities along block edges, such as lapped transforms
 [I-D.egge-videocodec-tdlt]. Even with a more traditional block-based
 DCT as the transform stage, the creation of these discontinuities
 requires that some residual be coded to correct them (and to activate
 loop filtering along these edges) and requires that the size of a
 transform block used to code that residual be no larger than the size
 of a prediction block (or they will suffer the same efficiency
 problem as lapped transforms in correcting them)

 Overlapped Block Motion Compensation (OBMC) avoids discontinuities on
 the block edges by copying slightly larger blocks of pixels, and
 blending them together with those of neighboring blocks, in an
 overlapping fashion. Under the assumption that pixels in the
 reference frames are highly spatially correlated, this blending
 compensates for motion uncertainty at the pixels farthest from the
 estimated MVs. This improves the accuracy of the prediction near
 block edges, making the expected error more uniform across a block,
 and improving coding performance over a similar BMA scheme (with

Terriberry Expires January 7, 2016 [Page 2]

Internet-Draft Coding Tools July 2015

 fixed-size blocks) by 0.4 dB [KO95] to 1.0 dB [KK97], depending on
 the search strategy used.

 Non-overlapped BMA schemes that support varying the block size give
 much better compression than fixed-size schemes [Lee95]. Although
 previous formats such as Dirac use OBMC, it has always been with a
 (small) fixed blending window size. The size of a block might vary
 from, say, 4x4 to 16x16 pixels, with each block given a single MV,
 but the overlap with neighboring blocks remains fixed, limited by the
 smallest supported block size to, say, 2 pixels on either side of an
 edge (the exact sizes in Dirac are configurable, but do not vary
 within a frame). This is essentially equivalent to performing
 prediction for the entire frame at the smallest block size (4x4) with
 an efficient scheme for specifying that the same MV be used for many
 of the blocks.

 We propose a subdivision scheme for OBMC that supports adaptive
 blending window sizes, allowing much larger blending windows in
 blocks that are not subdivided, which previous research has suggested
 should improve prediction performance compared to fixed-size
 windows [ZAS98]. Our scheme uses simple window functions that can be
 computed on the fly, rather than stored in large tables, allowing it
 to scale to very large block sizes. It admits a dynamic programming
 algorithm to optimize the subdivision levels with a reasonable
 complexity.

2. Adaptive Subdivision OBMC

 Traditional BMA schemes and previous OBMC schemes have a one-to-one
 correspondence between blocks and MVs, with each block having a
 single MV. That MV is most reliable in the center of the block,
 where the prediction error is generally the smallest [ZSNKI02].
 Instead, we use a grid of MVs at the corners of blocks. With a
 fixed-size grid, away from the edges of a frame, this difference is
 mostly academic: equivalent to shifting block boundaries by half the
 size of a block in each direction. However, with variable-sized
 blocks, the distinction becomes more relevant: there is no longer a
 one-to-one correspondence between blocks and MVs. Under the scheme
 where MVs correspond to the center of a block, splitting a block
 removes the old MV at the center of the old block and produces new
 MVs at the centers of the new blocks. Under the scheme where MVs
 belong to the corners, splitting a block retains the MVs at the
 existing corners (corresponding to the same motion as before), but
 may add new MVs at the new block corners.

 We use square blocks with an origin in the upper-left corner and x
 and y coordinates that vary between 0 and 1 within a block. The

Terriberry Expires January 7, 2016 [Page 3]

Internet-Draft Coding Tools July 2015

 vertices and edges of a block are indexed in a clockwise manner, as
 illustrated in Figure 1.

 mv[0] mv[1]
 \ x ---> /
 \ /
 0---------------1
 y | 0 |
 | |
 | | |
 v |3 1|
 mv[3] | mv[2] |
 \ | \ |
 \| 2 \|
 3---------------2

 Figure 1: Vertex and Edge Indices for a Block

 In a block with MVs at all four corners, we use normal bilinear
 weights to blend the predictions from each MV. The bilinear weights
 for each vertex, w[k], at a pixel location (x, y) are defined as

 w[0] = (1 - x)*(1 - y)
 w[1] = x*(1 - y)
 w[2] = x*y
 w[3] = (1 - x)*y

 Let "I" be the reference image, and for simplicity denote the
 predictor I[x + mv[k].x, y + mv[k].y] for the pixel at location
 (x, y) with motion vector mv[k] as simply I(mv[k]). In a regular
 grid, with unique motion vectors defined at all four corners of a
 block, we predict the interior of the block using

 I(mv[0])*w[0] + I(mv[1])*w[1] + I(mv[2])*w[2] + I(mv[3])*w[3]

 In order to extend OBMC to handle variable block sizes while
 maintaining continuity along the edges, we start by imposing the
 restriction that the size of two adjacent blocks differ by at most a
 factor of two, which greatly simplifies the problem. To do this, we
 borrow a data structure from the related graphics problem of surface
 simplification, the semi-regular 4-8 mesh [VG00]. This is normally
 used to represent subdivisions in a triangle mesh, but we use it for
 variable-sized quadrilaterals.

Terriberry Expires January 7, 2016 [Page 4]

Internet-Draft Coding Tools July 2015

 H
 0---------------0 0---------------0 0-------2-------0
 | | | : _/ | | H |
 | | | : __/ | | H |
 | | | :/ | | H |
 | | |.......1.......| =2=======1=======2=
 | | | __/: | | H |
 | | | _/ : | | H |
 | | | / : | | H |
 0---------------0 0---------------0 0-------2-------0
 H
 Level 0 Level 1 Level 2

 H H
 0-------2-------0 0---4---2---4---0
 | :/ : _: | | H : H |
 |...3...:...3...| =4===3===4===3===4=
 | / : : :_ | | H : H |
 2...:...1...:...2 2...4...1...4...2
 | _: : : / | | H : H |
 |...3...:...3...| =4===3===4===3===4=
 | :_ : / : | | H : H |
 0-------2-------0 0---4---2---4---0
 H H
 Level 3 Level 4

 The first four subdivision levels in a 4-8 mesh. Numbers indicate
 vertices with transmitted MVs. Diagonal lines (on odd levels) and
 double lines (on even levels) connect each new vertex to its two
 parents at the previous level (in some cases, this parent may lie
 in an adjacent block). Dotted lines indicate additional block
 boundaries.

 Figure 2: Subdivision Levels in a 4-8 Mesh

 Subdivision in a 4-8 mesh proceeds in two phases, as illustrated in
 Figure 2. In the first phase, a new vertex is added to the center of
 a quadrilateral. This subdivides the quadrilateral into four
 "quadrants", but does not add any aditional vertices to the edges.
 Such edges are called "unsplit". In the second phase, each of the
 quadrilateral’s edges may be split and connected to the center
 vertex, forming four new quadrilaterals. One useful property of this
 two-phase subdivision is that the number of vertices in the mesh
 merely doubles during each phase, instead of quadrupling as it would
 under normal quadtree subdivision. This provides more fine-grained
 control over the number of MVs transmitted.

Terriberry Expires January 7, 2016 [Page 5]

Internet-Draft Coding Tools July 2015

 To ensure that the size of two adjacent blocks differs by no more
 than a factor of two, we assign every vertex two parents in the mesh,
 which are the two adjacent vertices from the immediately preceding
 subdivision level. A vertex may not be added to the mesh until both
 of its parents are present. That is, a level 2 vertex may not be
 added to an edge until the blocks on either side have had a level 1
 vertex added, and a level 3 vertex may not be added to the center of
 a block until both of the level 2 vertices have been added to its
 corners, and so on.

 Therefore, we need only specify how to handle a block that has
 undergone phase one subdivision, but still has one or more unsplit
 edges, as illustrated in Figure 3. Such a block is divided into
 quadrants, and each is interpolated separately using a modified
 version of the previous bilinear weights.

 c mv[0] mv[1]
 0------------------------------1
 mv[0] | mv[0] # mv[1] : mv[0] mv[1] |
 |###############: |
 |###############: |
 |###############: |
 |###############: |
 |###############: |
 | mv[3] # mv[4] : mv[4] mv[5] |
 |...............4--------------5
 | mv[0] mv[4] | |
 | | |
 | | |
 | | |
 | | |
 | | |
 mv[3] | mv[3] mv[6] | |
 3---------------6--------------2

 Figure 3: Interpolation Setup for Unsplit Edges

 The same two MVs are used along the unsplit edge(s) as before, but we
 shift some of the weight used for blending from the middle of the
 edge to the exterior corner. More precisely, the weights w[k] are
 replaced by modified weights s[k]. For example, if c is the index of
 the vertex in the exterior corner, (+) denotes addition modulo four,
 and c (+) 1 is the index of the corner bisecting the unsplit edge
 (the top edge in the figure), then

 s[c] = w[c] + 0.5*w[c (+) 1]
 s[c (+) 1] = 0.5*w[c (+) 1]

Terriberry Expires January 7, 2016 [Page 6]

Internet-Draft Coding Tools July 2015

 The remaining weights are unchanged. A similar modification is used
 if it is c (+) 3 that lies on the unsplit edge. The modifications
 are cumulative. That is, if both c (+) 1 and c (+) 3 lie on unsplit
 edges (as in the hashed region in Figure 3),

 s[c] = w[c] + 0.5*w[c (+) 1] + 0.5*w[c (+) 3]
 s[c (+) 1] = 0.5*w[c (+) 1]
 s[c (+) 3] = 0.5*w[c (+) 3]
 s[c (+) 2] = w[c (+) 2]

 This defintiion of the blending weights clearly matches an adjacent
 block along an unsplit edge, regardless of whether or not that block
 has been split. Careful examination will verify that it also matches
 other quadrants along the interior edges. Each weight can be
 evaluated with finite differences at the cost of one add per pixel,
 plus setup overhead. The blending can be done with three multiplies
 per pixel by taking advantage of the fact that the weights sum to
 one, just as with regular bilinear interpolation.

 The mesh itself may require more vertices than an unconstrained mesh
 to achieve a given level of subdivision in a local area, but requires
 fewer bits to encode the subdivision itself, simply because there are
 fewer admissable meshes. As long as a (0, 0) MV residual can be
 efficiently encoded, the worst-case rate of the 4-8 mesh should be
 close to that of a similar, unconstrained mesh.

 This process can be extended to handle blocks that differ by more
 than one level of subdivision, so long as the edge between them
 remains entirely unsplit. For example, to handle block sizes that
 differ by a factor of four, instead of shifting half the blending
 weight from one vertex to the other, one simply needs to shift 1/4,
 1/2, or 3/4 of the weight, depending on the location of the block
 along the unsplit edge. However, the 4-8 mesh is no longer suitable
 for describing which vertices can appear in the mesh, and some
 modifications ot the adaptive subdivision algorithm in Section 3.2
 are required. We have not yet implemented these extensions.

3. Implementation and Motion Estimation

 The algorithms in Section 2 have been implemented in the Daala video
 codec [Daala-website]. We use them to produce a complete "motion
 compensated reference frame", which is then lapped and transformed
 (in both the encoder and decoder) [I-D.egge-videocodec-tdlt] to make
 it available as a frequency-domain predictor for the transform
 stage [I-D.valin-netvc-pvq]. The full source code, including all of
 the OBMC work described in this draft is available in the project git
 repository at [1].

Terriberry Expires January 7, 2016 [Page 7]

Internet-Draft Coding Tools July 2015

 Luma blocks are square with sizes ranging from 32x32 to 4x4. The
 corners of the MV blocks are aligned with the corners of the
 transform blocks. An earlier design had the MV blocks offset from
 the transform blocks, so that MVs remained in the center of the
 transform blocks at the coarsest level, with an extra ring of
 implicit (0, 0) MVs around the frame (to keep the minimum number of
 transmitted MVs the same as with BMA). However, we found that there
 was essentially no performance difference between the two approaches
 (see commit 461310929fc5). Some things are simpler with the current
 approach (all of the special cases for the implicit (0, 0) MVs go
 away), and some things are more complicated, but most of the
 complications are confined to the computation of MV predictors.

 The encoder performs rate-distortion (R-D) optimization during motion
 estimation to balance the prediction error (D) attainable against the
 number of bits required to achieve it (R), e.g., minimizing

 J = D + lambda*R

 The value of lambda is obtained directly from the target quantizer
 setting.

 We use the Sum of Absolute Differences (SAD) in the luma plane as our
 distortion metric for the first three stage of the search, and use
 the Sum of Absolute Transformed Difference (SATD) during a final
 subpel refinement stage (with an appropriate adjustment to lambda).

 We approximate the rate of small MV components (with a magnitude less
 than 3 after subtracting a predictor) using statistics from the
 previous frame, plus one sign bit for each non-zero component.
 Larger MV components have an additional non-adaptive rate cost added
 that increases logarithmically with the MV magnitude. The rate term
 for each vertex also includes a bit for each flag that indicates the
 presence of a child (2 per vertex on average). The real motion
 information is adaptively arithmetic
 encoded [I-D.terriberry-netvc-codingtools], but these approximations
 avoid having to update the rate term for every MV every time a single
 MV is changed.

 We use a median-of-four predictor for almost every MV, as illustrated
 in Figure 4. The middle two values of each MV component are
 averaged, rounding towards even values. There are two exceptions.
 If an MV required for prediction lies outside the frame, a (0, 0) MV
 is substituted in its place. If an MV required for prediction lies
 inside a 32x32 block that comes after the current one in raster
 order, then that MV is ignored and we use the median of the three
 remaining MVs. This occurs when predicting MVs on even levels that
 lie on the right or bottom edges of a 32x32 block. MVs on the top

Terriberry Expires January 7, 2016 [Page 8]

Internet-Draft Coding Tools July 2015

 and left edges of the frame are considered to belong to the 32x32
 block below or to the right, respectively (that is, the corresponding
 MV in that block is not ignored).

 | | |
 | | |
 ----O---------------O--------------O
 |__ H __/|
 | _ H _/ |
 | _ H _/ |
 | _ H _/ |
 | __ H __/ |
 | \ H / |
 | _|VL |
 ----O==============>X--------------+
 Level 0

 H
 O-------+-------O +-------O-------+
 | _ | _/ | | H |
 | __ | __/ | | H |
 | \|/ | | H |
 +-------X-------+ =O=======X=======O=
 | __/|__ | | H |
 | _/ | _ | | H |
 | / | \ | | H |
 O-------+-------O +-------O-------+
 H
 Odd Levels Even Levels

 Key:
 X - MV being predicted
 O - MV used for prediction. Except at level 0, these are all
 ancestors of the MV being predicted, and thus are required
 to be present.
 + - MV grid point not used for prediction (might not be coded)

 Figure 4: The Predictors Used for MVs at Each Level

 The current bitstream encodes MVs level-by-level for the entire
 frame. It is expected at some point that this will be migrated to
 code all the MVs for a single 32x32 block at a time. This is the
 reason for excluding predictors outside of the current 32x32 block.

 The number of combinations of subdivision levels and MVs available
 make finding a globally optimal set of parameters impractical. The
 problem of finding optimal subdivision levels alone is known to be
 NP-hard [AS94]. The estimation procedure outlined below attempts to

Terriberry Expires January 7, 2016 [Page 9]

Internet-Draft Coding Tools July 2015

 balance speed with compression performance, though it could certainly
 be improved with future research.

3.1. Initial Estimates

 First we produce an initial MV estimate at each point in the fully-
 subdivided grid using BMA. We compute several MV candidates from
 spatial and temporal neighbors and assuming constant speed or
 acceleration. The candidates are grouped into sets by reliability
 and the search terminates early if the best candidate from a set has
 a SAD below a dynamically chosen threshold. Otherwise, a local
 gradient search is performed using a square pattern around the best
 candidate vector. The thresholds ensure extra computation time is
 spent only on blocks whose predictor can be reasonably expected to
 improve. Although we look solely at SAD to determine whether to
 continue the search, the candidates themselves are ranked using the
 full R-D cost metric, J.

 Level 0 searches using (non-overlapped) 32x32 blocks centered on the
 corresponding grid points, while the next two levels use 16x16
 blocks, the next two levels 8x8, and so on. MVs are estimated from
 the coarsest levels to the finest, to allow for the accurate
 computation of MV predictors used in the rate estimates. As the mesh
 is subdivided, existing grid points do not have their MVs re-
 estimated with smaller block sizes, even though the area that those
 MVs would influence in a grid subdivided to that level is reduced.
 All MVs are estimated only up to whole-pel accuracy at this stage.

3.2. Adaptive Subdivision

 The second stage of motion estimation fixes the mesh subdivision.
 During this stage, the SAD for each block is computed using full OBMC
 instead of BMA. The MVs produced in the previous stage are held
 fixed in this one. Only the mesh subdivision level changes.

 The extra subdivision required to add a vertex to the 4-8 mesh is
 similar to the implicit subdivision used by Zhang et al. in their
 variable block size OBMC scheme [ZAS98]. The difference is that we
 optimize over and encode such subdivision explicitly. We use a
 global R-D optimization strategy with general mesh decimations, as
 proposed by Balmeli [Bal01]. This is a greedy approach that starts
 with a full mesh and successively decimates vertices. Restricting
 decimation candidates to the leaves of the mesh can frequently
 produce sequences where decimating a MV (reducing rate) causes
 distortion to go _down_, clearly indicating that the previous rate
 allocation was not optimal. General mesh decimations, on the other
 hand, allow any MV to be removed at a given step, not just the
 leaves. If a non-leaf is decimated, all of its children are

Terriberry Expires January 7, 2016 [Page 10]

Internet-Draft Coding Tools July 2015

 decimated as well. This helps smooth out non-monotonicities in the
 distortion measure during the decimation process, especially at low
 rates

 The following notation is used to describe the algorithm. The
 current mesh is denoted by M, and M_v is the "merging domain" of v in
 M: the set of vertices in M that must be removed to remove v. This
 includes v and all of its undecimated children. Additionally, the
 variation dU(M_v) contains the pairs (dD(M_v), dR(M_v)): the change
 in distortion (SAD) and rate (bits) caused by removing M_v from M.
 We also refer to the change in SAD in a single block b caused by
 removing a single vertex v as dD_b(v). Finall, A_v is the set of
 ancestors of v in M. Some minor additions to Balmelli’s original
 algorithm are made to handle the fact that distortion is measured
 over squares, not triangles. The steps of the algorithm are:

 1. For all v, compute dU(M_v).

 2. Do

 (a) Let v* be the value of v in M for which -dD(M_v)/dR(M_v) is
 the smallest.

 (b) If -dD(M_v*)/dR(M_v*) > lambda, stop.

 (c) For all w in M_v*, sorted by depth from deepest to
 shallowest:

 i. For all a in A_w, subtract dU(M_w) from dU(M_a).

 ii. Remove w from the mesh.

 iii. If w was on an even level, then for each adjacent
 block b with a w’ in M such that w’ lies on the same
 level as w:

 A. Let d be change in dD_b(w’) before and after
 decimating w.

 B. For all w in {w’} U A_w’ \ A_w, add d to dD(M_a).

 These steps ensure that dU(M_v) contains the up-to-date changes in
 the global rate and distortion after each merging domain is
 decimated. This update process properly accounts for overlapping
 merging domains due to an inclusion-exclusion principle. See
 Balmelli for details [Bal01]. Step 2(c)iii handles the case of
 decimating one corner of a block, w, when the opposite corner, w’,
 remains. This changes dD_b(w’), the cost of decimating the opposite

Terriberry Expires January 7, 2016 [Page 11]

Internet-Draft Coding Tools July 2015

 corner, and that change must be propagated to each merging domain to
 which w’ belongs. No change needs to be made to the common ancestors
 of w and w’ however: once dD(M_w’) is updated, the normal update
 process that will be executed when w’ is decimated is sufficient.
 The addition of these extra steps does not affect the computational
 complexity of the algorithm which is Theta(n log n), where n is the
 size of the initial mesh.

 The distortion measurements needed to initialize and update dU(M_v)
 can be computed once, in advance, by computing the SAD value of each
 block in all sizes and with all possible combinations of unsplit
 edges. All told, each pixel in the image is used in exactly 13 SAD
 computations (one for the largest block size, with no unsplit edges,
 and for for each additional block size). Also, since the mesh only
 undergoes six levels of subdivision, there are only a small number of
 unique merging domains and ancestor sets. These can be computed
 offline and stored in tables to simplify the decimation process. To
 compute the set difference A_w’ \ A_w, we note that w and w’ share a
 single common parent, p. The common ancestors of w and w’ are now
 formed by the set {p} U A_p, meaning one can add d to the nodes in
 A_w’ and then subtract it from the nodes in {p} U A_p to effect the
 set difference in Step 2(c)iiiB. Alternatively, one could simply use
 a larger set of lookup tables.

3.3. Iterative Refinement

 The next stage uses the iterated dynamic programming (DP) proposed by
 Chen and Willson to refine the MVs, accounting for their
 interdependencies [CW00]. In this scheme, a single row (resp.
 column) of MVs is optimized at a time using a Viterbi
 trellis [For73], while the rest remain fixed. If there is no direct
 block edge between two consecutive MVs in a row (resp. column) then
 the trellis stops, and a new one is started. This continues until
 the entire row (resp. column) has been examined. The process is then
 repeated until the total change in Lagrangian cost, J, falls below a
 given threshold.

3.3.1. Rate and Distortion Changes

 We use the change in rate and distortion to compute the cost of each
 path in the trellis. A single MV can influence the distortion of as
 many as 12 neighboring blocks. Only the ones to the left (resp.
 above) are added to the current cost of each path. When the
 following MV is chosen, an additional 2 to 8 blocks may be added. If
 necessary, the blocks to the right (resp. below) are added after the
 last MV in the trellis.

Terriberry Expires January 7, 2016 [Page 12]

Internet-Draft Coding Tools July 2015

 Unfortunately, the rate of a MV depends on the values of the MVs used
 to predict it. Chen and Willson assume MVs use 1-D differential
 coding, as in MPEG-1. With our prediction scheme, several (not
 necessarily consecutive) MVs on the DP path may be used to predict a
 given MV, and the corresponding change in rate is not known until a
 MV has been chosen for all of them.

 If we were to consider all possible combinations of candidates for
 the predictors, the number of trellis edges would increase by several
 orders of magnitude. This seems excessively wasteful, since as long
 as the changes to the MVs are small, the median operation ensures
 only one or two of them are likely to have any influence on the
 predicted value in the first place. Instead, we immediately compute
 the rate change in each predicted vector---excluding those that
 themselves lie further along the DP path, since we do not yet know
 what MV will be encoded. We do this assuming all MVs not already
 considered by the DP remain fixed, and add the change to the cost of
 the current path. If changing a subsequent MV on the path causes the
 rate of one of these predicted MVs to change again, the new rate
 change is used from then on.

 Because we essentially discard a large number of trellis states of
 limited utility, we might theoretically discard the path that does
 not change any MVs, even though its true cost is lower than the ones
 we keep. Thus, as a safety precaution, we check the final cost of
 the best path, and do not apply it if it is greater than zero. This
 does occur in practice, but very rarely.

 Other, simpler alternatives to this approach are also possible. For
 example, we tried only considering rate changes for MVs on the actual
 DP path, which is much like Chen and Willson’s approach. However, on
 frames with complex motion, we have seen dramatic improvements in
 visual quality and motion field smoothness by properly accounting for
 all rate changes. This is because a level 0 MV, for example, may be
 used to predict up to 24 other MVs, only 8 of which lie on a given DP
 path. In a dense mesh, the rate changes off the path may dominate
 the ones on it.

3.3.2. Complexity Reduction

 Chen and Willson showed that using a logarithmic search instead of an
 exhaustive one for the DP resulted in an average PSNR loss of only
 0.05 dB and an average MV bitrate increase of 55 bits per frame. We
 take an even more aggressive approach, and replace the logarithmic
 search with a diamond search. Because the complexity of a given DP
 chain increases quadratically in the number of MV candidates at each
 node, reducing the candidate count can give a substantial performance
 boost.

Terriberry Expires January 7, 2016 [Page 13]

Internet-Draft Coding Tools July 2015

 The logarithmic search uses a 9-candidate square pattern in each
 stage. The displacements used in the pattern shrink by a factor of
 two in each phase. Chen and Willson used a 3-phase search to achieve
 an effective search radius of +/- 7x7 pixels. In our framework, this
 requires examining 3x9**2 = 243 trellis edges per MV for one full
 iteration. However, the large displacement patterns only alter a
 small number of MVs that have usually been grossly mis-estimated.
 They are even likely to cause further mis-estimation in areas with
 repeated structure or lack of texture, which makes further refinement
 less effective.

 One alternative is to simply discard them, and only perform the
 square pattern search with one-pixel displacements. The chance of
 being trapped in a local minimum is increased, but three times as
 many iterations can be performed in the same amount of time. On the
 other hand, a small diamond search pattern has only 5 candidates,
 making it even more attractive. This allows more than nine times as
 many iterations as the full logarithmic search in the same amount of
 time. We support using the diamond search pattern, the square search
 pattern, and the square search pattern with logarithmic step sizes
 with various complexity settings, but by default run with only the
 diamond pattern with a single step size. The logarithmic square
 pattern search saves between 0.6% and 1.2% rate on metrics, but adds
 50% to the total encode time.

 The computational complexity of this iterative refinement is still
 relatively high. In a single iteration, each of the four edges of a
 block are traversed exactly once by a DP path, during which its SAD
 is evaluted 25 times, for a total of 100 SAD calculations per block.
 This is nearly as many as full search BMA with a +/- 6x6 window, and
 computing our blended predictors already has higher complexity. Thus
 it is not suitable for a real-time implementation, but it can easily
 be disabled, or even lighter-weight versions designed.

3.3.3. Subpel Refinement

 The same samll diamond-pattern search can be used to refine the
 motion vectors to subpel precision. A square pattern is also
 supported at the highest complexity level, and saves an additional
 0.5% to 0.7% on bitrate, but is half the speed of the default
 settings. Our implementation supports half-, quarter-, or eigth-pel
 resolution MVs. First, the DP process is iterated with the small
 diamond and half-pel displacements until the change in Lagrangian
 cost, J, for an iteration falls below a given threshold.

 Finer resolutions are only used if they provide an overall R-D
 benefit, which is tested on a frame-by-frame basis. First, iteration
 is done with quarter-pel displacements, followed, if successful, by

Terriberry Expires January 7, 2016 [Page 14]

Internet-Draft Coding Tools July 2015

 eigth-pel. If the decrease in SAD from the finer resolution MVs
 cannot balance the (approximately) 2 bit per MV increase in bitrate,
 then the coarser vectors are used instead.

 Subpel interpolation is performed using a separable 6-tap polyphase
 filter bank. Only eight filters are currently used, one for each
 subpel offset at eigth-pel resolution. If chroma is decimated (for
 4:2:0 video) and eigth-pel MVs are used, then the MV is divided by
 two and rounded to the nearest even value to select an appropriate
 subpel filter.

4. References

4.1. Informative References

 [I-D.egge-videocodec-tdlt]
 Egge, N. and T. Terriberry, "Time Domain Lapped Transforms
 for Video Coding", draft-egge-videocodec-tdlt-01 (work in
 progress), March 2015.

 [I-D.terriberry-netvc-codingtools]
 Terriberry, T., "Coding Tools for a Next Generation Video
 Codec", draft-terriberry-netvc-codingtools-00 (work in
 progress), June 2015.

 [I-D.valin-netvc-pvq]
 Valin, J., "Pyramid Vector Quantization for Video Coding",
 draft-valin-netvc-pvq-00 (work in progress), June 2015.

 [AS94] Agarwal, P. and S. Suri, "Surface Approximation and
 Geometric Partitions", Proc. of the 5th ACM-SIAM Symposium
 on Discrete Algorithms (SODA’94) pp. 24--33, January 1994.

 [Bal01] Balmelli, L., "Rate-Distortion Optimal Mesh Simplification
 for Communications", PhD thesis, Ecole Polytechnique
 Federale de Lausanne, Switzerland, 2001.

 [CW00] Chen, M. and A. Willson, "Motion-Vector Optimization of
 Control Grid Interpolation and Overlapped Block Motion
 Compensation Using Iterated Dynamic Programming", IEEE
 Transactions on Image Processing 9(7):1145--1157, July
 2000.

 [For73] Forney, G., "The Viterbi Algorithm", Proceedings of the
 IEEE 61(3):268--278, March 1973.

Terriberry Expires January 7, 2016 [Page 15]

Internet-Draft Coding Tools July 2015

 [KO95] Katto, J. and M. Ohta, "An Analytical Framework for
 Overlapped Motion Compensation", Proc. of the
 International Conference on Acoustics, Speech, and Signal
 Processing (ICASSP’95) vol. 4, pp. 2189--2192, May 1995.

 [KK97] Kuo, T. and C. Kuo, "A Hybrid BMC/OBMC Motion Compensation
 Scheme", Proc. of the International Conference on Image
 Processing (ICIP’97) vol. 2, pp. 795--798, October 1997.

 [Lee95] Lee, J., "Optimal Quadtree for Variable Block Size Motion
 Estimation", Proc. of the IEEE International Conference on
 Image Processing vol. 3, pp. 480--483, October 1995.

 [VG00] Velho, L. and J. Gomes, "Variable Resolution 4-k Meshes:
 Concepts and Applications", Computer Graphics Forum
 19(4):195--212, December 2000.

 [ZAS98] Zhang, J., Ahamd, M., and M. Swamy, "New Windowing
 Techinques for Variable-Size Block Motion Compensation",
 IEE Proceedings---Vision, Image, and Signal Processing
 145(6):399--407, December 1998.

 [ZSNKI02] Zhen, W., Shishikui, Y., Naemure, M., Kanatsugu, Y., and
 S. Itoh, "Analysis of Space-Dependent Characteristics of
 Motion-Compensated Frame Differences Based on a
 Statistical Motion Distribution Model", IEEE Transactions
 on Image Processing 11(4):377--386, April 2002.

 [Daala-website]
 "Daala website", Xiph.Org Foundation , <https://xiph.org/
 daala/>.

4.2. URIs

 [1] https://git.xiph.org/daala.git

Author’s Address

 Timothy B. Terriberry
 Mozilla Corporation
 331 E. Evelyn Avenue
 Mountain View, CA 94041
 USA

 Phone: +1 650 903-0800
 Email: tterribe@xiph.org

Terriberry Expires January 7, 2016 [Page 16]

