
Label Generation Rules (lager) K. Davies
Internet-Draft ICANN
Intended status: Standards Track A. Freytag
Expires: November 24, 2016 ASMUS Inc.
 May 23, 2016

 Representing Label Generation Rulesets using XML
 draft-ietf-lager-specification-13

Abstract

 This document describes a method of representing rules for validating
 identifier labels and alternate representations of those labels using
 Extensible Markup Language (XML). These policies, known as "Label
 Generation Rulesets" (LGRs), are used for the implementation of
 Internationalized Domain Names (IDNs), for example. The rulesets are
 used to implement and share that aspect of policy defining which
 labels and Unicode code points are permitted for registrations, which
 alternative code points are considered variants, and what actions may
 be performed on labels containing those variants.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 24, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Davies & Freytag Expires November 24, 2016 [Page 1]

Internet-Draft Label Generation Rulesets in XML May 2016

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Design Goals . 5
 3. Normative Language . 6
 4. LGR Format . 6
 4.1. Namespace . 6
 4.2. Basic Structure . 6
 4.3. Metadata . 7
 4.3.1. The version Element 8
 4.3.2. The date Element 8
 4.3.3. The language Element 8
 4.3.4. The scope Element 9
 4.3.5. The description Element 10
 4.3.6. The validity-start and validity-end Elements 10
 4.3.7. The unicode-version Element 10
 4.3.8. The references Element 11
 5. Code Points and Variants 12
 5.1. Sequences . 13
 5.2. Conditional Contexts 14
 5.3. Variants . 15
 5.3.1. Basic Variants 15
 5.3.2. The type attribute 16
 5.3.3. Null Variants . 17
 5.3.4. Variants with Reflexive Mapping 18
 5.3.5. Conditional Variants 19
 5.4. Annotations . 21
 5.4.1. The ref Attribute 21
 5.4.2. The comment Attribute 21
 5.5. Code Point Tagging 22
 6. Whole Label and Context Evaluation 22
 6.1. Basic Concepts . 22
 6.2. Character Classes . 23
 6.2.1. Declaring and Invoking Named Classes 24
 6.2.2. Tag-based Classes 24
 6.2.3. Unicode Property-based Classes 25
 6.2.4. Explicitly Declared Classes 26
 6.2.5. Combined Classes 27
 6.3. Whole Label and Context Rules 28
 6.3.1. The rule Element 29
 6.3.2. The Match Operators 29
 6.3.3. The count Attribute 30

Davies & Freytag Expires November 24, 2016 [Page 2]

Internet-Draft Label Generation Rulesets in XML May 2016

 6.3.4. The name and by-ref Attributes 31
 6.3.5. The choice Element 32
 6.3.6. Literal Code Point Sequences 32
 6.3.7. The any Element 33
 6.3.8. The start and end Elements 33
 6.3.9. Example context rule from IDNA specification 34
 6.4. Parameterized Context or When Rules 34
 6.4.1. The anchor Element 35
 6.4.2. The look-behind and look-ahead Elements 36
 6.4.3. Omitting the anchor Element 37
 7. The action Element . 37
 7.1. The match and not-match Attributes 38
 7.2. Actions with Variant Type Triggers 38
 7.2.1. The all-, any- and only-variants Attributes 39
 7.2.2. Example from RFC 3743 Tables 41
 7.3. Recommended Disposition Values 42
 7.4. Precedence . 42
 7.5. Implied Actions . 43
 7.6. Default Actions . 43
 8. Processing a Label against an LGR 44
 8.1. Determining Eligibility for a Label 44
 8.1.1. Determining Eligibility using Reflexive Variant
 Mappings . 45
 8.2. Determining Variants for a Label 45
 8.3. Determining a Disposition for a Label or Variant Label . 46
 8.4. Duplicate Variant Labels 47
 8.5. Checking Labels for Collision 48
 9. Conversion to and from Other Formats 48
 10. Media Type . 49
 11. IANA Considerations . 49
 11.1. Media Type Registration 49
 11.2. URN Registration . 50
 11.3. Disposition Registry 50
 12. Security Considerations 51
 12.1. LGRs Are Only a Partial Remedy for Problem Space 51
 12.2. Computational Expense of Complex Tables 52
 13. References . 52
 13.1. Normative References 52
 13.2. Informative References 53
 Appendix A. Example Tables 54
 Appendix B. How to Translate RFC 3743 based Tables into the XML
 Format . 58
 Appendix C. Indic Syllable Structure Example 63
 Appendix D. RelaxNG Compact Schema 65
 Appendix E. Acknowledgements 75
 Appendix F. Change History 75
 Authors’ Addresses . 78

Davies & Freytag Expires November 24, 2016 [Page 3]

Internet-Draft Label Generation Rulesets in XML May 2016

1. Introduction

 This document specifies a method of using Extensible Markup Language
 (XML) to describe Label Generation Rulesets (LGRs). LGRs are
 algorithms used to determine whether, and under what conditions, a
 given identifier label is permitted, based on the code points it
 contains and their context. These algorithms comprise a list of
 permissible code points, variant code point mappings, and a set of
 rules that act on the code points and mappings. LGRs form part of an
 administrator’s policies. In deploying internationalized domain
 names (IDNs), they have also been known as IDN tables or variant
 tables.

 There are other kinds of policies relating to labels which are not
 normally covered by Label Generation Rulesets and are therefore not
 necessarily representable by the XML format described here. These
 include, but are not limited to policies around trademarks, or
 prohibition of fraudulent or objectionable words.

 Administrators of the zones for top-level domain registries have
 historically published their LGRs using ASCII text or HTML. The
 formatting of these documents has been loosely based on the format
 used for the Language Variant Table described in [RFC3743].
 [RFC4290] also provides a "model table format" that describes a
 similar set of functionality. Common to these formats is that the
 algorithms used to evaluate the data therein are implicit or
 specified elsewhere.

 Through the first decade of IDN deployment, experience has shown that
 LGRs derived from these formats are difficult to consistently
 implement and compare due to their differing formats. A universal
 format, such as one using a structured XML format, will assist by
 improving machine-readability, consistency, reusability and
 maintainability of LGRs.

 When used to represent simple list of permitted code points, the
 format is quite straightforward. At the cost of some complexity in
 the resulting file, it also allows for an implementation of more
 sophisticated handling of conditional variants that reflects the
 known requirements of current zone administrator policies.

 Another feature of this format is that it allows many of the
 algorithms to be made explicit and machine implementable. A
 remaining small set of implicit algorithms is described in this
 document to allow commonality in implementation.

 While the predominant usage of this specification is to represent IDN
 label policy, the format is not limited to IDN usage and may also be

Davies & Freytag Expires November 24, 2016 [Page 4]

Internet-Draft Label Generation Rulesets in XML May 2016

 used for describing ASCII domain name label rulesets, or other types
 of identifier labels beyond those used for domain names.

2. Design Goals

 The following goals informed the design of this format:

 o The format needs to be implementable in a reasonably
 straightforward manner in software.

 o The format should be able to be automatically checked for
 formatting errors, so that common mistakes can be caught.

 o An LGR needs to be able to express the set of valid code points
 that are allowed for registration under a specific administrator’s
 policies.

 o An LGR needs to be able to express computed alternatives to a
 given identifier based on mapping relationships between code
 points, whether one-to-one or many-to-many. These computed
 alternatives are commonly known as "variants".

 o Variant code points should be able to be tagged with explicit
 dispositions or categories that can be used to support registry
 policy (such as whether to allocate the computed variant, or to
 merely block it from usage or registration).

 o Variants and code points must be able to be stipulated based on
 contextual information. For example, some variants may only be
 applicable when they follow a certain code point, or when the code
 point is displayed in a specific presentation form.

 o The data contained within an LGR must be able to be interpreted
 unambiguously, so that independent implementations that utilize
 the contents will arrive at the same results.

 o To the largest extent possible, policy rules should be able to be
 specified in the XML format without relying on hidden, or built-in
 algorithms in implementations.

 o LGRs should be suitable for comparison and re-use, such that one
 could easily compare the contents of two or more to see the
 differences, to merge them, and so on.

 o As many existing IDN tables as practicable should be able to be
 migrated to the LGR format with all applicable interpretation
 logic retained.

Davies & Freytag Expires November 24, 2016 [Page 5]

Internet-Draft Label Generation Rulesets in XML May 2016

 These requirements are partly derived from reviewing the existing
 corpus of published IDN tables, plus the requirements of ICANN’s work
 to implement an LGR for the DNS Root Zone [LGR-PROCEDURE]. In
 particular, Section B of that document identifies five specific
 requirements for an LGR methodology.

 The syntax and rules in [RFC5892] and [RFC3743] were also reviewed.

 It is explicitly not the goal of this format to stipulate what code
 points should be listed in an LGR by a zone administrator. Which
 registration policies are used for a particular zone is outside the
 scope of this memo.

3. Normative Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

4. LGR Format

 An LGR is expressed as a well-formed XML Document [XML] that conforms
 to the schema defined in Appendix D.

 As XML is case-sensitive, an LGR must be authored with the correct
 casing. For example, the XML element names MUST be in lower case as
 described in this specification, and matching of attribute values, is
 only performed in a case-sensitive manner.

 A document that is not well-formed, non-conforming or violates other
 constraints specified in this specification MUST be rejected.

4.1. Namespace

 The XML Namespace URI is "urn:ietf:params:xml:ns:lgr-1.0".

 See Section 11.2 for more information.

4.2. Basic Structure

 The basic XML framework of the document is as follows:

 <?xml version="1.0"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 ...
 </lgr>

Davies & Freytag Expires November 24, 2016 [Page 6]

Internet-Draft Label Generation Rulesets in XML May 2016

 The "lgr" element contains up to three sub-elements. First is an
 optional "meta" element that contains all meta-data associated with
 the LGR, such as its authorship, what it is used for, implementation
 notes and references. This is followed by a required "data" element
 that contains the substantive code point data. Finally, an optional
 "rules" element contains information on contextual and whole-label
 evaluation rules, if any, along with "action" elements providing for
 the disposition of labels and computed variant labels.

 <?xml version="1.0"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <meta>
 ...
 </meta>
 <data>
 ...
 </data>
 <rules>
 ...
 </rules>
 </lgr>

 A document MUST contain exactly one "lgr" element. Each "lgr"
 element MUST contain zero or one "meta" element, exactly one "data"
 element, and zero or one "rules" element; and these three elements
 MUST be in that order.

 Some elements that are direct or nested child elements of the "rules"
 element MUST be placed in a specific relative order to other elements
 for the LGR to be valid. An LGR that violates these constraints MUST
 be rejected. In other cases, changing the ordering would result in a
 valid, but different specification.

 In the following descriptions, required, non-repeating elements or
 attributes are generally not called out explicitly, in contrast to
 "OPTIONAL" ones, or those that "MAY" be repeated. For attributes
 that take lists as values, the elements MUST be space-separated.

4.3. Metadata

 The "meta" element expresses metadata associated with the LGR, and
 the element SHOULD be included so that the associated metadata are
 available as part of the LGR and cannot become disassociated. The
 following subsections describe elements that may appear within the
 "meta" element.

 The "meta" element can be used to identify the author or relevant
 contact person, explain the intended usage of the LGR, and provide

Davies & Freytag Expires November 24, 2016 [Page 7]

Internet-Draft Label Generation Rulesets in XML May 2016

 implementation notes as well as references. Detailed metadata allow
 the LGR document to become self-documenting, for example if rendered
 in a human readable format by an appropriate tool.

 Providing metadata pertaining to the date and version of the LGR is
 particularly encouraged to make it easier for interoperating
 consumers to ensure that they are using the correct LGR.

 With the exception of "unicode-version" element, the data contained
 within is not required by software consuming the LGR in order to
 calculate valid labels, or to calculate variants. If present, the
 "unicode-version" element MUST be used by a consumer of the table to
 identify that it has the correct Unicode property data to perform
 operations on the table. This ensures that possible differences in
 code point properties between editions of the Unicode standard do not
 impact the product of calculations utilizing an LGR.

4.3.1. The version Element

 The "version" element is OPTIONAL. It is used to uniquely identify
 each version of the LGR. No specific format is required, but it is
 RECOMMENDED that it be the decimal representation of a single
 positive integer, which is incremented with each revision of the
 file.

 An example of a typical first edition of a document:

 <version>1</version>

 The "version" element may have an OPTIONAL "comment" attribute.

 <version comment="draft">1</version>

4.3.2. The date Element

 The OPTIONAL "date" element is used to identify the date the LGR was
 posted. The contents of this element MUST be a valid ISO 8601 "full-
 date" string as described in [RFC3339].

 Example of a date:

 <date>2009-11-01</date>

4.3.3. The language Element

 Each OPTIONAL "language" element identifies a language or script for
 which the LGR is intended. The value of the "language" element MUST
 be a valid language tag as described in [RFC5646]. The tag may refer

Davies & Freytag Expires November 24, 2016 [Page 8]

Internet-Draft Label Generation Rulesets in XML May 2016

 to a script plus undefined language if the LGR is not intended for a
 specific language.

 Example of an LGR for the English language:

 <language>en</language>

 If the LGR applies to a script, rather than a specific language, the
 "und" language tag SHOULD be used followed by the relevant [RFC5646]
 script subtag. For example, for a Cyrillic script LGR:

 <language>und-Cyrl</language>

 If the LGR covers a set of multiple languages or scripts, the
 "language" element MAY be repeated. However, for cases of a script-
 specific LGR exhibiting insignificant admixture of code points from
 other scripts, it is RECOMMENDED to use a single "language" element
 identifying the predominant script. In the exceptional case of a
 multi-script LGR where no script is predominant, use Zyyy (Common):

 <language>und-Zyyy</language>

4.3.4. The scope Element

 This OPTIONAL element refers to a scope, such as a domain, to which
 this policy is applied. The "type" attribute specifies the type of
 scope being defined. A type of "domain" means that the scope is a
 domain that represents the apex of the DNS zone to which the LGR is
 applied. For that type, the content of the "scope" element MUST be a
 a domain name written relative to the root zone, in presentation
 format with no trailing dot. However, in the unique case of the DNS
 root zone, it is represented as ".".

 <scope type="domain">example.com</scope>

 There may be multiple "scope" tags used, for example to reflect a
 list of domains to which the LGR is applied.

 No other values of the "type" attribute are defined by this
 specification, however this specification can be used for
 applications other than domain names. Implementers of LGRs for
 applications other than domain names SHOULD define the scope
 extension grammar in an IETF Specification, or use XML Namespaces to
 distinguish their scoping mechanism distinctly from the base LGR
 namespace. An explanation of any custom usage of the scope in the
 "description" element is RECOMMENDED.

Davies & Freytag Expires November 24, 2016 [Page 9]

Internet-Draft Label Generation Rulesets in XML May 2016

 <scope xmlns="http://example.com/ns/scope/1.0">
 ... content per alternate namespace ...
 </scope>

4.3.5. The description Element

 The "description" element is an OPTIONAL, free-form element that
 contains any additional relevant description that is useful for the
 user in its interpretation. Typically, this field contains
 authorship information, as well as additional context on how the LGR
 was formulated and how it applies, such as citations and references
 that apply to the LGR as a whole.

 This field should not be relied upon for providing instructions on
 how to parse or utilize the data contained elsewhere in the
 specification. Authors of tables should expect that software
 applications that parse and use LGRs will not use the description
 field to condition the application of the LGR’s data and rules.

 The element has an OPTIONAL "type" attribute, which refers to the
 internet media type [RFC2045] of the enclosed data. Typical types
 would be "text/plain" or "text/html". The attribute SHOULD be a
 valid media type. If supplied, it will be assumed that the contents
 are of that media type. If the description lacks a type field, it
 will be assumed to be plain text ("text/plain").

4.3.6. The validity-start and validity-end Elements

 The "validity-start" and "validity-end" elements are OPTIONAL
 elements that describe the time period from which the contents of the
 LGR become valid (are used in registry policy), and time when the
 contents of the LGR cease to be used, respectively.

 The dates MUST confirm to the "full-date" format described in section
 5.6 of [RFC3339].

 <validity-start>2014-03-12</validity-start>

4.3.7. The unicode-version Element

 Whenever an LGR depends on character properties from a given version
 of the Unicode standard, the version number used in creating the LGR
 MUST be listed in the form x.y.z, where x, y, and z are positive,
 decimal integers (see [Unicode-Versions]). If any software
 processing the table does not have access to character property data
 of the requisite version, it MUST NOT perform any operations relating
 to whole-label evaluation relying on Unicode character properties
 (Section 6.2.3).

Davies & Freytag Expires November 24, 2016 [Page 10]

Internet-Draft Label Generation Rulesets in XML May 2016

 The value of a given Unicode character property may change between
 versions of the Unicode Character Database [UAX44], unless such
 change has been explicitly disallowed in [Unicode-Stability]. It is
 RECOMMENDED to only reference properties defined as stable or
 immutable. As an alternative to referencing the property, the
 information can be presented explicitly in the LGR.

 <unicode-version>6.2.0</unicode-version>

 It is not necessary to include a "unicode-version" element for LGRs
 that do not make use of Unicode character properties, however, it is
 RECOMMENDED.

4.3.8. The references Element

 A Label Generation Ruleset may define a list of references which are
 used to associate various individual elements in the LGR to one or
 more normative references. A common use for references is to
 annotate that code points belong to an externally defined collection
 or standard, or to give normative references for rules.

 References are specified in an OPTIONAL "references" element,
 containing or more "reference" elements, each with a unique "id"
 attribute. It is RECOMMENDED that the "id" attribute be a zero-based
 integer, however, in addition to digits 0-9, it MAY contain uppercase
 letters A-Z, as well as period, hyphen, colon or underscore. The
 value of each "reference" element SHOULD be the citation of a
 standard, dictionary or other specification in any suitable format.
 In addition to an "id" attribute, a "reference" element MAY have a
 "comment" attribute for an optional free-form annotation.

 <references>
 <reference id="0">The Unicode Consortium. The Unicode
 Standard, Version 8.0.0, (Mountain View, CA: The Unicode
 Consortium, 2015. ISBN 978-1-936213-10-8)
 http://www.unicode.org/versions/Unicode8.0.0/</reference>
 <reference id="1">Big-5: Computer Chinese Glyph and Character
 Code Mapping Table, Technical Report C-26, 1984</reference>
 <reference id="2" comment="synchronized with Unicode 6.1">
 ISO/IEC
 10646:2012 3rd edition</reference>
 ...
 </references>
 ...
 <data>
 <char cp="0620" ref="0 2" />
 ...
 </data>

Davies & Freytag Expires November 24, 2016 [Page 11]

Internet-Draft Label Generation Rulesets in XML May 2016

 A reference is associated with an element by using its id as part of
 an optional "ref" attribute (see Section 5.4.1). The "ref" attribute
 may be used with many kinds of elements in the "data" or "rules"
 sections of the LGR, most notably those defining code points,
 variants and rules. However, a "ref" attribute may not occur on
 certain kinds of elements, including references to named character
 classes or rules. See description of these elements below.

5. Code Points and Variants

 The bulk of a label generation ruleset is a description of which set
 of code points are eligible for a given label. For rulesets that
 perform operations that result in potential variants, the code point-
 level relationships between variants need to also be described.

 The code point data is collected within the "data" element. Within
 this element, a series of "char" and "range" elements describe
 eligible code points, or ranges of code points, respectively.
 Collectively, these are known as the repertoire.

 Discrete permissible code points or code point sequences (see
 Section 5.1) are declared with a "char" element. Here is a minimal
 example declaration for a single code point, with the code point
 value given in the "cp" attribute:

 <char cp="002D"/>

 As described below, a full declaration for a "char" element, whether
 or not it is used for a single code point, or for a sequence (see
 Section 5.1), may have optional child elements defining variants.
 Both the "char" and "range" elements can take a number of optional
 attributes for conditional inclusion, commenting, cross referencing
 and character tagging, as described below.

 Ranges of permissible code points may be declared with a "range"
 element, as in this minimal example:

 <range first-cp="0030" last-cp="0039"/>

 The range is inclusive of the first and last code points. Any
 additional attributes defined for a "range" element act as if applied
 to each code point within. A "range" element has no child elements.

 It is always possible to substitute a list of individually specified
 code points for a range element. The reverse is not necessarily the
 case. Whenever such a substitution is possible, it makes no
 difference in processing the data. Tools reading or writing the LGR

Davies & Freytag Expires November 24, 2016 [Page 12]

Internet-Draft Label Generation Rulesets in XML May 2016

 format are free to aggregate sequences of consecutive code points of
 the same properties into range elements.

 Code points MUST be represented according to the standard Unicode
 convention but without the prefix "U+": they are expressed in
 uppercase hexadecimal, and are zero-padded to a minimum of 4 digits.

 The rationale for not allowing other encoding formats, including
 native Unicode encoding in XML, is explored in [UAX42]. The XML
 conventions used in this format, such as element and attribute names,
 mirror this document where practical and reasonable to do so. It is
 RECOMMENDED to list all "char" elements in ascending order of the
 "cp" attribute. Not doing so makes it unnecessarily difficult for
 authors and reviewers to check for errors, such as duplications, or
 to review and compare against listing of code points in other
 documents and specifications.

 All "char" elements in the data section MUST have distinct "cp"
 attributes. The "range" elements MUST NOT specify code point ranges
 that overlap either another range or any single code point "char"
 elements. An LGR that defines the same code point more than once by
 any combination of "char" or "range" elements MUST be rejected.

5.1. Sequences

 A sequence of two or more code points may be specified in an LGR, for
 example, when defining the source for n:m variant mappings. Another
 use of sequences would be in cases when the exact sequence of code
 points is required to occur in order for the constituent elements to
 be eligible, such as when some code point is only eligible when
 preceded or followed by a certain code point. The following would
 define the eligibility of the MIDDLE DOT (U+00B7) only when both
 preceded and followed by the LATIN SMALL LETTER L (U+006C):

 <char cp="006C 00B7 006C" comment="Catalan middle dot"/>

 All sequences defined this way must be distinct, but sub-sequences
 may be defined. Thus, the sequence defined here may coexist with
 single code point definitions such as:

 <char cp="006C" />

 As an alternative to using sequences to define a required context, a
 "char" or "range" element may specify conditional context using an
 optional "when" attribute as described below in Section 5.2. Using a
 conditional context is more flexible because a context is not limited
 to a specific sequence of code points. In addition, using a context

Davies & Freytag Expires November 24, 2016 [Page 13]

Internet-Draft Label Generation Rulesets in XML May 2016

 allows the choice of specifying either a prohibited or a required
 context.

5.2. Conditional Contexts

 A conditional context is specified by a rule that must be satisfied
 (or alternatively, must not be satisfied) for a code point in a given
 label, often at a particular location in a label.

 To specify a conditional context either a "when" or "not-when"
 attribute may be used. The value of each "when" or "not-when"
 attributes is a whole label or parameterized context rule as
 described below in Section 6.3. The context condition is met when
 the rule specified in the "when" attribute is matched or when the
 rule in the "not-when" attribute fails to match. It is an error to
 reference a rule that is not actually defined in the "rules" element.

 A parameterized context rule (see Section 6.4) defines the context
 immediately surrounding a given code point; unlike a sequence, the
 context is not limited to a specific fixed code point, but for
 example may designate any member of a certain character class or a
 code point that has a certain Unicode character property.

 Given a suitable definition of a parameterized context rule named
 "follows-virama" this example specifies that a ZERO-WIDTH JOINER
 (U+200D) is restricted to immediately follow any of several code
 points classified as virama:

 <char cp="200D" when="follows-virama" />

 For a complete example, see Appendix A.

 In contrast, a whole label rule (see Section 6.3) specifies a
 condition to be met by the entire label, for example that it must
 contain at least one code point from a given script anywhere in the
 label. In the following example, no digit from either range may
 occur in a label that mixes digits from both ranges:

 <data>
 <range first-cp="0660" last-cp="0669" not-when="mixed-digits"
 tag="arabic-indic-digits" />
 <range first-cp="06F0" last-cp="06F9" not-when="mixed-digits"
 tag="extended-arabic-indic-digits" />
 </data>

 (See Section 6.3.9 for an example of the "mixed-digits" rule.)

Davies & Freytag Expires November 24, 2016 [Page 14]

Internet-Draft Label Generation Rulesets in XML May 2016

 The OPTIONAL "when" or "not-when" attributes are mutually exclusive.
 They MAY be applied to both "char" and "range" elements in the "data"
 element, including "char" elements defining sequences of code points,
 as well as to "var" elements (see Section 5.3.5).

 If a label contains one or more code points that fail to satisfy a
 conditional context, the label is invalid, see Section 7.5. For
 variants, the conditional context restricts the definition of the
 variant to the case where the condition is met. Outside the
 specified context, a variant is not defined.

5.3. Variants

 Most LGRs typically only determine simple code point eligibility, and
 for them, the elements described so far would be the only ones
 required for their "data" section. Others additionally specify a
 mapping of code points to other code points, known as "variants".
 What constitutes a variant code point is a matter of policy, and
 varies for each implementation. The following examples are intended
 to demonstrate the syntax; they are not necessarily typical.

5.3.1. Basic Variants

 Variant code points are specified using one of more "var" elements as
 children of a "char" element. The target mapping is specified using
 the "cp" attribute. Other, optional attributes for the "var" element
 are described below.

 For example, to map LATIN SMALL LETTER V (U+0076) as a variant of
 LATIN SMALL LETTER U (U+0075):

 <char cp="0075">
 <var cp="0076"/>
 </char>

 A sequence of multiple code points can be specified as a variant of a
 single code point. For example, the sequence of LATIN SMALL LETTER O
 (U+006F) then LATIN SMALL LETTER E (U+0065) might hypothetically be
 specified as a variant for an LATIN SMALL LETTER O WITH DIAERESIS
 (U+00F6) as follows:

 <char cp="00F6">
 <var cp="006F 0065"/>
 </char>

 The source and target of a variant mapping may both be sequences, but
 not ranges.

Davies & Freytag Expires November 24, 2016 [Page 15]

Internet-Draft Label Generation Rulesets in XML May 2016

 If the source of one mapping is a prefix sequence of the source for
 another, both variant mappings will be considered at the same
 location in the input label when generating permuted variant labels.
 If poorly designed, an LGR containing such an instance of a prefix
 relation could generate multiple instances of the same variant label
 for the same original label, but with potentially different
 dispositions. Any duplicate variant labels encountered MUST be
 treated as an error (see Section 8.4).

 The "var" element specifies variant mappings in only one direction,
 even though the variant relation is usually considered symmetric,
 that is, if A is a variant of B then B should also be a variant of A.
 The format requires that the inverse of the variant be given
 explicitly to fully specify symmetric variant relations in the LGR.
 This has the beneficial side effect of making the symmetry explicit:

 <char cp="006F 0065">
 <var cp="00F6"/>
 </char>

 Variant relations are normally not only symmetric, but also
 transitive. If A is a variant of B and B is a variant of C, then A
 is also a variant of C. As with symmetry, these transitive relations
 are only part of the LGR if spelled out explicitly. Implementations
 that require an LGR to be symmetric and transitive should verify this
 mechanically.

 All variant mappings are unique. For a given "char" element all
 "var" elements MUST have a unique combination of "cp", "when" and
 "not-when" attributes. It is RECOMMENDED to list the "var" elements
 in ascending order of their target code point sequence. (For "when"
 and "not-when" attributes, see Section 5.3.5).

5.3.2. The type attribute

 Variants may be tagged with an OPTIONAL "type" attribute. The value
 of the "type" attribute may be any non-empty value not starting with
 an underscore and not containing spaces. This value is used to
 resolve the disposition of any variant labels created using a given
 variant. (See Section 7.2.)

 By default, the values of the "type" attribute directly describe the
 target policy status (disposition) for a variant label that was
 generated using a particular variant, with any variant label being
 assigned a disposition corresponding to the most restrictive variant
 type. Several conventional disposition values are predefined below
 in Section 7. Whenever these values can represent the desired
 policy, they SHOULD be used.

Davies & Freytag Expires November 24, 2016 [Page 16]

Internet-Draft Label Generation Rulesets in XML May 2016

 <char cp="767C">
 <var cp="53D1" type="allocatable"/>
 <var cp="5F42" type="blocked"/>
 <var cp="9AEA" type="blocked"/>
 <var cp="9AEE" type="blocked"/>
 </char>

 By default, if a variant label contains any instance of one of the
 variants of type "blocked" the label would be blocked, but if it
 contained only instances of variants to be allocated it could be
 allocated. See the discussion about implied actions in Section 7.6.

 The XML format for the LGR makes the relation between the values of
 the "type" attribute on variants and the resulting disposition of
 variant labels fully explicit. See the discussion in Section 7.2.
 Making this relation explicit allows a generalization of the "type"
 attribute from directly reflecting dispositions to a more
 differentiated intermediate value that is then used in the resolution
 of label disposition. Instead of the default action of applying the
 most restrictive disposition to the entire label, such a generalized
 resolution can be used to achieve additional goals, such as limiting
 the set of allocatable variant labels, or to implement other policies
 found in existing LGRs (see for example Appendix B).

 Because variant mappings MUST be unique, it is not possible to define
 the same variant for the same "char" element with different type
 attributes (see however Section 5.3.5).

5.3.3. Null Variants

 A null variant is a variant string that maps to no code point. This
 is used when a particular code point sequence is considered
 discretionary in the context of a whole label. To specify a null
 variant, use an empty cp attribute. For example, to mark a string
 with a ZERO WIDTH NON-JOINER (U+200C) to the same string without the
 ZERO WIDTH NON-JOINER:

 <char cp="200C">
 <var cp=""/>
 </char>

 This is useful in expressing the intent that some code points in a
 label are to be mapped away when generating a canonical variant of
 the label. However, in tables that are designed to have symmetric
 variant mappings, this could lead to combinatorial explosion, if not
 handled carefully.

 The symmetric form of a null variant is expressed as follows:

Davies & Freytag Expires November 24, 2016 [Page 17]

Internet-Draft Label Generation Rulesets in XML May 2016

 <char cp="">
 <var cp="200C" type="invalid" />
 </char>

 A "char" element with an empty "cp" attribute MUST specify at least
 one variant mapping. It is strongly RECOMMENDED to use a type of
 "invalid" or equivalent when defining variant mappings from null
 sequences, so that variant mapping from null sequences are removed in
 variant label generation (see Section 5.3.2).

5.3.4. Variants with Reflexive Mapping

 At first sight there seems to be no call for adding variant mappings
 for which source and target code points are the same, that is for
 which the mapping is reflexive, or, in other words, an identity
 mapping. Yet such reflexive mappings occur frequently in LGRs that
 follow [RFC3743].

 Adding a "var" element allows both a type and a reference id to be
 specified for it. While the reference id is not used in processing,
 the type of the variant can be used to trigger actions. In permuting
 the label to generate all possible variants, the type associated with
 a reflexive variant mapping is applied to any of the permuted labels
 containing the original code point.

 In the following example, let’s assume the goal is to allocate only
 those labels that contain a variant that is considered "preferred" in
 some way. As defined in the example, the code point U+3473 exists
 both as a variant of U+3447 and as a variant of itself (reflexive
 mapping). Assuming an original label of "U+3473 U+3447", the
 permuted variant "U+3473 U+3473" would consist of the reflexive
 variant of U+3473 followed by a variant of U+3447. Given the variant
 mappings as defined here, the types for both of the variant mappings
 used to generate that particular permutation would have the value
 "preferred":

 <char cp="3447" ref="0">
 <var cp="3473" type="preferred" ref="1 3" />
 </char>
 <char cp="3473" ref="0">
 <var cp="3447" type="blocked" ref="1 3" />
 <var cp="3473" type="preferred" ref="0" />
 </char>

 Having established the variant types in this way, a set of actions
 could be defined that return a disposition of "allocatable" or
 "activated" for a label consisting exclusively of variants with type

Davies & Freytag Expires November 24, 2016 [Page 18]

Internet-Draft Label Generation Rulesets in XML May 2016

 "preferred" for example. (For details on how to define actions based
 on variant types see Section 7.2.1.)

 In general, using reflexive variant mappings in this manner makes it
 possible to calculate disposition values using a uniform approach for
 all labels, whether they consist of mapped variant code points,
 original code points, or a mixture of both. In particular, the
 dispositions for two otherwise identical labels may differ based on
 which variant mappings were executed in order to generate each of
 them. (For details on how to generate variants and evaluate
 dispositions, see Section 8.)

 Another useful convention that uses reflexive variants is described
 below in Section 7.2.1.

5.3.5. Conditional Variants

 Fundamentally, variants are mappings between two sequences of code
 points. However, in some instances for a variant relationship to
 exist, some context external to the code point sequence must also be
 considered. For example, a positional context may determine whether
 two code point sequences are variants of each other.

 An example of that are Arabic code points which can have different
 forms based on position, with some code points sharing forms, thus
 making them variants in the positions corresponding to those forms.
 Such positional context cannot be solely derived from the code point
 by itself, as the code point would be the same for the various forms.

 As described in Section 5.2 an OPTIONAL "when" or "not-when"
 attribute may be given for any "var" element to specify required or
 prohibited contextual conditions under which the variant defined.

 Assuming the "rules" element contains suitably defined rules for
 "arabic-isolated" and "arabic-final", the following example shows how
 to mark ARABIC LETTER ALEF WITH WAVY HAMZA BELOW (U+0673) as a
 variant of ARABIC LETTER ALEF WITH HAMZA BELOW (U+0625), but only
 when it appears in its isolated or final forms:

 <char cp="0625">
 <var cp="0673" when="arabic-isolated"/>
 <var cp="0673" when="arabic-final"/>
 </char>

 While a "var" element MUST NOT contain multiple conditions (it is
 only allowed a single "when" or "not-when" attribute), multiple "var"
 elements using the same mapping MAY be specified with different

Davies & Freytag Expires November 24, 2016 [Page 19]

Internet-Draft Label Generation Rulesets in XML May 2016

 "when" or "not-when" attributes. The combination of mapping and
 conditional context defines a unique variant..

 Care must be taken to ensure that for each variant label at most one
 of the contextual conditions is met for variants with the same
 mapping; otherwise duplicate variant labels would be created for the
 same input label. Any such duplicate variant labels MUST be treated
 as an error, see Section 8.4.

 Two contexts may be complementary, as in the following example, which
 shows ARABIC LETTER TEH MARBUTA (U+0629) as a variant of ARABIC
 LETTER HEH (U+0647), but with two different types.

 <char cp="0647" >
 <var cp="0629" not-when="arabic-final" type="blocked" />
 <var cp="0629" when="arabic-final" type="allocatable" />
 </char>

 The intent is that in final position a label that uses U+0629 instead
 of U+0647 should be considered essentially the same label and
 therefore allocatable to the same entity, while the same substitution
 in non-final context leads to labels that are different, but
 considered confusable so that either one, but not both should be
 delegatable.

 For symmetry, the reverse mappings must exist, and must agree in
 their "when" or "not-when" attributes. However, symmetry does not
 apply to the other attributes. For example, these are potential
 reverse mappings for the above:

 <char cp="0629" >
 <var cp="0647" not-when="arabic-final" type="allocatable" />
 <var cp="0647" when="arabic-final" type="allocatable" />
 </char>

 Here, both variants have the same "type" attribute. While it is
 tempting to recognize that in this instance the "when" and "not-when"
 attributes are complementary and therefore between them cover every
 single possible context, it is strongly RECOMMENDED to use the format
 shown in the example that makes the symmetry easily verifiable by
 parsers and tools. (The same applies to entries created for
 transitivity.)

 Arabic is an example of a script for which such conditional variants
 have been implemented based on the joining contexts for Arabic code
 points. The mechanism defined here supports other forms of
 conditional variants that may required by other scripts.

Davies & Freytag Expires November 24, 2016 [Page 20]

Internet-Draft Label Generation Rulesets in XML May 2016

5.4. Annotations

 Two attributes, the "ref" and "comment" attributes, can be used to
 annotate individual elements in the LGR. They are ignored in
 machine-processing or the LGR. The "ref" attribute is intended for
 formal annotations and the "comment" attribute for free form
 annotations. The latter can be applied more widely.

5.4.1. The ref Attribute

 Reference information MAY optionally be specified by a "ref"
 attribute, consisting of a space delimited sequence of reference
 identifiers (see Section 4.3.8).

 <char cp="5220" ref="0">
 <var cp="5220" ref="5"/>
 <var cp="522A" ref="2 3"/>
 </char>

 This facility is typically used to give source information for code
 points or variant relations. This information is ignored when
 machine-processing an LGR. If applied to a range the "ref" attribute
 applies to every code point in the range. All reference identifiers
 MUST be from the set declared in the "references" element (see
 Section 4.3.8). It is an error to repeat a reference identifier in
 the same "ref" attribute. It is RECOMMENDED that identifiers be
 listed in ascending order.

 In addition to "char", "range" and "var" elements in the data
 section, a "ref" attribute may be present for a number of elements
 types contained in the "rules" element as described below: actions,
 literals ("char" inside a rule), as well as for definitions of rules
 and classes, but not for references to named character classes or
 rules using the "by-ref" attribute defined below. (The use of the
 "by-ref" and "ref" attributes is mutually exclusive.) None of the
 elements in the metadata take a "ref" attribute; to provide
 additional information use the "description" element instead.

5.4.2. The comment Attribute

 Any "char", "range" or "variant" element in the data section may
 contain an OPTIONAL "comment" attribute. The contents of a "comment"
 attribute are free-form plain text. Comments are ignored in machine
 processing of the table. Comment attributes MAY also be placed on
 all elements in the "rules" section of the document, such as actions
 and match operators, such as literals ("char"), as well as
 definitions of classes and rules, but not on child elements of the
 "class" element. Finally, in the metadata, only the "version" and

Davies & Freytag Expires November 24, 2016 [Page 21]

Internet-Draft Label Generation Rulesets in XML May 2016

 "reference" elements MAY have "comment" attributes (to match the
 syntax in [RFC3743]).

5.5. Code Point Tagging

 Typically, LGRs are used to explicitly designate allowable code
 points, where any label that contains a code point not explicitly
 listed in the LGR is considered an ineligible label according to the
 ruleset.

 For more complex registry rules, there may be a need to discern one
 or more subsets of code points. This can be accomplished by applying
 an OPTIONAL "tag" attribute to "char" or "range" elements that are
 child elements of the "data" element. By collecting code points that
 share the same tag value, character classes may be defined (see
 Section 6.2.2) which can then be used in whole label evaluation rules
 (see Section 6.3.2).

 Each "tag" attribute MAY contain multiple values separated by white
 space. A tag value is an identifier, which may also include certain
 punctuation marks, such as colon. Formally, it MUST correspond to
 the XML 1.0 Nmtoken (Name token) production (see [XML] Section 2.3).
 It is an error to duplicate a value within the same "tag" attribute.
 A "tag" attribute for a "range" element applies to all code points in
 the range. Because code point sequences are not proper members of a
 set of code points, a "tag" attribute MUST NOT be present in a "char"
 element defining a code point sequence.

6. Whole Label and Context Evaluation

6.1. Basic Concepts

 The "rules" element contains the specification of both context-based
 and whole Whole Label Evaluation (WLE) rules (Section 6.3), the
 character classes (Section 6.2) that they depend on and any actions
 (Section 7) that assign dispositions to labels based on rules or
 variant mappings.

 A Whole Label Evaluation rule (WLE) is applied to the whole label.
 It is used to validate both original labels and any variant labels
 computed from them.

 A conditional context rule does not necessarily apply to the whole
 label, but may be specific to the context around a single code point
 or code point sequence. Certain code points in a label sometimes
 need to satisfy context-based rules, for example for the label to be
 considered valid, or to satisfy the context for a variant mapping
 (see the description of the "when" attribute in Section 6.4).

Davies & Freytag Expires November 24, 2016 [Page 22]

Internet-Draft Label Generation Rulesets in XML May 2016

 For example, if a rule is referenced in the "when" attribute of a
 variant mapping it is used to describe the conditional context under
 which the particular variant mapping is defined to exist.

 Each rule is defined in a "rule" element. A rule may contain the
 following as child elements:

 o literal code points or code point sequences

 o character classes, which define sets of code points to be used for
 context comparisons

 o context operators, which define when character classes and
 literals may appear

 o nested rules, whether defined in place or invoked by reference

 Collectively, these are called match operators and are listed in
 Section 6.3.2. An LGR containing incorrectly defined or nested rules
 or match operators, or rules and match operators with invalid
 attributes or invalid or undefined attribute values MUST be rejected.
 Note that not all of the constraints defined here are validated by
 the schema.

6.2. Character Classes

 Character classes are sets of characters that often share a
 particular property. While they function like sets in every way,
 even supporting the usual set operators, they are called character
 classes here in a nod to the use of that term in regular expression
 syntax. (This also avoids confusion with the term "character set" in
 the sense of character encoding.)

 Character classes can be specified in several ways:

 o by defining the class via matching a tag in the code point data.
 All characters with the same "tag" attribute are part of the same
 class;

 o by referencing a value of one of the Unicode character properties
 defined in the Unicode Character Database;

 o by explicitly listing all the code points in the class; or

 o by defining the class as a set combination of any number of other
 classes.

Davies & Freytag Expires November 24, 2016 [Page 23]

Internet-Draft Label Generation Rulesets in XML May 2016

6.2.1. Declaring and Invoking Named Classes

 A character class has an OPTIONAL "name" attribute, consisting of a
 single, identifier not containing spaces. All names for classes must
 be unique. If the "name" attribute is omitted, the class is
 anonymous and exists only inside the rule or combined class where it
 is defined. A named character class is defined independently and can
 be referenced by name from within any rules or as part of other
 character class definitions.

 <class name="example" comment="an example class definition">
 0061 4E00
 </class>
 ...
 <rule>
 <class by-ref="example" />
 </rule>

 An empty "class" element with a "by-ref" attribute is a reference to
 an existing named class. The "by-ref" attribute MUST NOT be used in
 the same "class" element with any of these attributes: "name", "from-
 tag", "property" or "ref". The "name" attribute MUST be present, if
 and only if the class is a direct child element of the "rules"
 element. It is an error to reference a named class for which the
 definition has not been seen.

6.2.2. Tag-based Classes

 The "char" or "range" elements that are child elements of the "data"
 element MAY contain a "tag" attribute that consists of one or more
 space separated tag values, for example:

 <char cp="0061" tag="letter lower"/>
 <char cp="4E00" tag="letter"/>

 This defines two tags for use with code point U+0061, the tag
 "letter" and the tag "lower". Use

 <class name="letter" from-tag="letter" />
 <class name="lower" from-tag="lower" />

 to define two named character classes, "letter" and "lower",
 containing all code points with the respective tags, the first with
 0061 and 4E00 as elements and the latter with 0061, but not 4E00 as
 an element. The "name" attribute may be omitted for an anonymous in-
 place definition of a nested, tag-based class.

Davies & Freytag Expires November 24, 2016 [Page 24]

Internet-Draft Label Generation Rulesets in XML May 2016

 Tag values are typically identifiers, with the addition of a few
 punctuation symbols, such as colon. Formally they MUST correspond to
 the XML 1.0 Nmtoken (Name token) production. While a "tag" attribute
 may contain a list of tag values, the "from-tag" attribute MUST
 always contain a single tag value.

 If the document contains no "char" or "range" elements with a
 corresponding tag, the character class represents the empty set.
 This is valid, to allow a common "rules" element to be shared across
 files. However, it is RECOMMENDED that implementations allow for a
 warning to ensure that referring to an undefined tag in this way is
 intentional.

6.2.3. Unicode Property-based Classes

 A class is defined in terms of Unicode properties by giving the
 Unicode property alias and the property value or property value
 alias, separated by a colon.

 <class name="virama" property="ccc:9" />

 The example above selects all code points for which the Unicode
 canonical combining class (ccc) value is 9. This value of the ccc is
 assigned to all code points that encode viramas.

 Unicode properties values MUST be designated via a composite of the
 attribute name and value as defined for the property value in
 [UAX42], separated by a colon. Loose matching of property values and
 names as described in [UAX44] is not appropriate for an XML schema
 and is not supported; it is likewise not supported in the XML
 representation [UAX42] of the Unicode Character Database itself.

 A property-based class MAY be anonymous, or, when defined as an
 immediate child of the "rules" element, it MAY be named to relate a
 formal property definition to its usage, such as the use of the value
 9 for ccc to designate a virama (or halant) in various scripts.

 Unicode properties may, in principle, change between versions of the
 Unicode Standard. However, the values assigned for a given version
 are fixed. If Unicode Properties are used, a Unicode version MUST be
 declared in the "unicode-version" element in the header. (Note: some
 Unicode properties are by definition stable across versions and do
 not change once assigned (see [Unicode-Stability]).

 All implementations processing LGR files SHOULD provide support for
 the following minimal set of Unicode properties:

 o General Category (gc)

Davies & Freytag Expires November 24, 2016 [Page 25]

Internet-Draft Label Generation Rulesets in XML May 2016

 o Script (sc)

 o Canonical Combining Class (ccc)

 o Bidi Class (bc)

 o Arabic Joining Type (jt)

 o Indic Syllabic Category (InSC)

 o Deprecated (Dep)

 The short name for each property is given in parentheses.

 If a program that is using an LGR to determine the validity of a
 label encounters a property that it does not support, it MUST abort
 with an error.

6.2.4. Explicitly Declared Classes

 A class of code points may also be declared by listing the code
 points that are a member of the class. This is useful when tagging
 cannot be used because code points are not listed individually as
 part of the eligible set of code points for the given LGR, for
 example because they only occur in code point sequences.

 To define a class in terms of an explicit list of code points use a
 space separated list of hexadecimal code point values:

 <class name="abcd">0061 0062 0063 0064</class>

 This defines a class named "abcd" containing the code points for
 characters "a", "b", "c" and "d". The ordering of the code points is
 not material, but it is RECOMMENDED to list them in ascending order;
 not doing so makes it unnecessarily difficult for users to detect
 errors, such as duplicates or to compare and review these classes
 against other specifications.

 In a class definition, ranges of code points are represented by a
 hexadecimal start and end value separated by a hyphen. The following
 declaration is equivalent to the preceding:

 <class name="abcd">0061-0064</class>

 Range and code point declarations can be freely intermixed:

 <class name="abcd">0061 0062-0063 0064</class>

Davies & Freytag Expires November 24, 2016 [Page 26]

Internet-Draft Label Generation Rulesets in XML May 2016

 The contents of a class differ from a repertoire in that the latter
 MAY contain sequences as elements, while the former MUST NOT.
 Instead, they closely resemble character classes as found in regular
 expressions.

6.2.5. Combined Classes

 Classes may be combined using operators for set complement, union,
 intersection, difference (elements of the first class that are not in
 the second) and symmetric difference (elements in either class, but
 not both). Because classes fundamentally function like sets, the
 union of several character classes is itself a class, for example.

 +-------------------+--+
 | Logical Operation | Example |
 +-------------------+--+
 | Complement | <complement><class by-ref="xxx"></complement>|
 +-------------------+--+
Union	<union>
	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	<class by-ref="class-3"/>
	</union>
+-------------------+--+	
Intersection	<intersection>
	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	</intersection>
+-------------------+--+	
Difference	<difference>
	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	</difference>
+-------------------+--+	
Symmetric	<symmetric-difference>
Difference	<class by-ref="class-1"/>
	<class by-ref="class-2"/>
	</symmetric-difference>
 +-------------------+--+

 Set Operators

 The elements from this table may be arbitrarily nested inside each
 other, subject to the following restriction: a "complement" element
 MUST contain precisely one "class" or one of the operator elements,
 while an "intersection", "symmetric-difference" or "difference"
 element MUST contain precisely two, and a "union" element MUST
 contain two or more of these elements.

Davies & Freytag Expires November 24, 2016 [Page 27]

Internet-Draft Label Generation Rulesets in XML May 2016

 An anonymous combined class can be defined directly inside a rule or
 any of the match operator elements that allow child elements (see
 Section 6.3.2) by using the set combination as the outer element.

 <rule>
 <union>
 <class by-ref="xxx"/>
 <class by-ref="yyy"/>
 </union>
 </rule>

 The example shows the definition of an anonymous combined class that
 represents the union of classes "xxx" and "yyy". There is no need to
 wrap this union inside another "class" element, and, in fact, set
 combination elements MUST NOT be nested inside a "class" element.

 Lastly, to create a named combined class that can be referenced in
 other classes or in rules as <class by-ref="xxxyyy"/>, add a "name"
 attribute to the set combination element, for example <union
 name="xxxyyy" /> and place it at the top level immediately below the
 "rules" element (see Section 6.2.1).

 <rules>
 <union name="xxxyyy">
 <class by-ref="xxx"/>
 <class by-ref="yyy"/>
 </union>
 ...
 </rules>

 Because (as for ordinary sets) a combination of classes is itself a
 class, no matter by what combinations of set operators a combined
 class is created, a reference to it always uses the "class" element
 as described in Section 6.2.1. That is, a named class is always
 referenced via an empty "class" element using the "by-ref" attribute
 containing the name of the class to be referenced.

6.3. Whole Label and Context Rules

 Each rule comprises a series of matching operators that must be
 satisfied in order to determine whether a label meets a given
 condition. Rules may reference other rules or character classes
 defined elsewhere in the table.

Davies & Freytag Expires November 24, 2016 [Page 28]

Internet-Draft Label Generation Rulesets in XML May 2016

6.3.1. The rule Element

 A matching rule is defined by a "rule" element, the child elements of
 which are one of the match operators from Section 6.3.2. In
 evaluating a rule, each child element is matched in order. Rule
 elements MAY be nested inside each other and inside certain match
 operators.

 A simple rule to match a label where all characters are members of
 some class called "preferred-codepoint":

 <rule name="preferred-label">
 <start />
 <class by-ref="preferred-codepoint" count="1+"/>
 <end />
 </rule>

 Rules are paired with explicit and implied actions, triggering these
 actions when a rule matches a label. For example, a simple explicit
 action for the rule shown above would be:

 <action disp="allocatable" match="preferred-label" />

 The rule in this example would have the effect of setting the policy
 disposition for a label made up entirely of preferred code points to
 "allocatable". Explicit actions are further discussed in Section 7
 and implicit actions in Section 7.5. Another use of rules is in
 defining conditional contexts for code points and variants as
 discussed in Section 5.2 and Section 5.3.5.

 A rule that is an immediate child element of the "rules" element MUST
 be named using a "name" attribute containing a single identifier
 string with no spaces. A named rule may be incorporated into another
 rule by reference as well as referenced by an action, "when" or "not-
 when" attribute. If the "name" attribute is omitted, the rule is
 anonymous and MUST be nested inside another rule or match operator.

6.3.2. The Match Operators

 The child elements of a rule are a series of match operators, which
 are listed here by type and name and with a basic example or two.

Davies & Freytag Expires November 24, 2016 [Page 29]

Internet-Draft Label Generation Rulesets in XML May 2016

 +------------+-------------+------------------------------------+
 | Type | Operator | Examples |
 +------------+-------------+------------------------------------+
 | logical | any | <any /> |
 | +-------------+------------------------------------+
	choice	<choice>
		<rule by-ref="alternative1"/>
		<rule by-ref="alternative2"/>
		</choice>
+--------------------------+------------------------------------+		
positional	start	<start />
+-------------+------------------------------------+		
	end	<end />
+--------------------------+------------------------------------+		
literal	char	<char cp="0061 0062 0063" />
+--------------------------+------------------------------------+		
set	class	<class by-ref="class1" />
		<class>0061 0064-0065</class>
+--------------------------+------------------------------------+		
group	rule	<rule by-ref="rule1" />
		<rule><any /><rule />
+--------------------------+------------------------------------+		
contextual	anchor	<anchor />
+-------------+------------------------------------+		
	look-ahead	<look-ahead><any /></look-ahead>
+-------------+------------------------------------+		
	look-behind	<look-behind><any /></look-behind>
 +--------------------------+------------------------------------+

 Match Operators

 Any element defining an anonymous class can be used as a match
 operator, including any of the set combination operators (see
 Section 6.2.5) as well as references to named classes.

 All match operators shown as empty elements in the Examples column of
 the table above do not support child elements of their own; otherwise
 match operators MAY be nested. In particular, anonymous "rule"
 elements can be used for grouping.

6.3.3. The count Attribute

 The OPTIONAL "count" attribute, when present, specifies the minimally
 required or maximal permitted number of times a match operator is
 used to match input. If the "count" attribute is

 n the match operator matches the input exactly n times, where n is
 1 or greater.

Davies & Freytag Expires November 24, 2016 [Page 30]

Internet-Draft Label Generation Rulesets in XML May 2016

 n+ the match operator matches the input at least n times, where n
 is 0 or greater.

 n:m the match operator matches the input at least n times where n is
 0 or greater, but matches the input up to m times in total,
 where m > n. If m = n and n > 0, the match operator matches the
 input exactly n times.

 If there is no "count" attribute, the match operator matches the
 input exactly once.

 In matching, greedy evaluation is used in the sense defined for
 regular expressions: beyond the required number or times, the input
 is matched as many times as possible, but not so often as to prevent
 a match of the remainder of the rule.

 A "count" attribute MUST NOT be applied to any element that contains
 a "name" attribute, but MAY be applied to operators such as "class"
 that declare anonymous classes (including combined classes) or invoke
 any predefined classes by reference. The count attribute MUST NOT be
 applied to any "class" element, or element defining a combined class,
 when it is nested inside a combined class.

 A "count" attribute MUST NOT be applied to match operators of type
 "start", "end", "anchor", "look-ahead" or "look-behind" or to any
 operators, such as "rule" or "choice" that contain a nested instance
 of them. This limitation applies recursively, and irrespective of
 whether a rule element containing these nested instances is declared
 in place or used by reference.

 However, the "count" attribute MAY be applied to any other instances
 of either an anonymous "rule" element or of a "choice" element,
 including those instances nested inside other match operators. It
 MAY also be applied to the elements "any" and "char", when used as
 match operators.

6.3.4. The name and by-ref Attributes

 Like classes (see Section 6.2.1), rules declared as immediate child
 elements of the "rules" element MUST be named using a unique "name"
 attribute, and all other instances MUST NOT be named. Anonymous
 rules and classes or reference to named rules and classes can be
 nested inside other match operators by reference.

 To reference a named rule or class inside a rule or match operator
 use a "rule" or "class" element with an OPTIONAL "by-ref" attribute
 containing the name of the referenced element. It is an error to
 reference a rule or class for which the complete definition has not

Davies & Freytag Expires November 24, 2016 [Page 31]

Internet-Draft Label Generation Rulesets in XML May 2016

 been seen. In other words, it is explicitly not possible to define
 recursive rules or class definitions. The "by-ref" attribute MUST
 NOT appear in the same element as the "name" attribute, or in an
 element that has any child elements.

 The example shows several named classes and a named rule referencing
 some of them by name.

 <class name="letter" property="gc:L"/>
 <class name="combining-mark" property="gc:M"/>
 <class name="digit" property="gc:Nd" />
 <rule name="letter-grapheme">
 <class by-ref="letter" count="1+"/>
 <class by-ref="combining-mark" count="0+"/>
 </rule>

6.3.5. The choice Element

 The "choice" element is used to represent a list of two or more
 alternatives:

 <rule name="ldh">
 <choice count="1+">
 <class by-ref="letter"/>
 <class by-ref="digit"/>
 <char cp="002D" comment="literal HYPHEN"/>
 </choice>
 </rule>

 Each child element of a "choice" represents one alternative. The
 first matching alternative determines the match for the "choice"
 element. To express a choice where an alternative itself consists of
 a sequence of elements, the sequence must be wrapped in an anonymous
 rule.

6.3.6. Literal Code Point Sequences

 A literal code point sequence matches a single code point or a
 sequence. It is defined by a "char" element, with the code point or
 sequence to be matched given by the "cp" attribute. When used as a
 literal, a "char" element MAY contain a "count" in addition to the
 "cp" attribute and OPTIONAL "comment" or "ref" attributes. No other
 attributes or child elements are permitted.

Davies & Freytag Expires November 24, 2016 [Page 32]

Internet-Draft Label Generation Rulesets in XML May 2016

6.3.7. The any Element

 The "any" element is an empty element that matches any single code
 point. It MAY have a "count" attribute. For an example see
 Section 6.3.9.

 Unlike a literal, the "any" element MUST NOT have a "ref" attribute.

6.3.8. The start and end Elements

 To match the beginning or end of a label, use the "start" or "end"
 element. An empty label would match this rule:

 <rule name="empty-label">
 <start/>
 <end/>
 </rule>

 Conceptually, Whole Label Evaluation Rules evaluate the label as a
 whole, but in practice, many rules do not actually need to be
 specified to match the entire label. For example, to express a
 requirement of not starting a label with a digit, a rule needs to
 describe only the initial part of a label.

 This example uses the previously defined rules, together with start
 and end tag, to define a rule that requires that an entire label is
 well-formed. For this example that means, that it must start with a
 letter and contains no leading digits or combining marks, nor
 combining marks placed on digits.

 <rule name="leading-letter" >
 <start />
 <rule by-ref="letter-grapheme" count="1"/>
 <choice count="0+">
 <rule by-ref="letter-grapheme" count="0+"/>
 <class by-ref="digit" count="0+"/>
 </choice>
 <end />
 </rule>

 Each "start" or "end" element occurs at most once in a rule, except
 if nested inside a "choice" element in such a way that in matching
 each alternative at most one occurrence of each is encountered.
 Otherwise, the result is an error; as is any case where a "start" or
 "end" element is not encountered as first or last element to be
 matched, respectively, in matching a rule. Start and end elements
 are empty elements that do not have a "count" or any other attribute
 other than "comment". It is an error for any match operator

Davies & Freytag Expires November 24, 2016 [Page 33]

Internet-Draft Label Generation Rulesets in XML May 2016

 enclosing a nested "start" or "end" element to have a "count"
 attribute.

6.3.9. Example context rule from IDNA specification

 This is an example of the whole label evaluation rule from [RFC5892]
 forbidding the mixture of the Arabic-Indic and extended Arabic-Indic
 digits in the same label. The example also demonstrates several
 instances of the use of anonymous rules for grouping.

 <data>
 <range first-cp="0660" last-cp="0669" not-when="mixed-digits"
 tag="arabic-indic-digits" />
 <range first-cp="06F0" last-cp="06F9" not-when="mixed-digits"
 tag="extended-arabic-indic-digits" />
 </data>
 <rules>
 <rule name="mixed-digits">
 <choice>
 <rule>
 <class from-tag="arabic-indic-digits"/>
 <any count="0+"/>
 <class from-tag="extended-arabic-indic-digits"/>
 </rule>
 <rule>
 <class from-tag="extended-arabic-indic-digits"/>
 <any count="0+"/>
 <class from-tag="arabic-indic-digits"/>
 </rule>
 </choice>
 </rule>
 </rules>

 As specified in the example, a label containing a code point from
 either of the two digit ranges is invalid for any label matching the
 "mixed-digits" rule, that is, anytime a code point from the other
 range is also present. Note that invalidating the label is not the
 same as invalidating the definition of the "range" elements; in
 particular, the definition of the tag values does not depend on the
 "when" attribute.

6.4. Parameterized Context or When Rules

 To recap: when a rule is intended to provide a context for evaluating
 the validity of a code point or variant mapping it is invoked by the
 "when" or "not-when" attributes described in Section 5.2. For "char"
 and "range" elements, an action implied by a context rule always has
 a disposition of "invalid" whenever the rule given by the "when"

Davies & Freytag Expires November 24, 2016 [Page 34]

Internet-Draft Label Generation Rulesets in XML May 2016

 attribute is not matched (see Section 7.5). Conversely, a "not-when"
 attribute results in a disposition of "invalid" whenever the rule is
 matched. When a rule is used in this way, it is called a context or
 "when" rule.

 The example in the previous, section shows a whole label rule used as
 a context rule, essentially making the whole label the context. The
 next sections describe several match operators that can be used to
 provide a more specific specification of a context, allowing a
 parameterized context rule. See Section Section 7 for an alternative
 method of defining an invalid disposition for a label not matching a
 whole label rule.

6.4.1. The anchor Element

 Such parameterized context rules are rules that contain a special
 place holder represented by an "anchor" element. As each When Rule
 is evaluated, if an "anchor" element if present, it is replaced by a
 literal corresponding to the "cp" attribute of the element containing
 the "when" (or "not-when") attribute. The match to the "anchor"
 element must be at the same position in the label as the code point
 or variant mapping triggering the When Rule.

 For example, the Greek lower numeral sign is invalid if not
 immediately preceding a character in the Greek script. This is most
 naturally addressed with a parameterized When Rule using look-ahead:

 <char cp="0375" when="preceding-greek"/>
 ...
 <class name="greek-script" property="sc:Grek"/>
 <rule name="preceding-greek">
 <anchor/>
 <look-ahead>
 <class by-ref="greek-script"/>
 </look-ahead>
 </rule>

 In evaluating this rule, the "anchor" element is treated as if it was
 replaced by a literal

 <char cp="0375"/>

 but only the instance of U+0375 at the given position is evaluated.
 If a label had two instances of U+0375 with the first one matching
 the rule and the second not, then evaluating the When Rule MUST
 succeed for the first and fail for the second instance.

Davies & Freytag Expires November 24, 2016 [Page 35]

Internet-Draft Label Generation Rulesets in XML May 2016

 Unlike other rules, rules containing an "anchor" element MUST only be
 invoked via the "when" or "not-when" attributes on code points or
 variants; otherwise their "anchor" elements cannot be evaluated.
 However, it is possible to invoke rules not containing an "anchor"
 element from a "when" or "not-when" attribute. (See Section 6.4.3)

 The anchor element is an empty element, with no attributes permitted,
 except "comment".

6.4.2. The look-behind and look-ahead Elements

 Context rules use the "look-behind" and "look-ahead" elements to
 define context before and after the code point sequence matched by
 the "anchor" element. If the "anchor" element is omitted, neither
 the "look-behind" nor the "look-ahead" element may be present in a
 rule.

 Here is an example of a rule that defines an "initial" context for an
 Arabic code point:

 <class name="transparent" property="jt:T"/>
 <class name="right-joining" property="jt:R"/>
 <class name="left-joining" property="jt:L"/>
 <class name="dual-joining" property="jt:D"/>
 <class name="non-joining" property="jt:U"/>
 <rule name="Arabic-initial">
 <look-behind>
 <choice>
 <start/>
 <rule>
 <class by-ref="transparent" count="0+"/>
 <class by-ref="non-joining"/>
 </rule>
 </choice>
 </look-behind>
 <anchor/>
 <look-ahead>
 <class by-ref="transparent" count="0+" />
 <choice>
 <class by-ref="right-joining" />
 <class by-ref="dual-joining" />
 </choice>
 </look-ahead>
 </rule>

 A "when rule" (or context rule) is a named rule that contains any
 combination of "look-behind", "anchor" and "look-ahead" elements in
 that order. Each of these elements occurs at most once, except if

Davies & Freytag Expires November 24, 2016 [Page 36]

Internet-Draft Label Generation Rulesets in XML May 2016

 nested inside a "choice" element in such a way that in matching each
 alternative at most one occurrence of each is encountered.
 Otherwise, the result is undefined. None of these elements takes a
 "count" attribute, nor does any enclosing match operator; otherwise,
 the result is undefined. If a context rule contains a "look-ahead"
 or "look-behind" element, it MUST contain an "anchor" element. If,
 because of a choice element, a required anchor is not actually
 encountered, the results are undefined.

6.4.3. Omitting the anchor Element

 If the "anchor" element is omitted, the evaluation of the context
 rule is not tied to the position of the code point or sequence
 associated with the "when" attribute.

 According to [RFC5892] Katakana middle dot is invalid in any label
 not containing at least one Japanese character anywhere in the label.
 Because this requirement is independent of the position of the middle
 dot, the rule does not require an "anchor" element.

 <char cp="30FB" when="japanese-in-label"/>
 <rule name="japanese-in-label">
 <union>
 <class property="sc:Hani"/>
 <class property="sc:Kata"/>
 <class property="sc:Hira"/>
 </union>
 </rule>

 The Katakana middle dot is used only with Han, Katakana or Hiragana.
 The corresponding When Rule requires that at least one code point in
 the label is in one of these scripts, but the position of that code
 point is independent of the location of the middle dot and no anchor
 therefore required. (Note that the Katakana middle dot itself is of
 script Common, that is, "sc:Zyyy").

7. The action Element

 The purpose of an action is to assign a disposition to a label in
 response to being triggered by the label meeting a specified
 condition. Often, the action simply results in blocking or
 invalidating a label that does not match a rule. An example of an
 action invalidating a label because it does not match a rule named
 "leading-letter" is as follows:

 <action disp="invalid" not-match="leading-letter"/>

Davies & Freytag Expires November 24, 2016 [Page 37]

Internet-Draft Label Generation Rulesets in XML May 2016

 If an action is to be triggered on matching a rule, a "match"
 attribute is used instead. Actions are evaluated in the order that
 they appear in the XML file. Once an action is triggered by a label,
 the disposition defined in the "disp" attribute is assigned to the
 label and no other actions are evaluated for that label.

 The goal of the Label Generation Rules is to identify all labels and
 variant labels and to assign them disposition values. These
 dispositions are then fed into a further process that ultimately
 implements all aspects of policy. To allow this specification to be
 used with the widest range of policies, the permissible values for
 the "disp" attribute are neither defined nor restricted.
 Nevertheless a set of commonly used disposition values is
 RECOMMENDED. (See Section 7.3)

7.1. The match and not-match Attributes

 An OPTIONAL "match" or "not-match" attribute specifies a rule that
 must be matched or not matched as a condition for triggering an
 action. Only a single rule may be named as the value of a "match" or
 "not-match" attribute. Because rules may be composed of other rules,
 this restriction to a single attribute value does not impose any
 limitation on the contexts that can trigger an action.

 An action MUST NOT contain both a "match" and a "not-match"
 attribute, and the value of either attribute MUST be the name of a
 previously defined rule, otherwise the document MUST be rejected. An
 action without any attributes is triggered by all labels
 unconditionally. For a very simple LGR, the following action would
 allocate all labels that match the repertoire:

 <action disp="allocatable" />

 Since rules are evaluated for all labels, whether they are the
 original label or computed by permuting the defined and valid variant
 mappings for the label’s code points, actions based on matching or
 not matching a rule may be triggered for both original and variant
 labels, but the rules are not affected by the disposition attributes
 of the variant mappings. To trigger any actions based on these
 dispositions requires the use of additional optional attributes for
 actions described next.

7.2. Actions with Variant Type Triggers

Davies & Freytag Expires November 24, 2016 [Page 38]

Internet-Draft Label Generation Rulesets in XML May 2016

7.2.1. The all-, any- and only-variants Attributes

 An action may contain one of the OPTIONAL attributes "any-variant",
 "all-variants", or "only-variants" defining triggers based on variant
 types. The permitted value for these attributes consists of one or
 more variant type values, separated by spaces. These MAY include
 type values that are not used in any "var" element in the LGR. When
 a variant label is generated, these variant type values are compared
 to the set of type values on the variant mappings used to generate
 the particular variant label (see Section 8).

 Any single match may trigger an action that contains an "any-variant"
 attribute, while for an "all-variants" or "only-variants" attribute,
 the variant type for all variant code points must match one or
 several of the type values specified in the attribute to trigger the
 action. There is no requirement that the entire list of variant type
 values be matched, as long as all variant code points match at least
 one of the values.

 An "only-variants" attribute will trigger the action only if all code
 points of the variant label have variant mappings from the original
 code points. In other words, the label contains no original code
 points other than those with a reflexive mapping (see Section 5.3.4).

 <char cp="0078" comment="x" />
 <var cp="0078" type="allocatable" comment="reflexive" />
 <var cp="0079" type="blocked" />
 </char>
 <char cp="0079" comment="y"/>
 <var cp="0078" type="allocatable" />
 </char>
 ...
 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="allocatable" />
 <action disp="some-disp" any-variant="allocatable" />

 In the example above, the label "xx" would have variant labels "xx",
 "xy", "yx" and "yy". The first action would result in blocking any
 variant label containing "y", because the variant mapping from "x" to
 "y" is of type "blocked", triggering the "any-variant" condition.
 Because in this example "x" has a reflexive variant mapping to itself
 of type "allocatable" the original label "xx" has a reflexive variant
 "xx" that would trigger the "only-variants" condition on the second
 action.

 A label "yy" would have the variants "xy", "yx" and "xx". Because
 the variant mapping from "y" to "x" is of type "allocatable" and a
 mapping from "y" to "y" is not defined, the labels "xy" and "yx"

Davies & Freytag Expires November 24, 2016 [Page 39]

Internet-Draft Label Generation Rulesets in XML May 2016

 trigger the "any-variant" condition on the third label. The variant
 "xx", being generated using the mapping from "y" to "x" of type
 "allocatable", would trigger the "only-variants" condition on the
 section action. As there is no reflexive variant "yy", the original
 label "yy" cannot trigger any variant type triggers. However, it
 could still trigger an action defined as matching or not matching a
 rule.

 In each action, one variant type trigger may be present by itself or
 in conjunction with an attribute matching or not-matching a rule. If
 variant triggers and rule-matching triggers are used together, the
 label MUST "match" or respectively "not-match" the specified rule,
 AND satisfy the conditions on the variant type values given by the
 "any-variant", "all-variants", or "only-variants" attribute.

 A useful convention combines the "any-variant" trigger with reflexive
 variant mappings (Section 5.3.4). This convention is used, for
 example, when multiple LGRs are defined within the same registry and
 for overlapping repertoire. In some cases, the delegation of a label
 from one LGR must prohibit the delegation of another label in some
 other LGR. This can be done using a variant of type "blocked" as in
 this example from an Armenian LGR, where the Armenian, Latin and
 Cyrillic letters all look identical:

 <char cp="0570" comment="Armenian small letter HO">
 <var cp="0068" type="blocked" comment="Latin small letter H" />
 <var cp="04BB" type="blocked"
 comment="Cyrillic small letter SSHA" />
 </char>

 The issue is that the target code points for these two variants are
 both outside the Armenian repertoire. By using a reflexive variant
 with the following convention:

 <char cp="0068" comment="not part of repertoire">
 <var cp="0068" type="out-of-repertoire-var"
 comment="reflexive mapping" />
 <var cp="04BB" type="blocked" />
 <var cp="0570" type="blocked" />
 </char>
 ...

 and associating this with an action of the form:

 <action disp="invalid" any-variant="out-of-repertoire-var" />

 it is possible to list the symmetric and transitive variant mappings
 in the LGR even where they involve out-of-repertoire code points. By

Davies & Freytag Expires November 24, 2016 [Page 40]

Internet-Draft Label Generation Rulesets in XML May 2016

 associating the action shown with the special type for these
 reflexive mappings any original labels containing one or more of the
 out-of-repertoire code points are filtered out -- just as if these
 code points had not been listed in the LGR in the first place.
 Nevertheless, they do participate in the permutation of variant
 labels for n-repertoire labels (Armenian in the example), and these
 permuted variants can be used to detect collisions with out-of-
 repertoire labels (see Section 8).

7.2.2. Example from RFC 3743 Tables

 This section gives an example of using variant type triggers,
 combined with variants with reflexive mappings (Section 5.3.4) to
 achieve LGRs that implement tables like those defined according to
 [RFC3743] where the goal is to allow as variants only labels that
 consist entirely of simplified or traditional variants, in addition
 to the original label.

 Assuming an LGR where all variants have been given suitable "type"
 attributes of "blocked", "simplified", "traditional", or "both",
 similar to the ones discussed in Appendix B. Given such an LGR, the
 following example actions evaluate the disposition for the variant
 label:

 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="simplified both" />
 <action disp="allocatable" only-variants="traditional both" />
 <action disp="blocked" all-variants="simplified traditional " />
 <action disp="allocatable" />

 The first action matches any variant label for which at least one of
 the code point variants is of type "blocked". The second matches any
 variant label for which all of the code point variants are of type
 "simplified" or "both", in other words an all-simplified label. The
 third matches any label for which all variants are of type
 "traditional" or "both", that is all traditional. These two actions
 are not triggered by any variant labels containing some original code
 points, unless each of those code points has a variant defined with a
 reflexive mapping (Section 5.3.4).

 The final two actions rely on the fact that actions are evaluated in
 sequence, and that the first action triggered also defines the final
 disposition for a variant label (see Section 7.4). They further rely
 on the assumption that the only variants with type "both" are also
 reflexive variants.

 Given these assumptions, any remaining simplified or traditional
 variants must then be part of a mixed label, and so are blocked; all

Davies & Freytag Expires November 24, 2016 [Page 41]

Internet-Draft Label Generation Rulesets in XML May 2016

 labels surviving to the last action are original code points only
 (that is the original label). The example assumes that an original
 label may be a mixed label; if that is not the case, the disposition
 for the last action would be set to "blocked".

 There are exceptions where the assumption on reflexive mappings made
 above does not hold, so this basic scheme needs some refinements to
 cover all cases. For a more complete example, see Appendix B.

7.3. Recommended Disposition Values

 The precise nature of the policy action taken in response to a
 disposition and the name of the corresponding "disp" attributes are
 only partially defined here. It is strongly RECOMMENDED to use the
 following dispositions only with their conventional sense.

 invalid The resulting string is not a valid label. This disposition
 may be assigned implicitly, see Section 7.5. No variant labels
 should be generated from a variant mapping with this type.

 blocked The resulting string is a valid label, but should be blocked
 from registration. This would typically apply for a derived
 variant that is undesirable due to having no practical use or
 being confusingly similar to some other label.

 allocatable The resulting string should be reserved for use by the
 same operator of the origin string, but not automatically
 allocated for use.

 activated The resulting string should be activated for use. (This
 is the same as a preferred variant in [RFC3743].)

 valid The resultant string is a valid label. (This is the typical
 default action if no dispositions are defined.)

7.4. Precedence

 Actions are applied in the order of their appearance in the file.
 This defines their relative precedence. The first action triggered
 by a label defines the disposition for that label. To define the
 order of precedence, list the actions in the desired order. The
 conventional order of precedence for the actions defined in
 Section 7.3 is "invalid", "blocked", "allocatable", "activated" then
 "valid". This default precedence is used for the default actions
 defined in Section 7.6.

Davies & Freytag Expires November 24, 2016 [Page 42]

Internet-Draft Label Generation Rulesets in XML May 2016

7.5. Implied Actions

 The context rules on code points ("not-when" or "when" rules) carry
 an implied action with a disposition of "invalid" (not eligible) if a
 "when" context is not satisfied, or respectively a "not-when" context
 is matched. These rules are evaluated at the time the code points
 for a label or its variant labels are checked for validity (see
 Section 8). In other words, they are evaluated before any of the
 whole-label evaluation rules and with higher precedence. The context
 rules for variant mappings are evaluated when variants are generated
 and/or when variant tables are made symmetric and transitive. They
 have an implied action with a disposition of "invalid" which means a
 putative variant mapping does not exist whenever the given context
 matches a "not-when" rule or fails to match a "when" rule specified
 for that mapping. The result of that disposition is that the variant
 mapping is ignored in generating variant labels and the value is
 therefore not accessible to trigger any explicit actions.

 Note that such non-existing variant mapping is different from a
 blocked variant, which is a variant code point mapping that exists
 but results in a label that may not be allocated.

7.6. Default Actions

 If a label does not trigger any of the actions defined explicitly in
 the LGR, the following implicitly defined default actions are
 evaluated. They are shown below in their relative order of
 precedence (see Section 7.4). Default actions have a lower order of
 precedence than explicit actions (see Section 8.3).

 The default actions for variant labels are defined as follows. The
 first set is triggered based on the standard variant type values of
 "invalid", "blocked", "allocatable" and "activated":

 <action disp="invalid" any-variant="invalid"/>
 <action disp="blocked" any-variant="blocked"/>
 <action disp="allocatable" any-variant="allocatable"/>
 <action disp="activated" all-variants="activated"/>

 A final default action sets the disposition to "valid" for any label
 matching the repertoire for which no other action has been triggered.
 This "catch-all" action also matches all remaining variant labels
 from variants that do not have a type value.

 <action disp="valid" comment="Catch-all if other rules not met"/>

 Conceptually, the implicitly defined default actions act just like a
 block of action elements that is added (virtually) beyond the last of

Davies & Freytag Expires November 24, 2016 [Page 43]

Internet-Draft Label Generation Rulesets in XML May 2016

 the user-supplied actions. Any label not processed by the user-
 supplied actions would thus be processed by the default actions as if
 they were present in the LGR. As the last default action is a
 "catch-all", all processing is guaranteed to end with a definite
 disposition for the label.

8. Processing a Label against an LGR

8.1. Determining Eligibility for a Label

 In order to test a given label for membership in the LGR, a consumer
 of the LGR must iterate through each code point within a given label,
 and test that each instance of a code point is a member of the LGR.
 If any instance of a code point is not a member of the LGR, the label
 shall be deemed as invalid.

 An individual instance of a code point is deemed a member of the LGR
 when it is listed using a "char" element, or is part of a range
 defined with a "range" element, and all necessary conditions in any
 "when" or "not-when" attributes are correctly satisfied for that
 instance.

 Alternatively, an instance of a code point is also deemed a member of
 the LGR when it forms part of a sequence that corresponds to a
 sequence listed using a "char" element for which the "cp" attribute
 defines a sequence, and all necessary conditions in any "when" or
 "not-when" attributes are correctly satisfied for that instance of
 the sequence.

 In determining eligibility, at each position the longest possible
 sequence of code points is evaluated first. If that sequence matches
 a sequence defined in the LGR and satisfies any required context at
 that position, the instances of its constituent code points are
 deemed members of the LGR and evaluation proceeds with the next code
 point following the sequence. If the sequence does not match a
 defined sequence or does not satisfy the required context,
 successively shorter sequences are evaluated, until only a single
 code point remains. The eligibility of that code point is determined
 as described above for an individual code point instance.

 A label must also not trigger any action that results in a
 disposition of "invalid", otherwise it is deemed not eligible. (This
 step may need to be deferred, until variant code point dispositions
 have been determined).

Davies & Freytag Expires November 24, 2016 [Page 44]

Internet-Draft Label Generation Rulesets in XML May 2016

8.1.1. Determining Eligibility using Reflexive Variant Mappings

 For LGRs that contain reflexive variant mappings (defined in
 Section 5.3.4), the final evaluation of eligibility for the label
 must be deferred until variants are generated. In essence, LGRs that
 use this feature treat the original label as the (identity) variant
 of itself. For such LGRs, the ordinary determination of eligibility
 described here is but a first step that generally excludes only a
 subset of invalid labels.

 To further check the validity of a label with reflexive mappings, it
 is not necessary to generate all variant labels. Only a single
 variant needs to be created, where any reflexive variants are applied
 for each code point, and the label disposition is evaluated (as
 described in Section 8.3). A disposition of "invalid" results in the
 label being not eligible. (In the exceptional case where context
 rules are present on reflexive mappings, multiple reflexive variants
 may be defined, but for each original label, at most one of these can
 be valid at each code position. However, see Section 8.4).

8.2. Determining Variants for a Label

 For a given eligible label, the set of variant labels is deemed to
 consist of each possible permutation of original code points and
 substituted code points or sequences defined in "var" elements,
 whereby all "when" and "not-when" attributes are correctly satisfied
 for each "char" or "var" element in the given permutation and all
 applicable whole label evaluation rules are satisfied as follows:

 1. Create each possible permutation of a label, by substituting each
 code point or code point sequence in turn by any defined variant
 mapping (including any reflexive mappings)

 2. Apply variant mappings with "when" or "not-when" attributes only
 if the conditions are satisfied; otherwise they are not defined

 3. Record each of the "type" values on the variant mappings used in
 creating a given variant label in a disposition set; for any
 unmapped code point record the "type" value of any reflexive
 variant (see Section 5.3.4)

 4. Determine the disposition for each variant label per Section 8.3

 5. If the disposition is "invalid", remove the label from the set

 6. If final evaluation of the disposition for the unpermuted label
 per Section 8.3 results in a disposition of "invalid", remove all
 associated variant labels from the set.

Davies & Freytag Expires November 24, 2016 [Page 45]

Internet-Draft Label Generation Rulesets in XML May 2016

 The number of potential permutations can be very large. In practice,
 implementations would use suitable optimizations to avoid having to
 actually create all permutations (see Section 8.5).

 In determining the permuted set of variant labels in step (1) above,
 all eligible partitions into sequences must be evaluated. A label
 "ab" that matches a sequence "ab" defined in the LGR but also matches
 the sequence of individual code points "a" and "b" (both defined in
 the LGR), must be permuted using any defined variant mappings for
 both the sequence "ab" and the code points "a" and "b" individually.

8.3. Determining a Disposition for a Label or Variant Label

 For a given label (variant or original), its disposition is
 determined by evaluating in order of their appearance all actions for
 which the label or variant label satisfies the conditions.

 1. For any label that contains code points or sequences not defined
 in the repertoire, or does not satisfy the context rules on all
 of its code points and variants, the disposition is "invalid".

 2. For all other labels the disposition is given by the value of the
 "disp" attribute for the first action triggered by the label. An
 action is triggered, if all of the following are true:

 * the label matches the whole label evaluation rule given in the
 "match" attribute for that action;

 * the label does not match the whole label evaluation rule given
 in the "not-match" attribute for that action;

 * any of the recorded variant types for a variant label match
 the types given in the "any-variant" attribute for that
 action;

 * all of the recorded variant types for a variant label match
 the types given in the "all-variants" or "only-variants"
 attribute given for that action;

 * in case of an "only-variants" attribute, the label contains
 only code points that are the target of applied variant
 mappings;

 or

 * the action does not contain any "match", "not-match", "any-
 variant", "all-variants", or "only-variants" attributes:
 catch-all.

Davies & Freytag Expires November 24, 2016 [Page 46]

Internet-Draft Label Generation Rulesets in XML May 2016

 3. For any remaining variant label, assign the variant label the
 disposition using the default actions defined in Section 7.6.
 For this step, variant types outside the predefined recommended
 set (see Section 7.3) are ignored.

 4. For any remaining label, set the disposition to "valid".

8.4. Duplicate Variant Labels

 For a poorly designed LGR, it is possible to generate duplicate
 variant labels from the same input label, but with different, and
 potentially conflicting dispositions. Implementations MUST treat any
 duplicate variant labels encountered as an error, irrespective of
 their dispositions.

 This situation can arise in two ways. One is described in
 Section 5.3.5 and involves defining the same variant mapping with two
 context rules that are formally distinct, but nevertheless overlap so
 that they are not mutually exclusive for the same label.

 The other case involves variants defined for sequences, where one
 sequence is a prefix of another (see Section 5.3.1). The following
 shows such an example resulting in conflicting reflexive variants:

 <char cp="0061">
 <var cp="0061" type="allocatable"/>
 </char>
 <char cp="0062"/>
 <char cp="0061 0062">
 <var cp="0061 0062" type="blocked"/>
 </char>

 A label "ab" would generate the variant labels "{a}{b}" and "{ab}"
 where the curly braces show the sequence boundaries as they were
 applied during variant mapping. The result is a duplicate variant
 label "ab", one based on a variant of type "allocatable" plus an
 original code point "b" that has no variant, and another one based on
 a single variant of type "blocked", thus creating two variant labels
 with conflicting dispositions.

 In the general case it is difficult to impossible to prove by
 mechanical inspection of the LGR that duplicate variant labels will
 never occur, so implementations have to be prepared to detect this
 error during variant label generation. The condition is easily
 avoided by careful design of context rules and special attention to
 the relation among code point sequences with variants.

Davies & Freytag Expires November 24, 2016 [Page 47]

Internet-Draft Label Generation Rulesets in XML May 2016

8.5. Checking Labels for Collision

 The obvious method for checking collision between labels is to
 generate the fully permuted set of variants for one of them and see
 whether it contains the other label as a member. As discussed above,
 this can be prohibitive and is not necessary.

 Because of symmetry and transitivity, all variant mappings form
 disjoint sets. In each of these sets, the source and target of each
 mapping are also variants of the sources and targets of all the other
 mappings. However, members of two different sets are never variants
 of each other.

 If two labels have code points at the same position that are members
 of two different of these variant mapping sets, any variant labels of
 one, cannot be variant labels of the other: the sets of their variant
 labels are likewise disjoint. Instead of generating all permutations
 to compare all possible variants, it is enough to find out whether
 code points at the same position belong to the same variant set or
 not.

 For that, it is sufficient to substitute an "index" mapping that
 identifies the set. This index mapping could be, for example, the
 variant mapping for which the target code point (or sequence) comes
 first in some sorting order. This index mapping would, in effect,
 identify the set of variant mappings for that position.

 To check collision then means generating a single variant label from
 the original by substituting the respective "index" value for each
 code point. This results in an "index label". Two labels collide
 whenever the index labels for them are the same.

9. Conversion to and from Other Formats

 Both [RFC3743] and [RFC4290] provide different grammars for IDN
 tables. The formats in those documents are unable to fully support
 the increased requirements of contemporary IDN variant policies.

 This specification is a superset of functionality provided by the
 older IDN table formats, thus any table expressed in those formats
 can be expressed in this new format. Automated conversion can be
 conducted between tables conformant with the grammar specified in
 each document.

 For notes on how to translate an RFC 3743-style table, see
 Appendix B.

Davies & Freytag Expires November 24, 2016 [Page 48]

Internet-Draft Label Generation Rulesets in XML May 2016

10. Media Type

 Well-formed LGRs that comply with this specification SHOULD be
 transmitted with a media type of "application/lgr+xml". This media
 type will signal to an LGR-aware client that the content is designed
 to be interpreted as an LGR.

11. IANA Considerations

 This document requests the following actions from IANA:

11.1. Media Type Registration

 The media type "application/lgr+xml" should be registered to denote
 transmission of label generation rulesets that are compliant with
 this specification, in accordance with [RFC6838].

 Type name: application

 Subtype name: lgr+xml

 Required parameters: N/A

 Optional parameters: charset (as for application/xml per [RFC7303])

 Security considerations: See the security considerations for
 application/xml in [RFC7303] and the specific security considerations
 for Label Generation Rulesets in RFC XXXX (RFC Editor/IANA, please
 replace XXXX with the final number of this document)

 Interoperability considerations: As for application/xml per [RFC7303]

 Published specification: See RFC XXXX (RFC Editor/IANA, please
 replace XXXX with the final number of this document)

 Applications which use this media type: Software using label
 generation rulesets for international identifiers, such as IDNs,
 including registry applications and client validators.

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): .lgr

 Macintosh file type code(s): N/A

Davies & Freytag Expires November 24, 2016 [Page 49]

Internet-Draft Label Generation Rulesets in XML May 2016

 Person & email address for further information:

 Kim Davies <kim.davies@icann.org>

 Asmus Freytag <asmus@unicode.org>

 Intended Usage: COMMON

 Restrictions on usage: N/A

 Author:

 Kim Davies <kim.davies@icann.org>

 Asmus Freytag <asmus@unicode.org>

 Change Controller: IESG

 Provisional registration? (standards tree only): No

11.2. URN Registration

 This specification uses a URN to describe the XML namespace, in
 accordance with [RFC3688].

 URI: urn:ietf:params:xml:ns:lgr-1.0

 Registrant Contact: See the Authors of this document.

 XML: None.

11.3. Disposition Registry

 This document establishes a vocabulary of "Label Generation Ruleset
 Dispositions" which should be reflected as a new IANA registry. This
 registry should be divided into two sub-registries:

 o Standard Dispositions - This registry shall list dispositions that
 have been defined in published specifications, i.e. the
 eligibility for such registrations shall be "Specification
 Required" [RFC5226]. The initial set of registrations shall be
 the five dispositions in this document described in Section 7.3.

 o Private Dispositions - This registry shall list dispositions that
 have been registered "First Come First Served" [RFC5226] by third
 parties with the IANA. Such dispositions must take the form
 "entity:disposition" where the entity is a domain name that
 uniquely identifies the private user of the namespace. For

Davies & Freytag Expires November 24, 2016 [Page 50]

Internet-Draft Label Generation Rulesets in XML May 2016

 example, "example.org:reserved" could be a private extension used
 by the example organization to denote a disposition relating to
 reserved labels. These extensions are not intended to be
 interoperable, but registration is designed to minimize potential
 conflicts. It is strongly recommended any new dispositions that
 require interoperability and have applicability beyond a single
 organization be defined as Standard Dispositions.

 Standard dispositions MUST NOT contain the ":" character in order to
 distinguish them from private dispositions. All disposition names
 shall be in lowercase ASCII.

 The IANA registry should provide data on the name of the disposition,
 the intended purposes, and the registrant or defining specification
 for the disposition.

12. Security Considerations

12.1. LGRs Are Only a Partial Remedy for Problem Space

 Substantially unrestricted use of non-ASCII characters in security-
 relevant identifiers such as domain name labels may cause user
 confusion and invite various types of attacks. In many languages, in
 particular those using complex or large scripts, an attacker has an
 opportunity to divert or confuse users as a result of different code
 points with identical appearance or similar semantics.

 Label Generation Rules provide a partial remedy for these risks by
 supplying a framework for prohibiting inappropriate code points or
 sequences from being registered at all and for permitting "variant"
 code points to be grouped together so that labels containing them may
 be mutually exclusive or registered only to the same owner.

 In addition, by being fully machine processable the format may enable
 automated checks for known weaknesses in label generation rules.
 However, by itself, the format or this specification do not ensure
 that the label generation rules expressed in this format are free of
 risk. Additional approaches may be considered depending on the
 acceptable trade-off between flexibility and risk for a given
 application. One method of managing risk may involve a case-by-case
 evaluation of a proposed label in context with already registered
 labels, for example, when reviewing labels for their degree of visual
 confusability.

Davies & Freytag Expires November 24, 2016 [Page 51]

Internet-Draft Label Generation Rulesets in XML May 2016

12.2. Computational Expense of Complex Tables

 A naive implementation attempting to generate all variant labels for
 a given label could lead to the possibility of exhausting the
 resources on the machine running the LGR processor, potentially
 causing denial-of-service consequences. For many operations, brute
 force generation can be avoided by optimization, and if needed, the
 number of permuted labels can be estimated more cheaply ahead of
 time.

 The implementation of Whole Label Evaluation rules, using certain
 backtracking algorithms, can take exponential time for pathological
 rules or labels and exhaust stack resources. This can be mitigated
 by proper implementation and enforcing the restrictions on
 permissible label length.

13. References

13.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <http://www.rfc-editor.org/info/rfc5646>.

 [UAX42] Unicode Consortium, "Unicode Character Database in XML",
 <http://unicode.org/reports/tr42/>.

 [Unicode-Stability]
 Unicode Consortium, "Unicode Encoding Stability Policy,
 Property Value Stability",
 <http://www.unicode.org/policies/
 stability_policy.html#Property_Value>.

Davies & Freytag Expires November 24, 2016 [Page 52]

Internet-Draft Label Generation Rulesets in XML May 2016

 [Unicode-Versions]
 Unicode Consortium, "Unicode Version Numbering",
 <http://unicode.org/versions/#Version_Numbering>.

 [XML] World Wide Web Consortium, "Extensible Markup Language
 (XML) 1.0", <http://www.w3.org/TR/REC-xml/>.

13.2. Informative References

 [ASIA-TABLE]
 DotAsia Organisation, ".ASIA ZH IDN Language Table".

 [LGR-PROCEDURE]
 Internet Corporation for Assigned Names and Numbers,
 "Procedure to Develop and Maintain the Label Generation
 Rules for the Root Zone in Respect of IDNA Labels",
 <http://www.icann.org/en/resources/idn/
 draft-lgr-procedure-07dec12-en.pdf>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <http://www.rfc-editor.org/info/rfc3688>.

 [RFC3743] Konishi, K., Huang, K., Qian, H., and Y. Ko, "Joint
 Engineering Team (JET) Guidelines for Internationalized
 Domain Names (IDN) Registration and Administration for
 Chinese, Japanese, and Korean", RFC 3743, DOI 10.17487/
 RFC3743, April 2004,
 <http://www.rfc-editor.org/info/rfc3743>.

 [RFC4290] Klensin, J., "Suggested Practices for Registration of
 Internationalized Domain Names (IDN)", RFC 4290, DOI
 10.17487/RFC4290, December 2005,
 <http://www.rfc-editor.org/info/rfc4290>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5564] El-Sherbiny, A., Farah, M., Oueichek, I., and A. Al-Zoman,
 "Linguistic Guidelines for the Use of the Arabic Language
 in Internet Domains", RFC 5564, DOI 10.17487/RFC5564,
 February 2010, <http://www.rfc-editor.org/info/rfc5564>.

Davies & Freytag Expires November 24, 2016 [Page 53]

Internet-Draft Label Generation Rulesets in XML May 2016

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891, DOI 10.17487/
 RFC5891, August 2010,
 <http://www.rfc-editor.org/info/rfc5891>.

 [RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
 Internationalized Domain Names for Applications (IDNA)",
 RFC 5892, DOI 10.17487/RFC5892, August 2010,
 <http://www.rfc-editor.org/info/rfc5892>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13, RFC
 6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

 [RFC7303] Thompson, H. and C. Lilley, "XML Media Types", RFC 7303,
 DOI 10.17487/RFC7303, July 2014,
 <http://www.rfc-editor.org/info/rfc7303>.

 [TDIL-HINDI]
 Technology Development for Indian Languages (TDIL)
 Programme, "Devanagari Script Behaviour for Hindi".

 [UAX44] Unicode Consortium, "Unicode Character Database",
 <http://unicode.org/reports/tr44/>.

 [WLE-RULES]
 Internet Corporation for Assigned Names and Numbers, "WLE
 Rules", <https://community.icann.org/download/
 attachments/43989034/WLE-Rules.pdf>.

Appendix A. Example Tables

 The following presents a minimal LGR table defining the lower case
 LDH (letter-digit-hyphen) repertoire and containing no rules or
 metadata elements. Many simple LGR tables will look quite similar,
 except that they would contain some metadata.

 <?xml version="1.0" encoding="utf-8"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <data>
 <char cp="002D" comment="HYPHEN (-)" />
 <range first-cp="0030" last-cp="0039"
 comment="DIGIT ZERO - DIGIT NINE" />
 <range first-cp="0061" last-cp="007A"
 comment="LATIN SMALL LETTER A - LATIN SMALL LETTER Z" />
 </data>
 </lgr>

Davies & Freytag Expires November 24, 2016 [Page 54]

Internet-Draft Label Generation Rulesets in XML May 2016

 In practice, any LGR that includes the hyphen might also contain
 rules invalidating any labels beginning, ending, and containing a
 hyphen in the third and fourth positions as required by [RFC5891].

 <?xml version="1.0" encoding="utf-8"?>
 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <data>
 <char cp="002D"
 not-when="hyphen-minus-disallowed" />
 <range first-cp="0030" last-cp="0039" />
 <range first-cp="0061" last-cp="007A" />
 </data>
 <rules>
 <rule name="hyphen-minus-disallowed"
 comment="RFC5891 restrictions on U+002D">
 <choice>
 <rule comment="no leading hyphen">
 <look-behind>
 <start />
 </look-behind>
 <anchor />
 </rule>
 <rule comment="no trailing hyphen">
 <anchor />
 <look-ahead>
 <end />
 </look-ahead>
 </rule>
 <rule comment="no consecutive hyphens
 in third and fourth positions">
 <look-behind>
 <start />
 <any />
 <any />
 <char cp="002D" comment="hyphen-minus" />
 </look-behind>
 <anchor />
 </rule>
 </choice>
 </rule>
 </rules>
 </lgr>

 The following sample LGR shows a more complete collection of the
 elements and attributes defined in this specification in a somewhat
 typical context.

 <?xml version="1.0" encoding="utf-8"?>

Davies & Freytag Expires November 24, 2016 [Page 55]

Internet-Draft Label Generation Rulesets in XML May 2016

 <!-- This example uses a large subset of the features of this
 specification. It does not include every set operator,
 match operator element, or action trigger attribute, their
 use being largely parallel to the ones demonstrated. -->

 <lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
 <!-- meta element with all optional elements -->
 <meta>
 <version comment="initial version">1</version>
 <date>2010-01-01</date>
 <language>sv</language>
 <scope type="domain">example.com</scope>
 <validity-start>2010-01-01</validity-start>
 <validity-end>2013-12-31</validity-end>
 <description type="text/html">
 <![CDATA[
 This language table was developed with the
 Swedish
 examples institute.
]]>
 </description>
 <unicode-version>6.3.0</unicode-version>
 <references>
 <reference id="0" comment="the most recent" >The
 Unicode Standard 6.2</reference>
 <reference id="1" >RFC 5892</reference>
 <reference id="2" >Big-5: Computer Chinese Glyph
 and Character Code Mapping Table, Technical Report
 C-26, 1984</reference>
 </references>
 </meta>
 <!-- the data section describing the repertoire -->
 <data>
 <!-- single code point "char" element -->
 <char cp="002D" ref="1" comment="HYPHEN" />

 <!-- range elements for contiguous code points, with tags -->
 <range first-cp="0030" last-cp="0039" ref="1" tag="digit" />
 <range first-cp="0061" last-cp="007A" ref ="1" tag="letter" />

 <!-- code point sequence -->
 <char cp="006C 00B7 006C" comment="Catalan middle dot" />

 <!-- alternatively use a when rule -->
 <char cp="00B7" when="catalan-middle-dot" />

 <!-- code point with context rule -->
 <char cp="200D" when="joiner" ref="2" />

Davies & Freytag Expires November 24, 2016 [Page 56]

Internet-Draft Label Generation Rulesets in XML May 2016

 <!-- code points with variants -->
 <char cp="4E16" tag="preferred" ref="0">
 <var cp="4E17" type="blocked" ref="2" />
 <var cp="534B" type="allocatable" ref="2" />
 </char>
 <char cp="4E17" ref="0">
 <var cp="4E16" type="allocatable" ref="2" />
 <var cp="534B" type="allocatable" ref="2" />
 </char>
 <char cp="534B" ref="0">
 <var cp="4E16" type="allocatable" ref="2" />
 <var cp="4E17" type="blocked" ref="2" />
 </char>
 </data>

 <!-- Context and whole label rules -->
 <rules>
 <!-- Require the given code point to be between two 006C -->
 <rule name="catalan-middle-dot" ref="0">
 <look-behind>
 <char cp="006C" />
 </look-behind>
 <anchor />
 <look-ahead>
 <char cp="006C" />
 </look-ahead>
 </rule>

 <!-- example of a context rule based on property -->
 <class name="virama" property="ccc:9" />
 <rule name="joiner" ref="1" >
 <look-behind>
 <class by-ref="virama" />
 </look-behind>
 <anchor />
 </rule>

 <!-- example of using set operators -->

 <!-- Subtract vowels from letters to get
 consonant, demonstrating the different
 set notations and the difference operator -->
 <difference name="consonants">
 <class comment="all letters">0061-007A</class>
 <class comment="all vowels">
 0061 0065 0069 006F 0075
 </class>
 </difference>

Davies & Freytag Expires November 24, 2016 [Page 57]

Internet-Draft Label Generation Rulesets in XML May 2016

 <!-- by using the start and end, rule matches whole label -->
 <rule name="three-or-more-consonants">
 <start />
 <!-- reference the class defined by the difference
 and require three or more matches -->
 <class by-ref="consonants" count="3+" />
 <end />
 </rule>

 <!-- rule for negative matching -->
 <rule name="non-preferred"
 comment="matches any non-preferred code point">
 <complement comment="non-preferred" >
 <class from-tag="preferred" />
 </complement>
 </rule>

 <!-- actions triggered by matching rules and/or
 variant types -->
 <action disp="invalid"
 match="three-or-more-consonants" />
 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" all-variants="allocatable"
 not-match="non-preferred" />
 </rules>
 </lgr>

Appendix B. How to Translate RFC 3743 based Tables into the XML Format

 As a background, the [RFC3743] rules work as follows:

 1. The Original (requested) label is checked to make sure that all
 the code points are a subset of the repertoire.

 2. If it passes the check, the Original label is allocatable.

 3. Generate the all-simplified and all-traditional variant labels
 (union of all the labels generated using all the simplified
 variants of the code points) for allocation.

 To illustrate by example, here is one of the more complicated set of
 variants:

Davies & Freytag Expires November 24, 2016 [Page 58]

Internet-Draft Label Generation Rulesets in XML May 2016

 U+4E7E
 U+4E81
 U+5E72
 U+5E79
 U+69A6
 U+6F27

 The following shows the relevant section of the Chinese language
 table published by the .ASIA registry [ASIA-TABLE]. Its entries
 read:

 <codepoint>;<simpl-variant(s)>;<trad-variant(s)>;<other-variant(s)>

 These are the lines corresponding to the set of variants listed above

 U+4E7E;U+4E7E,U+5E72;U+4E7E;U+4E81,U+5E72,U+6F27,U+5E79,U+69A6
 U+4E81;U+5E72;U+4E7E;U+5E72,U+6F27,U+5E79,U+69A6
 U+5E72;U+5E72;U+5E72,U+4E7E,U+5E79;U+4E7E,U+4E81,U+69A6,U+6F27
 U+5E79;U+5E72;U+5E79;U+69A6,U+4E7E,U+4E81,U+6F27
 U+69A6;U+5E72;U+69A6;U+5E79,U+4E7E,U+4E81,U+6F27
 U+6F27;U+4E7E;U+6F27;U+4E81,U+5E72,U+5E79,U+69A6

 The corresponding data section XML format would look like this:

 <data>
 <char cp="4E7E">
 <var cp="4E7E" type="both" comment="identity" />
 <var cp="4E81" type="blocked" />
 <var cp="5E72" type="simp" />
 <var cp="5E79" type="blocked" />
 <var cp="69A6" type="blocked" />
 <var cp="6F27" type="blocked" />
 </char>
 <char cp="4E81">
 <var cp="4E7E" type="trad" />
 <var cp="5E72" type="simp" />
 <var cp="5E79" type="blocked" />
 <var cp="69A6" type="blocked" />
 <var cp="6F27" type="blocked" />
 </char>
 <char cp="5E72">
 <var cp="4E7E" type="trad"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="both" comment="identity"/>
 <var cp="5E79" type="trad"/>
 <var cp="69A6" type="blocked"/>
 <var cp="6F27" type="blocked"/>
 </char>

Davies & Freytag Expires November 24, 2016 [Page 59]

Internet-Draft Label Generation Rulesets in XML May 2016

 <char cp="5E79">
 <var cp="4E7E" type="blocked"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="simp"/>
 <var cp="5E79" type="trad" comment="identity"/>
 <var cp="69A6" type="blocked"/>
 <var cp="6F27" type="blocked"/>
 </char>
 <char cp="69A6">
 <var cp="4E7E" type="blocked"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="simp"/>
 <var cp="5E79" type="blocked"/>
 <var cp="69A6" type="trad" comment="identity"/>
 <var cp="6F27" type="blocked"/>
 </char>
 <char cp="6F27">
 <var cp="4E7E" type="simp"/>
 <var cp="4E81" type="blocked"/>
 <var cp="5E72" type="blocked"/>
 <var cp="5E79" type="blocked"/>
 <var cp="69A6" type="blocked"/>
 <var cp="6F27" type="trad" comment="identity"/>
 </char>
 </data>

 Here the simplified variants have been given a type of "simp", the
 traditional variants one of "trad" and all other ones are given
 "blocked".

 Because some variant mappings show in more than one column, while the
 XML format allows only a single type value, they have been given the
 type of "both".

 Note that some variant mappings map to themselves (identity), that is
 the mapping is reflexive (see Section 5.3.4). In creating the
 permutation of all variant labels, these mappings have no effect,
 other than adding a value to the variant type list for the variant
 label containing them.

 In the example so far, all of the entries with type="both" are also
 mappings where source and target are identical. That is, they are
 reflexive mappings as defined in Section 5.3.4.

 Given a label "U+4E7E U+4E81", the following labels would be ruled
 allocatable under [RFC3743] based on how that standard is commonly
 implemented in domain registries:

Davies & Freytag Expires November 24, 2016 [Page 60]

Internet-Draft Label Generation Rulesets in XML May 2016

 Original label: U+4E7E U+4E81
 Simplified label 1: U+4E7E U+5E72
 Simplified label 2: U+5E72 U+5E72
 Traditional label: U+4E7E U+4E7E

 However, if allocatable labels were generated simply by a straight
 permutation of all variants with type other than type="blocked" and
 without regard to the simplified and traditional variants, we would
 end up with an extra allocatable label of "U+5E72 U+4E7E". This
 label is comprises both a Simplified Chinese character and a
 Traditional Chinese code point and therefore shouldn’t be
 allocatable.

 To more fully resolve the dispositions requires several actions to be
 defined as described in Section 7.2.2 which will override the default
 actions from Section 7.6. After blocking all labels that contain a
 variant with type "blocked", these actions will set to allocatable
 labels based on the following variant types: "simp", "trad" and
 "both". Note that these variant types do not directly relate to
 dispositions for the variant label, but that the actions will resolve
 them to the standard dispositions on labels, to with "blocked" and
 "allocatable".

 To resolve label dispositions requires five actions to be defined (in
 the rules section of this document) these actions apply in order and
 the first one triggered, defines the disposition for the label. The
 actions are:

 1. block all variant labels containing at least one blocked variant.

 2. allocate all labels that consist entirely of variants that are
 "simp" or "both"

 3. also allocate all labels that are entirely "trad" or "both"

 4. block all surviving labels containing any one of the dispositions
 "simp" or "trad" or "both" because they are now known to be part
 of an undesirable mixed simplified/traditional label

 5. allocate any remaining label; the original label would be such a
 label.

 The rules declarations would be represented as:

Davies & Freytag Expires November 24, 2016 [Page 61]

Internet-Draft Label Generation Rulesets in XML May 2016

 <rules>
 <!--Action elements - order defines precedence-->
 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="simp both" />
 <action disp="allocatable" only-variants="trad both" />
 <action disp="blocked" any-variant="simp trad" />
 <action disp="allocatable" comment="catch-all" />
 </rules>

 Up to now, variants with type "both" have occurred only associated
 with reflexive variant mappings. The "action" elements defined above
 rely on the assumption that this is always the case. However,
 consider the following set of variants:

 U+62E0;U+636E;U+636E;U+64DA
 U+636E;U+636E;U+64DA;U+62E0
 U+64DA;U+636E;U+64DA;U+62E0

 The corresponding XML would be:

 <char cp="62E0">
 <var cp="636E" type="both" comment="both, but not reflexive" />
 <var cp="64DA" type="blocked" />
 </char>
 <char cp="636E">
 <var cp="636E" type="simp" comment="reflexive, but not both" />
 <var cp="64DA" type="trad" />
 <var cp="62E0" type="blocked" />
 </char>
 <char cp="64DA">
 <var cp="636E" type="simp" />
 <var cp="64DA" type="trad" comment="reflexive" />
 <var cp="62E0" type="blocked" />
 </char>

 To make such variant sets work requires a way to selectively trigger
 an action based on whether a variant type is associated with an
 identity or reflexive mapping, or is associated with an ordinary
 variant mapping. This can be done by adding a prefix "r-" to the
 "type" attribute on reflexive variant mappings. For example the
 "trad" for code point U+64DA in the preceding figure would become
 "r-trad".

 With the dispositions prepared in this way, only a slight
 modification to the actions is needed to yield the correct set of
 allocatable labels:

Davies & Freytag Expires November 24, 2016 [Page 62]

Internet-Draft Label Generation Rulesets in XML May 2016

 <action disp="blocked" any-variant="blocked" />
 <action disp="allocatable" only-variants="simp r-simp both r-both" />
 <action disp="allocatable" only-variants="trad r-trad both r-both" />
 <action disp="blocked" all-variants="simp trad both" />
 <action disp="allocatable" />

 The first three actions get triggered by the same labels as before.

 The fourth action blocks any label that combines an original code
 point with any mix of ordinary variant mappings; however no labels
 that are a combination of only original code points (code points
 having either no variant mappings or a reflexive mapping) would be
 affected. These are the original labels and they are allocated in
 the last action.

 Using this scheme of assigning types to ordinary and reflexive
 variants, all RFC 3743-style tables can be converted to XML. By
 defining a set of actions as outlined above, the LGR will yield the
 correct set of allocatable variants: all variants consisting
 completely of variant code points preferred for simplified or
 traditional, respectively, will be allocated, as will be the original
 label. All other variant labels will be blocked.

Appendix C. Indic Syllable Structure Example

 In LGRs for Indic scripts it may be desirable to restrict valid
 labels to sequences of valid Indic syllables, or aksharas. This
 appendix gives a sample set of rules designed to enforce this
 restriction.

 An example of a BNF from for an akshara which has been published in
 "Devanagari Script Behavior for Hindi" [TDIL-HINDI]. The rules for
 other languages and scripts used in India are expected to be
 generally similar.

 For Hindi, the BNF has the form:

 V[m]|{C[N]H}C[N](H|[v][m])

 Where:

 V (upper case) is any independent vowel

 m is any vowel modifier (Devanagari Anusvara, Visarga, and
 Candrabindu)

 C is any consonant (with inherent vowel)

Davies & Freytag Expires November 24, 2016 [Page 63]

Internet-Draft Label Generation Rulesets in XML May 2016

 N is Nukta

 H is a Halant (or Virama)

 v (lower case) is any dependent vowel sign (matra)

 {} encloses items which may be repeated one or more times

 [] encloses items which may or may not be present

 | separates items, out of which only one can be present

 By using the Unicode character property "InSC" or
 "Indic_Syllabic_Category" which corresponds rather directly to the
 classification of characters in the BNF above, we can translate the
 BNF into a set of WLE rules matching the definition of an akshara.

 <rules>
 <!--Character Class Definitions go here-->
 <class name="halant" property="InSC:Virama" />
 <union name="vowel-modifier">
 <class property="InSC:Visarga" />
 <class property="InSC:Bindu" comment="includes anusvara" />
 </union>
 <!--Whole label evaluation and Context rules go here-->
 <rule name="consonant-with-optional-nukta">
 <class by-ref="InSC:Consonant" />
 <class by-ref="InSC:Nukta" count="0:1"/>
 </rule>
 <rule name="independent-vowel-with-optional-modifier">
 <class by-ref="InSC:Vowel_Independent" />
 <class by-ref="vowel-modifier" count="0:1" />
 </rule>
 <rule name="optional-dependent-vowel-with-opt-modifier" >
 <class by-ref="InSC:Vowel_Dependent" count="0:1" />
 <class by-ref="vowel-modifier" count="0:1" />
 </rule>
 <rule name="consonant-cluster">
 <rule count="0+">
 <rule by-ref="consonant-with-optional-nukta" />
 <class by-ref="halant" />
 </rule>
 <rule by-ref="consonant-with-optional-nukta" />
 <choice>
 <class by-ref="halant" />
 <rule by-ref="optional-dependent-vowel-with-opt-modifier" />
 </choice>
 </rule>

Davies & Freytag Expires November 24, 2016 [Page 64]

Internet-Draft Label Generation Rulesets in XML May 2016

 <rule name="akshara">
 <choice>
 <rule by-ref="independent-vowel-with-optional-modifier" />
 <rule by-ref="consonant-cluster" />
 </choice>
 </rule>
 <rule name="WLE-akshara-or-other" comment="series of one or
 more aksharas, possibly alternating with other types of
 code points such as digits">
 <start />
 <choice count="1+">
 <class property="InSC:other" />
 <rule by-ref="akshara" />
 </choice>
 <end />
 </rule>
 <!--Action elements go here - order defines precedence-->
 <action disp="invalid" not-match="WLE-akshara-or-other" />
 </rules>

 With the rules and classes as defined above, the final action assigns
 a disposition of "invalid" to all labels that are not composed of a
 sequence of well-formed aksharas, optionally interspersed with other
 characters, perhaps digits, for example.

 The relevant Unicode character property could be replicated by
 tagging repertoire values directly in the LGR which would remove the
 dependency on any specific version of the Unicode Standard.

 Generally, dependent vowels may only follow consonant expressions,
 however, for some scripts, like Bengali, the Unicode standard
 supports sequences of dependent vowels or their application on
 independent vowels. This makes the definition of akshara less
 restrictive.

 It is possible to reduce the complexity of these rules by defining
 alternate rules which simply define the permissible pair-wise context
 of adjacent code points by character class--such as the rule that a
 Halant can only follow a (nuktated) consonant. (See the example in
 [WLE-RULES]).

Appendix D. RelaxNG Compact Schema

 <CODE BEGINS>
 #
 # LGR XML Schema 1.0
 #

Davies & Freytag Expires November 24, 2016 [Page 65]

Internet-Draft Label Generation Rulesets in XML May 2016

 default namespace = "urn:ietf:params:xml:ns:lgr-1.0"

 #
 # SIMPLE TYPES
 #

 # RFC 5646 language tag (e.g. "de", "und-Latn", etc.)
 language-tag = xsd:token

 # The scope to which the LGR applies. For the "domain" scope type it
 # should be a fully qualified domain name.
 scope-value = xsd:token {
 minLength = "1"
 }

 ## a single code point
 code-point = xsd:token {
 pattern = "[0-9A-F]{4,6}"
 }

 ## a space-separated sequence of code points
 code-point-sequence = xsd:token {
 pattern = "[0-9A-F]{4,6}([0-9A-F]{4,6})+"
 }

 ## single code point, or a sequence of code points, or empty string
 code-point-literal = code-point | code-point-sequence | ""

 ## code point or sequence only
 non-empty-code-point-literal = code-point | code-point-sequence

 ## code point sent represented in short form
 code-point-set-shorthand = xsd:token {
 pattern = "([0-9A-F]{4,6}|[0-9A-F]{4,6}-[0-9A-F]{4,6})"
 ˜ "(([0-9A-F]{4,6}|[0-9A-F]{4,6}-[0-9A-F]{4,6}))*"
 }

 ## dates are used in information fields in the meta
 ## section ("YYYY-MM-DD")
 date-pattern = xsd:token {
 pattern = "\d{4}-\d\d-\d\d"
 }

 ## variant type
 ## the variant type MUST be non-emtpy and MUST NOT
 ## start with a "_", using xsd:NMTOKEN here because
 ## we need space-separated lists of them
 variant-type = xsd:NMTOKEN

Davies & Freytag Expires November 24, 2016 [Page 66]

Internet-Draft Label Generation Rulesets in XML May 2016

 ## variant type list for action triggers
 ## the list MUST NOT be empty and entries MUST NOT
 ## start with a "_"
 variant-type-list = xsd:NMTOKENS

 ## reference to a rule name (used in "when" and "not-when"
 ## attributes, as well as the "by-ref" attribute of the "rule"
 ## element.)
 rule-ref = xsd:IDREF

 ## a space-separated list of tags. Tags should generally follow
 ## xsd:Name syntax. However, we are using the xsd:NMTOKENS here
 ## because there is no native XSD datatype for space-separated
 ## xsd:Name
 tags = xsd:NMTOKENS

 ## The value space of a "from-tag" attribute. Although it is closer
 ## to xsd:IDREF lexically and semantically, tags are not unique in
 ## the document. As such, we are unable to take advantage of
 ## facilities provided by a validator. xsd:NMTOKEN is used instead of
 ## the stricter xsd:Names here so as to be consistent with the above.
 tag-ref = xsd:NMTOKEN

 ## an identifier type (used by "name" attributes).
 identifier = xsd:ID

 ## used in the class "by-ref" attribute to reference another class of
 ## the same "name" attribute value.
 class-ref = xsd:IDREF

 ## count attribute pattern ("n", "n+" or "n:m")
 count-pattern = xsd:token {
 pattern = "\d+(\+|:\d+)?"
 }

 ## ref attribute pattern
 ## space separated list of id attribute valiues for
 ## reference elements. These reference ids
 ## must be declared in a reference element
 ## before they can be used in a ref attribute
 ref-pattern = xsd:token {
 pattern = "[\-_.:0-9A-Z]+([\-_.:0-9A-Z]+)*"
 }

 #
 # STRUCTURES
 #

Davies & Freytag Expires November 24, 2016 [Page 67]

Internet-Draft Label Generation Rulesets in XML May 2016

 ## Representation of a single code point, or a sequence of code
 ## points
 char = element char {
 attribute cp { code-point-literal },
 attribute comment { text }?,
 attribute when { rule-ref }?,
 attribute not-when { rule-ref }?,
 attribute tag { tags }?,
 attribute ref { ref-pattern }?,
 variant*
 }

 ## Representation of a range of code points
 range = element range {
 attribute first-cp { code-point },
 attribute last-cp { code-point },
 attribute comment { text }?,
 attribute when { rule-ref }?,
 attribute not-when { rule-ref }?,
 attribute tag { tags }?,
 attribute ref { ref-pattern }?
 }

 ## Representation of a variant code point or sequence
 variant = element var {
 attribute cp { code-point-literal },
 attribute type { xsd:NMTOKEN }?,
 attribute when { rule-ref }?,
 attribute not-when { rule-ref }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?
 }

 #
 # Classes
 #

 ## a "class" element that references the name of another "class"
 ## (or set-operator like "union") defined elsewhere.
 ## If used as a matcher (appearing under a "rule" element),
 ## the "count" attribute may be present.
 class-invocation = element class { class-invocation-content }

 class-invocation-content =
 attribute by-ref { class-ref },
 attribute count { count-pattern }?,

Davies & Freytag Expires November 24, 2016 [Page 68]

Internet-Draft Label Generation Rulesets in XML May 2016

 attribute comment { text }?

 ## defines a new class (set of code points) using Unicode property
 ## or code points of the same tag value or code point literals
 class-declaration = element class { class-declaration-content }

 class-declaration-content =
 # "name" attribute MUST be present if this is a "top-level"
 # class declaration, i.e. appearing directly under the "rules"
 # element. Otherwise, it MUST be absent.
 attribute name { identifier }?,
 # If used as a matcher (appearing in a "rule" element, but not
 # when nested inside a set operator or class), the "count"
 # attribute may be present. Otherwise, it MUST be absent.
 attribute count { count-pattern }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 (
 # define the class by property (e.g. property="sc:Latn"), OR
 attribute property { xsd:NMTOKEN }
 # define the class by tagged code points, OR
 | attribute from-tag { tag-ref }
 # text node to allow for shorthand notation
 # e.g. "0061 0062-0063"
 | code-point-set-shorthand
)

 class-invocation-or-declaration = element class {
 class-invocation-content | class-declaration-content
 }

 class-or-set-operator-nested =
 class-invocation-or-declaration | set-operator

 class-or-set-operator-declaration =
 # a "class" element or set operator (effectively defining a class)
 # directly in the "rules" element.
 class-declaration | set-operator

 #
 # Set operators
 #

 complement-operator = element complement {
 attribute name { identifier }?,
 attribute comment { text }?,

Davies & Freytag Expires November 24, 2016 [Page 69]

Internet-Draft Label Generation Rulesets in XML May 2016

 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e. nested in a <rule> element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested
 }

 union-operator = element union {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e. nested in a <rule> element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 # needs two or more child elements
 class-or-set-operator-nested+
 }

 intersection-operator = element intersection {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e. nested in a <rule> element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 class-or-set-operator-nested
 }

 difference-operator = element difference {
 attribute name { identifier }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e. nested in a <rule> element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 class-or-set-operator-nested
 }

 symmetric-difference-operator = element symmetric-difference {
 attribute name { identifier }?,
 attribute comment { text }?,

Davies & Freytag Expires November 24, 2016 [Page 70]

Internet-Draft Label Generation Rulesets in XML May 2016

 attribute ref { ref-pattern }?,
 # "count" attribute MUST only be used when this set-operator is
 # used as a matcher (i.e. nested in a <rule> element but not
 # inside a set-operator or class)
 attribute count { count-pattern }?,
 class-or-set-operator-nested,
 class-or-set-operator-nested
 }

 ## operators that transform class(es) into a new class.
 set-operator = complement-operator
 | union-operator
 | intersection-operator
 | difference-operator
 | symmetric-difference-operator

 #
 # Match operators (matchers)
 #

 any-matcher = element any {
 attribute count { count-pattern }?,
 attribute comment { text }?
 }

 choice-matcher = element choice {
 ## "count attribute MUST only be used when the choice-matcher
 ## contains no nested "start", "end", "anchor", "look-behind"
 ## or "look-ahead" operators and no nested rule-matchers
 ## containing any of these elements
 attribute count { count-pattern }?,
 attribute comment { text }?,
 # two or more match operators
 match-operator-choice,
 match-operator-choice+
 }

 char-matcher =
 # for use as a matcher - like "char" but without a "tag" attribute
 element char {
 attribute cp { non-empty-code-point-literal },
 # If used as a matcher (appearing in a "rule" element), the
 # "count" attribute may be present. Otherwise, it MUST be
 # absent.
 attribute count { count-pattern }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?
 }

Davies & Freytag Expires November 24, 2016 [Page 71]

Internet-Draft Label Generation Rulesets in XML May 2016

 start-matcher = element start {
 attribute comment { text }?
 }

 end-matcher = element end {
 attribute comment { text }?
 }

 anchor-matcher = element anchor {
 attribute comment { text }?
 }

 look-ahead-matcher = element look-ahead {
 attribute comment { text }?,
 match-operators-non-pos
 }
 look-behind-matcher = element look-behind {
 attribute comment { text }?,
 match-operators-non-pos
 }

 ## non-positional match operator that can be used as a direct child
 ## element of the choice matcher.
 match-operator-choice = (
 any-matcher | choice-matcher | start-matcher | end-matcher
 | char-matcher | class-or-set-operator-nested | rule-matcher
)

 ## non-positional match operators do not contain any anchor,
 ## look-behind or look-ahead elements.
 match-operators-non-pos = (
 start-matcher?,
 (any-matcher | choice-matcher | char-matcher
 | class-or-set-operator-nested | rule-matcher)*,
 end-matcher?
)

 ## positional match operators have an anchor element, which may be
 ## preceeded by a look-behind element, or followed by a look-ahead
 ## element, or both.
 match-operators-pos =
 look-behind-matcher?, anchor-matcher, look-ahead-matcher?

 match-operators = match-operators-non-pos | match-operators-pos

 #
 # Rules

Davies & Freytag Expires November 24, 2016 [Page 72]

Internet-Draft Label Generation Rulesets in XML May 2016

 #

 # top-level rule must have "name" attribute
 rule-declaration-top = element rule {
 attribute name { identifier },
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 match-operators
 }

 ## rule element used as a matcher (either by-ref or contains other
 ## match operators itself)
 rule-matcher =
 element rule {
 ## "count attribute MUST only be used when the rule-matcher
 ## contains no nested "start", "end", "anchor", "look-behind"
 ## or "look-ahead" operators and no nested rule-matchers
 ## containing any of these elements
 attribute count { count-pattern }?,
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 (attribute by-ref { rule-ref } | match-operators)
 }

 #
 # Actions
 #

 action-declaration = element action {
 attribute comment { text }?,
 attribute ref { ref-pattern }?,
 # dispositions are often named after variant types or vice versa
 attribute disp { variant-type },
 (attribute match { rule-ref }
 | attribute not-match { rule-ref })?,
 (attribute any-variant { variant-type-list }
 | attribute all-variants { variant-type-list }
 | attribute only-variants { variant-type-list })?
 }

 # DOCUMENT STRUCTURE

 start = lgr
 lgr = element lgr {
 meta-section?,
 data-section,
 rules-section?

Davies & Freytag Expires November 24, 2016 [Page 73]

Internet-Draft Label Generation Rulesets in XML May 2016

 }

 ## Meta section - information recorded with an label
 ## generation ruleset that generally does not affect machine
 ## processing (except for unicode-version).
 ## However, if any "class-declaration" uses the "property" attribute
 ## a unicode-version MUST be present.
 meta-section = element meta {
 element version {
 attribute comment { text }?,
 text
 }?
 & element date { date-pattern }?
 & element language { language-tag }*
 & element scope {
 # type may by "domain" or an application-defined value
 attribute type { xsd:NCName },
 scope-value
 }*
 & element validity-start { date-pattern }?
 & element validity-end { date-pattern }?
 & element unicode-version {
 xsd:token {
 pattern = "\d+\.\d+\.\d+"
 }
 }?
 & element description {
 # this SHOULD be a valid MIME type
 attribute type { text }?,
 text
 }?
 & element references {
 element reference {
 attribute id {
 xsd:token {
 # limit id attribute to uppercase letters,
 # digits and a few punctuation marks; use of
 # integers is RECOMMENDED
 pattern = "[\-_.:0-9A-Z]*"
 minLength = "1"
 }
 },
 attribute comment { text }?,
 text
 }*
 }?
 }

Davies & Freytag Expires November 24, 2016 [Page 74]

Internet-Draft Label Generation Rulesets in XML May 2016

 data-section = element data { (char | range)+ }

 ## Note that action declarations are strictly order dependent.
 ## class-or-set-operator-declaration and rule-declaration-top
 ## are weakly order dependent, they must precede first use of the
 ## identifier via by-ref.
 rules-section = element rules {
 (class-or-set-operator-declaration
 | rule-declaration-top
 | action-declaration)*
 }

 <CODE ENDS>

Appendix E. Acknowledgements

 This format builds upon the work on documenting IDN tables by many
 different registry operators. Notably, a comprehensive language
 table for Chinese, Japanese and Korean was developed by the "Joint
 Engineering Team" [RFC3743] that is the basis of many registry
 policies; and a set of guidelines for Arabic script registrations
 [RFC5564] was published by the Arabic-language community.

 Contributions that have shaped this document have been provided by
 Francisco Arias, Julien Bernard, Mark Davis, Martin Duerst, Paul
 Hoffman, Sarmad Hussain, Barry Leiba, Alexander Mayrhofer, Alexey
 Melnikov, Nicholas Ostler, Thomas Roessler, Audric Schiltknecht,
 Steve Sheng, Michel Suignard, Andrew Sullivan, Wil Tan and John
 Yunker.

Appendix F. Change History

 This appendix to be removed prior to final publication.

 draft-davies-idntables-00 Initial draft.

 draft-davies-idntables-01 Add an XML Namespace, and fix other XML
 nits. Add support for sequences of code points. Improve on
 consistently using Unicode nomenclature.

 draft-davies-idntables-02 Add support for validity periods.

 draft-davies-idntables-03 Incorporate requirements from the Label
 Generation Ruleset Procedure for the DNS Root Zone. These
 requirements include a detailed grammar for specifying whole-
 label variants, and the ability to explicitly declare of the
 actions associated with a specific variant. The document also
 consistently applies the term "Label Generation Ruleset", rather

Davies & Freytag Expires November 24, 2016 [Page 75]

Internet-Draft Label Generation Rulesets in XML May 2016

 than "IDN table", to reflect the policy term now being used to
 describe these.

 draft-davies-idntables-04 Support reference information per
 [RFC3743]. Update description in response to feedback. Extend
 the context rules to "char" elements and allow for inverse
 matching ("not-when"). Extend the description of label
 processing and implied actions, and allow for actions that
 reference disposition attributes on any or all variant mappings
 used in the generation of a variant label.

 draft-davies-idntables-05 Change the name of the "disposition"
 attribute to "disp". Add comment attribute on version and
 reference elements. Allow empty "cp" attributes in char
 elements to support expressing symmetric mapping of null
 variants. Describe use of variants that map identically.
 Clarify how actions are triggered, in particular based on
 variant dispositions, as well as description of default actions.
 Revise description of processing a label and its variants. Move
 example table at the head of appendices. Add "only-variants"
 attribute. Change "name" attribute to "by-ref" attribute for
 referencing named classes and rules. Change "not" to
 "complement". Remove "match" attribute on rules as redundant if
 "start" and "end" are supported. Rename "match" element to
 "anchor" as better fitting its function and removing confusion
 with both the "match" attribute on actions as well as the
 generic term Match Operator. Augmented the examples relevant to
 [RFC3743].

 draft-davies-idntables-06 Extend the discussion of reflexive
 variants and their use; includes update of the appendix on
 converting tables in the style of [RFC3743]. Improve
 description of tagging and clarify that it doesn’t apply to
 sequences. Specify that root zone uses ".". Add an appendix
 with an Indic Syllable Structure example. Extend count
 attribute to allow maximal counts.

 draft-davies-idntables-07 Change "byref" to "by-ref". Add list of
 recommended properties. Change "location" to "positional" for
 collective name of start/end match operators. Use from-tag
 instead of by-ref for tag-based classes. Made optional or
 mutually exclusive nature of some attributes more explicit.
 Allowing "comment" attributes on all child elements of "rules"
 except "char" and "range" elements used as child elements of
 "class". Recast the design goals and requirements at the start
 of the document. Reword aspects of the document to make it
 clear the format’s application is not limited only to domain
 names.

Davies & Freytag Expires November 24, 2016 [Page 76]

Internet-Draft Label Generation Rulesets in XML May 2016

 draft-davies-idntables-08 Change "domain" to scope with
 type="domain". Reword in several places for clarity. Flesh out
 note on security. Change "disp" to "type" for variants, to mark
 that these attributes do not necessarily correspond one-to-one
 to variant label dispositions. Add example of variant type
 triggers. Remove "long form" of class definition.

 draft-davies-idntables-09 Grammatical updates, clarity improvements.
 Altered some DNS-specific terminology.

 draft-davies-idntables-10 Added convention for out-of-repertoire
 variants, additional examples of when rules in the context of
 symmetry, isolated minor copy editing. Use a URN as the XML
 namespace (provisional). Specify a media type for the file.

 draft-ietf-lager-specification-00 Update to reflect adoption as a
 work item by the IETF LAGER working group.

 draft-ietf-lager-specification-01 Update to reflect decisions in
 first interim meeting of IETF LAGER working group. Correcting a
 number of typos, added section on contextual conditions,
 clarified language on how actions are triggered, and changed
 "block", "allocate" and "activate" to "blocked", "allocatable".
 and "activated". Other minor changes.

 draft-ietf-lager-specification-02 Minor changes.

 draft-ietf-lager-specification-03 Update to fix a typo in the
 schema, and clarify the use of reflexive variants in checking
 label validity. Added security consideration for naive
 implementations of permuted labels and WLE rules. Added
 discussion of error conditions under which duplicate variant
 labels might be created. Other minor changes.

 draft-ietf-lager-specification-04 Updated XML namespace in the
 RelaxNG schema.

 draft-ietf-lager-specification-05 Add IANA Considerations for media
 type registration, URN registration and instantiating a
 dispositions registry. Split references into normative and
 informative. Describe a tighter restriction on permissible
 values for "ref" attributes. Clarify when "count" attributes
 are permitted. Typos fixed. Checked the schema against the
 specification and made corrections as well as replaced the
 "text" datatype with less permissive types for most attributes.

 draft-ietf-lager-specification-06 Change eligibility required for
 disposition registration to be Specification Required, rather

Davies & Freytag Expires November 24, 2016 [Page 77]

Internet-Draft Label Generation Rulesets in XML May 2016

 than Standards Track. Restore schema in appendix. Move
 registration related procedures to informative references.

 draft-ietf-lager-specification-07 Clarify the way the values of the
 "property" attribute are constructed from the attribute name and
 value in [UAX42]. Minor fixes to examples and wording for a few
 of the match operators and the description for reflexive
 variants. Clarified default action, added new disposition named
 "valid" and changed "catch-all" action to a disposition of
 "valid". Removed an ambiguity in the evaluation of labels for
 LGRs that define sequences of code points as elements. Added
 change controller for media type.

 draft-ietf-lager-specification-08 Minor typographical fixes.

 draft-ietf-lager-specification-09 Incorporated feedback from LAGER
 WG Last Call. Fixed examples in 4.4.1 and 5.2.1. Reviewed
 usage of RFC 2119 language, and other editorial suggestions.
 Removed "und-Jpan" example as "ja" would suffice in normal
 cases. Document approach to expanding "scope" element.

 draft-ietf-lager-specification-10 Minor ID-nits related edits.
 Integrate feedback on media type registration.

 draft-ietf-lager-specification-11 Integrate feedback from AD review.

 draft-ietf-lager-specification-12 Integrate additional feedback from
 AD review. Use domain names for the prefixes in private
 dispositions to reduce potential conflicts. Add clarifying
 language on ordering, well-formedness, collision checking and
 rules.

 draft-ietf-lager-specification-13 Integrate additional feedback on
 Security Considerations.

Authors’ Addresses

 Kim Davies
 Internet Corporation for Assigned Names and Numbers
 12025 Waterfront Drive
 Los Angeles, CA 90094
 US

 Phone: +1 310 301 5800
 Email: kim.davies@icann.org
 URI: http://www.icann.org/

Davies & Freytag Expires November 24, 2016 [Page 78]

Internet-Draft Label Generation Rulesets in XML May 2016

 Asmus Freytag
 ASMUS Inc.

 Email: asmus@unicode.org

Davies & Freytag Expires November 24, 2016 [Page 79]

