
TRAM P. Martinsen
Internet-Draft D. Wing
Intended status: Standards Track Cisco
Expires: December 3, 2015 June 1, 2015

 STUN Traceroute
 draft-martinsen-tram-stuntrace-01

Abstract

 After a UDP protocol such as RTP determines a network path is
 experiencing problems, a traceroute is often useful to determine
 which router or which link is contributing to the problem. However,
 operating system traceroute commands follow a different path than the
 actual UDP flow which complicates troubleshooting. A superior method
 is shown which is absolutely path-congruent with the UDP protocol
 itself, works on IPv4 and IPv6, and does not require administrative
 privileges on most operating systems.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 3, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Martinsen & Wing Expires December 3, 2015 [Page 1]

Internet-Draft stun trace June 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Notational Conventions 3
 3. Overview of Operation . 3
 4. New STUN Attributes . 5
 4.1. PATH-NODE-PROBE . 5
 5. Base Protocol Procedures 5
 5.1. Forming STUN Packet Probes 5
 5.2. Receiving a STUN Packet Probe 6
 5.3. Receiving ICMP Messages 6
 6. IPv4 and IPv6 Differences 7
 7. IANA Considerations . 7
 8. Security Considerations 7
 9. Acknowledgements . 7
 10. References . 7
 10.1. Normative References 7
 10.2. Informative References 8
 Appendix A. Platform Implementation Details 9
 A.1. Setting TTL or HOP_LIMIT on Probes 9
 A.2. Receiving ICMP Messages 9
 A.2.1. OS-X and iOS . 9
 A.2.2. Linux and Android 10
 A.2.3. Windows . 11
 Authors’ Addresses . 11

1. Introduction

 Traceroute [RFC1393] is a simple tool available on most operating
 systems and is popular to debug the network by simply getting round-
 trip time along each hop to a remote IP address. More advanced
 tools, such as MTR, provide more metrics such as packet loss and
 round trip time to each hop over several seconds or minutes.

 To simplify network debugging when dealing with bi-directional real
 time media it is often useful to get as much information as possible
 regarding the network path. In this specification probe packets are
 sent using the same 5-tuple where (S)RTP media is flowing. This will
 provide the most accurate results, as probe packets sent on a
 different 5-tuple may take another path due to Equal-Cost Multipath
 (ECMP, [RFC2992]), policy-based routing, and similar techniques.

 To avoid those problems, the probe packets need to be sent from the
 same socket and with the same DiffServ code point the normal (S)RTP

Martinsen & Wing Expires December 3, 2015 [Page 2]

Internet-Draft stun trace June 2015

 media packets. As shown in Appendix A, most operating systems can
 pass the ICMP "Time to Live Exceeded" error to the application, so
 the application can perform the diagnostics over that network path.

 This specifications uses STUN [RFC5389] packets as probes. STUN
 packets are designed to be multiplexed together with RTP [RFC3550]
 (and SRTP [RFC3711]) and are unlikely to cause any "problems" for the
 (S)RTP receiver. To differentiate each hop count, classic traceroute
 uses different UDP port numbers (e.g., TTL=1 uses UDP port 55001,
 TTL=2 uses UDP port 55002, etc.). The mechanism described here uses
 the same UDP port number (so that the trace is path-congruent with
 the (S)RTP packets), and uses different length UDP packets to
 differentiate each hop count (e.g., TTL=1 uses length 501, TTL=2 uses
 length 502, etc.).

 Using a technique based on ICMP replies avoids a forklift upgrade of
 the network to provide host applications with useful information.
 ICMP is already supported in most network and application stacks.

 Additional network characteristics like MTU and bandwidth
 availability can be discovered by using
 [I-D.petithuguenin-behave-stun-pmtud] and
 [I-D.martinsen-tram-turnbandwidthprobe].

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Overview of Operation

 An application using (S)RTP to send and receive media like audio and
 video following the guidelines in [RFC4961] uses symmetric send and
 receive ports. The application opens one socket that it uses to both
 send and receive media on.

 It is important to note that the functionality described here can be
 done on most OSes without any administrative privileges.

 Figure 1 depicts the various components needed for this to work. The
 application opens up its media socket as it would in normal cases
 where media is to be sent and received. It also opens up a ICMP
 socket or installs an error listener on the media socket.

Martinsen & Wing Expires December 3, 2015 [Page 3]

Internet-Draft stun trace June 2015

 POLL/ Network Node Network Node
 SELECT
 +-----+ | | |
 | A |* ICMP +++ /+\++++++++++++|++++ <ICMP Reply> | | |
 | L | SOCKET | | | ++++++++++++ |
 | I | | | | + |
 | C |* MEDIA ==|===|===========|=================+|====<(S)RTP>
 | E | SOCKET --\-/------------|------------------X <STUN Probe>
 +-----+ | | |(TTL expired)

 ====== Media Path
 ------ STUN Probes (on same 5 tuple as Media)
 ++++++ ICMP reply

 Figure 1

 The application also need to listen on the sockets for any incoming
 ICMP packets or socket error messages. This is usually done with the
 socket calls select() or poll(). How to actually receive the ICMP
 messages will vary from OS to OS. See Appendix A for implementation
 details on various OSes.

 Once the application have media running and is listening for ICMP
 replies it can start sending probes to detect networks nodes in the
 media path. This is done by sending STUN messages and setting the
 TTL/MAX_HOP limit in the IPv4/IPv6 header. Appendix A.1 explains how
 to set this on various platforms.

 The STUN packet is sent on the same socket as the media packet are
 sent and received on. Mixing (S)RTP and STUN is well known behavior
 and should not cause any problems.

 Along the path, every layer 3 network node (a.k.a. router) decreases
 the IPv4 TTL or IPv6 HOP_LIMIT field. If the field becomes 0 the
 network node responds with a ICMP error "Time to Live Exceeded" (TTL
 Exceeded) or "Hop Limit Exceeded in Transit" (Time Exceeded Message).

 The application will receive a ICMP error in response to the
 offending probe packet. The source IP address of the ICMP packet
 will be the sending network node. This enables the application to
 trace the path towards the destination. The ICMP reply contains at
 least 8 bytes of the offending packet. The IP fragment of the
 offending packet in the ICMP reply can be used to determining if this
 ICMP reply actually was a reply to an offending packet the
 application did send out.

Martinsen & Wing Expires December 3, 2015 [Page 4]

Internet-Draft stun trace June 2015

4. New STUN Attributes

 This STUN extension defines the following new attribute:

 0xXXX0: PATH-NODE-PROBE

4.1. PATH-NODE-PROBE

 This attribute have a length of 8. Padding is needed to hit the
 required STUN 32 bit STUN attribute boundary.

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | HOP |
 +-+-+-+-+-+-+-+-+

 Figure 2: PATH-NODE-PROBE Attribute

 The HOP field indicates what hop in the network path (relative to the
 application) the application is trying to learn the IP address of.
 This field should be set to the same value as the TTL/HOP_LIMIT field
 in the IPv4/IPv6 header of the probe packet leaving the application.
 Note that the TTL/HOP_LIMIT field in the IPv4/IPv6 header will
 decrease as the packet traverses the path. The HOP field in the
 attribute will remain unchanged.

 This attribute is useful for clients when receiving the whole
 offending IP packet in the ICMP reply. The attribute will be
 reflected back in a STUN response if the remote application supports
 is. This makes it easier to correlate sent probe packets and ICMP
 responses.

5. Base Protocol Procedures

 The procedures are simple; send a probe packet that may or may not
 trigger a reply from one of the nodes in the network path and then
 listen and parse any incoming replies. The reply might be an ICMP
 Time To Live Exceeded (from an intermediate hop), a STUN response
 (from the (S)RTP peer), or any other ICMP error message.

5.1. Forming STUN Packet Probes

 To reduce chances of a STUN traceroute probe being stopped by various
 middle-boxes it is RECOMMENDED to use a STUN binding request as
 described in ICE [RFC5245].

Martinsen & Wing Expires December 3, 2015 [Page 5]

Internet-Draft stun trace June 2015

 Since the STUN packet can traverse the whole media-path and reach the
 remote peer it is RECOMMENDED the agent follows the guidelines for
 sending connectivity checks defined in ICE [RFC5245]. Adding a
 USERNAME attribute and integrity protecting the STUN message enables
 the remote peer to authenticate the STUN message and create an
 appropriate response. If the remote peer is unable to authenticate
 the STUN request it will not send any response. Getting a response
 from the remote peer is useful as it is an indication the probe have
 traveled the whole network path.

 When forming the STUN packet probe the agent SHOULD add the PATH-
 NODE-PROBE attribute and MAY add a PADDING attribute as described in
 [RFC5780] Section 7.6. The PATH-NODE-PROBE attribute is useful for
 STUN servers receiving the STUN probe and it can be used to correlate
 any ICMP replies if the reply contains the complete offending packet.
 Adding the PADDING attribute is useful for clients that needs to have
 several outstanding probe packets on the same 5-tuple. The length of
 the offending packet reported back in any ICMP reply will make it
 possible to correlate this to the correct probe.

 The agent sending the STUN packet probe MUST store the length of the
 UDP packet (as reported in the IP header) containing the STUN probe.

 Before sending the probe on the wire it is important to set the
 appropriate TTL or HOP_LIMIT field in the IPv4 or IPv6 header before
 the packet is sent. How to do this on various OSes are described in
 Appendix A.1.

 The probe MUST also be sent with the same DSCP value as the (S)RTP
 packets. This is normally not a problem as the STUN probes and
 (S)RTP packets are sent on the same socket.

5.2. Receiving a STUN Packet Probe

 An agent that listens for STUN requests (a.k.a STUN server) that
 receives a STUN request with a PATH-NODE-PROBE attribute, MUST
 include a PATH-NODE-PROBE attribute with the same value in the
 generated response.

 Any PADDING attributes as defined in [RFC5780] SHOULD be ignored by
 the STUN server.

5.3. Receiving ICMP Messages

 After an agent sends a STUN probe it must be ready to receive a ICMP
 reply or a STUN reply. Details on how to do this on various OSes are
 described in Appendix A.2.

Martinsen & Wing Expires December 3, 2015 [Page 6]

Internet-Draft stun trace June 2015

 To prevent ICMP spoofing attacks [RFC5927] , the received ICMP packet
 MUST be validated by port number and length in the IP fragment of the
 offending packet contained in the ICMP payload. Port number
 validation checks that the port number in the offending IP fragment
 of the probe packet contained in the ICMP payload corresponds to the
 (S)RTP media (and STUN probe) 5-tuple. The length validation checks
 IP packet length field in the IP fragment of the offending packet
 received in the ICMP reply. This value MUST correspond to any length
 stored when the agent sent the STUN probe. If the agent uses the
 PADDING (Defined in [RFC5780]) attribute to generate different length
 on the STUN probes it is possible to have several outstanding probes,
 thus speeding up the trace.

6. IPv4 and IPv6 Differences

 Core functionality is the same. In IPv6 the IPv4 TTL field is
 renamed to HOP_LIMIT to better reflect what it actually represent.

7. IANA Considerations

 The code-point for the new STUN attribute defined in this
 specification is described in Section 4.

8. Security Considerations

 ICMP messages does leak network topology, which is a well-known
 threat to networks and mitigations have long existed in routers and
 firewalls so that networks can be configured to not leak this
 topology information beyond their borders.

 ICMP spoofing and DOS attack prevention exist in routers deployed on
 the Internet today.

 No new threats have been added in this specification.

9. Acknowledgements

 Trond Andersen for actually implementing this and Wilson Chen for
 helping out with different OS behavior testing.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Martinsen & Wing Expires December 3, 2015 [Page 7]

Internet-Draft stun trace June 2015

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, March 2004.

 [RFC4961] Wing, D., "Symmetric RTP / RTP Control Protocol (RTCP)",
 BCP 131, RFC 4961, July 2007.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, April
 2010.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5780] MacDonald, D. and B. Lowekamp, "NAT Behavior Discovery
 Using Session Traversal Utilities for NAT (STUN)", RFC
 5780, May 2010.

10.2. Informative References

 [I-D.martinsen-tram-turnbandwidthprobe]
 Martinsen, P., Andersen, T., Salgueiro, G., and M. Petit-
 Huguenin, "Traversal Using Relays around NAT (TURN)
 Bandwidth Probe", draft-martinsen-tram-
 turnbandwidthprobe-00 (work in progress), May 2015.

 [I-D.petithuguenin-behave-stun-pmtud]
 Petit-Huguenin, M., "Path MTU Discovery Using Session
 Traversal Utilities for NAT (STUN)", draft-petithuguenin-
 behave-stun-pmtud-03 (work in progress), March 2009.

 [ICMPTest]
 "ICMP test github repo", <https://github.com/palerikm/
 ICMPTest/>.

 [RFC1393] Malkin, G., "Traceroute Using an IP Option", RFC 1393,
 January 1993.

 [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, November 2000.

 [RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.

Martinsen & Wing Expires December 3, 2015 [Page 8]

Internet-Draft stun trace June 2015

Appendix A. Platform Implementation Details

 This section provides examples and hint on how probe packets can be
 sent and ICMP messages received on various OSes. For a complete
 example please refer to [ICMPTest].

A.1. Setting TTL or HOP_LIMIT on Probes

 Setting the appropriate value in the IPv4 or IPv6 header is the same
 for most platforms. Use

 setsockopt(sockHandle, IPPROTO_IP, IP_TTL, &sock_ttl,
 sizeof(sock_ttl));

 for IPv4 or

 setsockopt(sockHandle,
 IPPROTO_IPV6, IPV6_UNICAST_HOPS, &sock_ttl,
 sizeof(sock_ttl));

 for IPv6.

 Sending the probes on the same socket as media is flowing requires
 the implementations to only set this when sending the probe packet.
 Remember to set it back to initial value when sending media. Most
 OSes seems to handle the setsockopt call correctly and not set the
 value in the IP header of any buffered packets.

A.2. Receiving ICMP Messages

A.2.1. OS-X and iOS

 Creating a socket to listen for incoming ICMP messages can be done
 as:

 icmpSocket=socket(config.remoteAddr.ss_family, SOCK_DGRAM,
 IPPROTO_ICMP); <<<

 This is done in addition to the normal socket used to send media on
 (RTP) and probes. (Yes, even if the probe are sent on the media
 socket the ICMP reply will be on the ICMP sockets..)

 Code in the while(1) loop of poll would look something like:

Martinsen & Wing Expires December 3, 2015 [Page 9]

Internet-Draft stun trace June 2015

 for(i=0;i<numSockets;i++){
 if (ufds[i].revents & POLLIN) {
 if(i == rtpSock){
 //Handle "normal" data here.
 }
 if(i == icmpSock){//This is the ICMP socket
 //Handle ICMP packets here.
 }
 }
 }

A.2.2. Linux and Android

 For unprivileged recipient of the ICMP messages an error handler must
 be installed. This can be done like:

 setsockopt (config.sockfd, SOL_IP,
 IP_RECVERR, &val, sizeof(val)) < 0);

 In the poll() section of the code something like this needs to be
 there:

 struct msghdr msg;

 if (ufds[dataSock].revents & POLLERR) {
 if (recvmsg(sockfd, &msg, MSG_ERRQUEUE) == -1) {
 //Ignore for now. Will get it later..
 continue;
 }
 //possible ICMP message
 //use cmsg to read the structures in msg
 }

 Failing to call rcvmsg seems to let the msg fall through to the
 kernel. Looks like it will close down the socket because of the
 received error. So be careful!

 For application with the right administrative privileges it is
 possible create a separate ICMP listen socket as described in the
 previous section. The socket() call would then look like:

 icmpSocket=socket(config.remoteAddr.ss_family, SOCK_RAW,
 IPPROTO_ICMP);

 The poll() loop will be as described for OS-X and iOS. No need for a
 error handler.

Martinsen & Wing Expires December 3, 2015 [Page 10]

Internet-Draft stun trace June 2015

A.2.3. Windows

 The following code in select() or poll() will read and detect any
 incoming ICMP messages on the send socket.

 if (FD_ISSET(sendsocket, &read_flags)) {
 cc = recvfrom(sendsocket, receivepacket,
 sizeof(receivepacket), 0,
 (struct sockaddr *)&receiveaddr, (int*)&fromlen);
 if (cc < 0 && GETERRORCODE == WSAENETRESET) {
 //ICMP packet handling here
 //Do:
 //inet_ntoa(receiveaddr.sin_addr));
 //to get the address of the router sending the
 //ICMP reply
 }
 }

Authors’ Addresses

 Paal-Erik Martinsen
 Cisco Systems, Inc.
 Philip Pedersens Vei 22
 Lysaker, Akershus 1325
 Norway

 Email: palmarti@cisco.com

 Dan Wing
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, California 95134
 USA

 Email: dwing@cisco.com

Martinsen & Wing Expires December 3, 2015 [Page 11]

