
Internet Engineering Task Force R. Wilton, Ed.
Internet-Draft D. Ball
Intended status: Standards Track Cisco Systems
Expires: April 21, 2016 T. Singh
 S. Sivaraj
 Juniper Networks
 October 19, 2015

 Common Interface Extension YANG Data Models
 draft-wilton-netmod-intf-ext-yang-01

Abstract

 This document defines two YANG modules that augment the Interfaces
 data model defined in the "YANG Data Model for Interface Management"
 with additional configuration and operational data nodes to support
 common lower layer interface properties, such as interface MTU.
 These properties are common to many types of interfaces on network
 routers and switches and are implemented by multiple network
 equipment vendors with similar semantics, even though some of the
 features are not formally defined in any published standard.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Wilton, et al. Expires April 21, 2016 [Page 1]

Internet-Draft Interface Extensions YANG October 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 1.2. Tree Diagrams . 3
 2. Objectives . 4
 3. Interfaces Extensions Module 4
 3.1. Bandwidth . 5
 3.2. Carrier Delay . 6
 3.3. Dampening . 7
 3.3.1. Suppress Threshold 7
 3.3.2. Half-Life Period 8
 3.3.3. Reuse Threshold 8
 3.3.4. Maximum Suppress Time 8
 3.4. Encapsulation . 8
 3.5. Loopback . 8
 3.6. MTU . 8
 3.7. Sub-interface . 9
 3.8. Transport Layer . 10
 4. Interfaces Ethernet-Like Module 10
 5. Interfaces Common YANG Module 10
 6. Interfaces Ethernet-Like YANG Module 19
 7. Acknowledgements . 21
 8. IANA Considerations . 21
 9. Security Considerations 22
 9.1. interfaces-common.yang 22
 9.2. interfaces-ethernet-like.yang 23
 10. References . 23
 10.1. Normative References 24
 10.2. Informative References 24
 Authors’ Addresses . 24

1. Introduction

 This document defines two YANG RFC 6020 [RFC6020] modules for the
 management of network interfaces. It defines various augmentations
 to the generic interfaces data model defined in RFC 7223 [RFC7223] to
 support configuration of lower layer interface properties that are
 common across many types of network interface.

Wilton, et al. Expires April 21, 2016 [Page 2]

Internet-Draft Interface Extensions YANG October 2015

 One of the aims of this draft is to provide a standard namespace and
 path for these configuration items regardless of the underlying
 interface type. For example a standard namespace and path for
 configuring or reading the MAC address associated with an interface
 is provided that can be used for any interface type that uses
 Ethernet framing.

 Several of the augmentations defined here are not backed by any
 formal standard specification. Instead, they are for features that
 are commonly implemented in equivalent ways by multiple independent
 network equipment vendors. The aim of this draft is to define common
 paths and leaves for the configuration of these equivalent features
 in a uniform way, making it easier for users of the YANG model to
 access these features in a vendor independent way. Where necessary,
 a description of the expected behavior is also provided with the aim
 of ensuring vendors implementations are consistent with the specified
 behaviour.

 Given that the modules contain a collection of discrete features with
 the common theme that they generically apply to interfaces, it is
 plausible that not all implementors of the YANG module will decide to
 support all features. Hence separate feature keywords are defined
 for each logically discrete feature to allow implementors the
 flexibility to choose which specific parts of the model they support.

 The augmentations are split into two separate YANG modules that each
 focus on a particular area of functionality. The two YANG modules
 defined in this internet draft are:

 interface-extensions.yang - Defines extensions to the IETF
 interface data model to support common configuration data nodes.

 etherlike-interfaces.yang - Defines a module for any configuration
 and operational data nodes that are common across interfaces that
 use Ethernet framing.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Tree Diagrams

 A simplified graphical representation of the data model is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

Wilton, et al. Expires April 21, 2016 [Page 3]

Internet-Draft Interface Extensions YANG October 2015

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 (read-write), and "ro" means state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list or leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

2. Objectives

 The aim of of the YANG modules contained in this draft is to provide
 standard definitions for common interface based configuration on
 network devices.

 The expectation is that the YANG leaves that are being defined are
 fairly widely implemented by network vendors. However, the features
 described here are mostly not backed by formal standards because they
 are fairly basic in their behavior and do not need to interoperate
 with other devices. Where required a concise explanation of the
 expected behavior is also provided to ensure consistency between
 vendors.

3. Interfaces Extensions Module

 The Interfaces Common module provides some basic extensions to the
 IETF interfaces YANG module.

 The module provides:

 o A bandwidth configuration leaf to specify the bandwidth available
 on an interface to control routing metrics.

 o A carrier delay feature used to provide control over short lived
 link state flaps.

 o An interface link state dampening feature that is used to provide
 control over longer lived link state flaps.

 o An encapsulation container and extensible choice statement for use
 by any interface types that allow for configurable L2
 encapsulations.

Wilton, et al. Expires April 21, 2016 [Page 4]

Internet-Draft Interface Extensions YANG October 2015

 o A loopback configuration leaf that is primarily aimed at loopback
 at the physical layer.

 o MTU configuration leaves applicable to all packet/frame based
 interfaces.

 o A transport layer leaf to indicate whether the interface handles
 traffic at L1, L2 or L3.

 o A parent interface leaf useable for all types of sub-interface
 that are children of parent interfaces.

 The "interface-extensions" YANG module has the following structure:

 module: interfaces-common
 augment /if:interfaces/if:interface:
 +--rw bandwidth? uint64
 augment /if:interfaces/if:interface:
 +--rw carrier-delay
 +--rw down? uint32
 +--rw up? uint32
 augment /if:interfaces/if:interface:
 +--rw dampening!
 +--rw half-life? uint32
 +--rw reuse? uint32
 +--rw suppress? uint32
 +--rw max-suppress-time? uint32
 augment /if:interfaces/if:interface:
 +--rw encapsulation
 +--rw (encaps-type)?
 augment /if:interfaces/if:interface:
 +--rw loopback? identityref
 augment /if:interfaces/if:interface:
 +--rw l2-mtu? uint16 {configurable-l2-mtu}?
 augment /if:interfaces/if:interface:
 +--rw parent-interface? if:interface-ref
 augment /if:interfaces/if:interface:
 +--rw transport-layer? enumeration

3.1. Bandwidth

 The bandwidth configuration leaf allows the specified bandwidth of an
 interface to be reduced from the inherent interface bandwidth. The
 bandwidth leaf affects the routing metric cost associated with the
 interface.

 Note that the bandwidth leaf does not actually limit the amount of
 traffic that can be sent/received over the interface. If required,

Wilton, et al. Expires April 21, 2016 [Page 5]

Internet-Draft Interface Extensions YANG October 2015

 interface traffic can be limited to the required bandwidth by
 configuring an explicit QoS policy.

 Note for reviewers: Given that the bandwidth only controls routing
 metrics, it may be more appropriate for this leaf, or an equivalent,
 to be defined as part of one of the routing YANG modules. Although
 conversely, it is also worth considering that the corresponding
 existing CLI configuration command is an interface level bandwidth
 command in many implementations.

3.2. Carrier Delay

 The carrier delay feature augments the IETF interfaces data model
 with configuration for a simple algorithm that is used, generally on
 physical interfaces, to suppress short transient changes in the
 interface link state. It can be used in conjunction with the
 dampening feature described in Section 3.3 to provide effective
 control of unstable links and unwanted state transitions.

 The principal of the carrier delay feature is to use a short per
 interface timer to ensure that any interface link state transition
 that occurs and reverts back within the specified time interval is
 entirely suppressed without providing any signalling to any upper
 layer protocols that the state transition has occurred. E.g. in the
 case that the link state transition is suppressed then there is no
 change of the /if:interfaces-state/if:interface/oper-status or
 /if:interfaces-state/if:interfaces/last-change leaves for the
 interface that the feature is operating on. One obvious side effect
 of using this feature that is worth noting is that any state
 transition will always be delayed by the specified time interval.

 The configuration allows for separate timer values to be used in the
 suppression of down->up->down link transitions vs up->down->up link
 transitions.

 The carrier delay down timer leaf specifies the amount of time that
 an interface that is currently in link up state must be continuously
 down before the down state change is reported to higher level
 protocols. Use of this timer can cause traffic to be black holed for
 the configured value and delay reconvergence after link failures,
 therefore its use is normally restricted to cases where it is
 necessary to allow enough time for another protection mechanism (such
 as an optical layer automatic protection system) to take effect.

 The carrier delay up timer leaf specifies the amount of time that an
 interface that is currently in link down state must be continuously
 up before the down->up link state transition is reported to higher
 level protocols. This timer is generally useful as a debounce

Wilton, et al. Expires April 21, 2016 [Page 6]

Internet-Draft Interface Extensions YANG October 2015

 mechanism to ensure that a link is relatively stable before being
 brought into service. It can also be used effectively to limit the
 frequency at which link state transition events can occur. The
 default value for this leaf is determined by the underlying network
 device.

3.3. Dampening

 The dampening feature introduces a configurable exponential decay
 mechanism to suppress the effects of excessive interface link state
 flapping. This feature allows the network operator to configure a
 device to automatically identify and selectively dampen a local
 interface which is flapping. Dampening an interface keeps the
 interface operationally down until the interface stops flapping and
 becomes stable. Configuring the dampening feature can improve
 convergence times and stability throughout the network by isolating
 failures so that disturbances are not propagated, which reduces the
 utilization of system processing resources by other devices in the
 network and improves overall network stability.

 The basic algorithm uses a counter that is nominally increased by
 1000 units every time the underlying interface link state changes
 from up to down. If the counter increases above the suppress
 threshold then the interface is kept down (and out of service) until
 either the maximum suppression time is reached, or the counter has
 reduced below the reuse threshold. The half-life period determines
 that rate at which the counter is periodically reduced.
 Implementations are not required to use a penalty of 1000 units in
 their dampening algorithm, but should ensure that the Suppress
 Threshold and Reuse Threshold values are scaled relative to the
 nominal 1000 unit penalty to ensure that the same configuration
 values provide consistent behaviour. The configurable values are
 described in more detail below.

3.3.1. Suppress Threshold

 The suppress threshold is the value of the accumulated penalty that
 triggers the device to dampen a flapping interface. The flapping
 interface is identified by the device and assigned a penalty for each
 up to down link state change, but the interface is not automatically
 dampened. The device tracks the penalties that a flapping interface
 accumulates. When the accumulated penalty reaches the default or
 configured suppress threshold, the interface is placed in a dampened
 state.

Wilton, et al. Expires April 21, 2016 [Page 7]

Internet-Draft Interface Extensions YANG October 2015

3.3.2. Half-Life Period

 The half-life period determines how fast the accumulated penalties
 can decay exponentially. Any penalties that have been accumulated on
 a flapping interface are reduced by half after each half-life period.

3.3.3. Reuse Threshold

 If, after one or more half-life periods, the accumulated penalty
 decreases below the reuse threshold and the underlying interface link
 state is up then the interface is taken out of dampened state and
 allowed to go up.

3.3.4. Maximum Suppress Time

 The maximum suppress time represents the maximum amount of time an
 interface can remain dampened when a penalty is assigned to an
 interface. The default of the maximum suppress timer is four times
 the half-life period. The maximum value of the accumulated penalty
 is calculated using the maximum suppress time, reuse threshold and
 half-life period.

3.4. Encapsulation

 The encapsulation container holds a choice node that is to be
 augmented with datalink layer specific encapsulations, such as HDLC,
 PPP, or sub-interface 802.1Q tag match encapsulations. It ensures
 that an interface can only have a single datalink layer protocol
 configured.

3.5. Loopback

 The loopback configuration leaf allows any physical interface to be
 configured to be in one of the possible following physical loopback
 modes, i.e. internal loopback, line loopback, or use of an external
 loopback connector. The use of YANG identities allows for the model
 to be extended with other modes of loopback if required.

3.6. MTU

 Two MTU configuration leaves are provided to program the layer 2
 interface in two different ways. Different mechanisms are provided
 to reflect the fact that devices handle their MTU configuration in
 different ways. A given device would only normally be expected to
 support MTU configuration using one of these mechanisms.

 The preferable way to configure MTU is using the l2-mtu leaf that
 specifies the maximum size of a layer 2 frame including header and

Wilton, et al. Expires April 21, 2016 [Page 8]

Internet-Draft Interface Extensions YANG October 2015

 payload, but excluding any frame checksum (FCS) bytes. The payload
 MTU available to higher layer protocols is calculated from the l2-mtu
 after taking the layer 2 header size into account.

 For Ethernet interfaces carrying 802.1Q VLAN tagged frames, the
 l2-mtu excludes the 4-8 byte overhead of any known (e.g. explicitly
 matched by a child sub-interface) 801.1Q VLAN tags.

 The alternative way to configure MTU is using the l3-mtu leaf that
 specifies the maximum size of payload carried by a layer 2 frame.
 The maximum size of the layer 2 frame can then be derived by adding
 on the size of the layer 2 header overheads.

 Note for reviewers: Is it correct/beneficial to support l3-mtu? It
 would be easier for clients if they only had a single MTU that they
 could configure. Can all devices sensibly handle an l2-mtu
 configuration leaf?

3.7. Sub-interface

 The sub-interface feature specifies the minimal leaves required to
 define a child interface that is parented to another interface.

 A sub-interface is a logical interface that handles a subset of the
 traffic on the parent interface. Separate configuration leaves are
 used to classify the subset of ingress traffic received on the parent
 interface to be processed in the context of a given sub-interface.
 All egress traffic processed on a sub-interface is given to the
 parent interface for transmission. Otherwise, a sub-interface is
 like any other interface in /if:interfaces and supports the standard
 interface features and configuration.

 For some vendor specific interface naming conventions the name of the
 child interface is sufficient to determine the parent interface,
 which implies that the child interface can never be reparented to a
 different parent interface after it has been created without deleting
 the existing the sub-interface and recreating a new sub-interface.
 Even in this case it is useful to have a well defined leaf to cleanly
 identify the parent interface.

 The model also allows for arbitrarily named sub-interfaces by having
 an explicit parent-interface leaf define the child -> parent
 relationship. In this naming scenario it is also possible for
 implementations to allow for logical interfaces to be reparented to
 new parent interfaces without needing the sub-interface to be
 destroyed and recreated.

Wilton, et al. Expires April 21, 2016 [Page 9]

Internet-Draft Interface Extensions YANG October 2015

3.8. Transport Layer

 The transport layer leaf provides additional information as to which
 layer an interface is logically operating and forwarding traffic at.
 The implication of this leaf is that for traffic forwarded at a given
 layer that any headers for lower layers are stripped off before the
 packet is forwarded at the given layer. Conversely, on egress any
 lower layer headers must be added to the packet before it is
 transmitted out of the interface.

 This leaf can also be used as a simple mechanism to determine whether
 particular types of configuration are valid. E.g. a layer 2 QoS
 policy could ensure that it is only applied to a interface running at
 transport layer 2.

4. Interfaces Ethernet-Like Module

 The Interfaces Ethernet-Like Module is a small module that contains
 all configuration and operational data that is common across
 interface types that use Ethernet framing as their datalink layer
 encapsulation.

 This module currently contains leaves for the configuration and
 reporting of the operational MAC address and the burnt-in MAC address
 (BIA) associated with any interface using Ethernet framing.

 The "interfaces-ethernet-like" YANG module has the following
 structure:

 module: interfaces-ethernet-like
 augment /if:interfaces/if:interface:
 +--rw ethernet-like
 +--rw mac-address? yang:mac-address
 augment /if:interfaces-state/if:interface:
 +--ro ethernet-like
 +--ro mac-address? yang:mac-address
 +--ro bia-mac-address? yang:mac-address

5. Interfaces Common YANG Module

 This YANG module augments the interface container defined in RFC 7223
 [RFC7223].

 <CODE BEGINS> file "interfaces-common@2015-10-19.yang"
 module interfaces-common {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:interfaces-common";
 prefix if-cmn;

Wilton, et al. Expires April 21, 2016 [Page 10]

Internet-Draft Interface Extensions YANG October 2015

 import ietf-interfaces {
 prefix if;
 }

 import iana-if-type {
 prefix ianaift;
 }

 organization
 "Cisco Systems, Inc.
 Customer Service

 Postal: 170 W Tasman Drive
 San Jose, CA 95134

 Tel: +1 1800 553-NETS

 E-mail: cs-yang@cisco.com";

 contact
 "Robert Wilton - rwilton@cisco.com";

 description
 "This module contains common definitions for extending the IETF
 interface YANG model (RFC 7223) with common configurable layer 2
 properties.";

 revision 2015-10-19 {
 description
 "Add support for various common interface configuration
 parameters that are likely to be widely implemented by various
 network device vendors.";

 reference "Internet draft: draft-wilton-netmod-intf-ext-yang-01";
 }

 feature bandwidth {
 description
 "This feature indicates that the device supports configurable
 interface bandwidth.";
 reference "Section 3.1 Bandwidth";
 }

 feature carrier-delay {
 description
 "This feature indicates that configurable interface
 carrier delay is supported, which is a feature is used to
 limit the propagation of very short interface link state

Wilton, et al. Expires April 21, 2016 [Page 11]

Internet-Draft Interface Extensions YANG October 2015

 flaps.";
 reference "Section 3.2 Carrier Delay";
 }

 feature dampening {
 description
 "This feature indicates that the device supports interface
 dampening, which is a feature that is used to limit the
 propagation of interface link state flaps over longer
 periods";
 reference "Section 3.3 Dampening";
 }

 feature loopback {
 description
 "This feature indicates that configurable interface loopback
 is supported.";
 reference "Section 3.5 Loopback";
 }

 feature configurable-l2-mtu {
 description
 "This feature indicates that the device supports configuring
 layer 2 MTUs on interfaces. Such MTU configurations include
 the layer 2 header overheads (but exclude any FCS overhead).
 The payload MTU available to higher layer protocols is either
 derived from the layer 2 MTU, taking into account the size of
 the layer 2 header, or is further restricted by explicit layer
 3 or protocol specific MTU configuration.";
 reference "Section 3.6 MTU";
 }

 feature sub-interfaces {
 description
 "This feature indicates that the device supports the
 instantiation of sub-interfaces. Sub-interfaces are defined
 as logical child interfaces that allow features and forwarding
 decisions to be applied to a subset of the traffic processed
 on the specified parent interface.";
 reference "Section 3.7 Sub-interface";
 }

 feature transport-layer {
 description
 "This feature indicates that the device supports configurable
 transport layer.";
 reference "Section 3.8 Transport Layer";
 }

Wilton, et al. Expires April 21, 2016 [Page 12]

Internet-Draft Interface Extensions YANG October 2015

 /*
 * Define common identities to help allow interface types to be
 * assigned properties.
 */
 identity sub-interface {
 description "Base type for generic sub-interfaces. New or custom
 interface types can derive from this type to
 inherit generic sub-interface configuration";
 }

 identity ethSubInterface{
 base ianaift:l2vlan;
 base sub-interface;

 description "Sub-interface of any interface types that uses
 Ethernet framing (with or without 802.1Q tagging)";
 }

 identity loopback {
 description "Base type for interface loopback options";
 }
 identity loopback-internal {
 base loopback;
 description "All egress traffic on the interface is internally
 looped back within the interface to be received on
 the ingress path.";
 }
 identity loopback-line {
 base loopback;
 description "All ingress traffic received on the interface is
 internally looped back within the interface to the
 egress path.";
 }
 identity loopback-connector {
 base loopback;
 description "The interface has a physical loopback connector
 attached to that loops all egress traffic back into
 the interface’s ingress path, with equivalent
 semantics to loopback-internal";
 }

 /*
 * Augments the IETF interfaces model with a leaf to explicitly
 * specify the bandwidth available on an interface.
 */
 augment "/if:interfaces/if:interface" {
 if-feature "bandwidth";

Wilton, et al. Expires April 21, 2016 [Page 13]

Internet-Draft Interface Extensions YANG October 2015

 description "Add a top level node for interface bandwidth.";
 leaf bandwidth {
 type uint64;
 units kbps;
 description
 "The bandwidth available on the interface in Kb/s. This
 configuration is used by routing protocols to adjust the
 metrics associated with the interface, but does not limit
 the amount of traffic that can be sent or received on the
 interface. A separate QoS policy would need to be configured
 to limit the ingress or egress traffic. If not configured,
 the default bandwidth is the maximum available bandwidth of
 the underlying interface.";
 }
 }

 /*
 * Defines standard YANG for the Carrier Delay feature.
 */
 augment "/if:interfaces/if:interface" {
 if-feature "carrier-delay";
 description "Augments the IETF interface model with
 carrier delay configuration for interfaces that
 support it.";

 container carrier-delay {
 description "Holds carrier delay related feature
 configuration";
 leaf down {
 type uint32;
 units milliseconds;
 description
 "Delays the propagation of a ’loss of carrier signal’ event
 that would cause the interface state to go down, i.e. the
 command allows short link flaps to be suppressed. The
 configured value indicates the minimum time interval (in
 milliseconds) that the carrier signal must be continuously
 down before the interface state is brought down. If not
 configured, the behaviour on loss of carrier signal is
 vendor/interface specific, but with the general
 expectation that there should be little or no delay.";
 }
 leaf up {
 type uint32;
 units milliseconds;
 description
 "Defines the minimum time interval (in milliseconds) that
 the carrier signal must be continuously present and

Wilton, et al. Expires April 21, 2016 [Page 14]

Internet-Draft Interface Extensions YANG October 2015

 error free before the interface state is allowed to
 transition from down to up. If not configured, the
 behaviour is vendor/interface specific, but with the
 general expectation that sufficient default delay
 should be used to ensure that the interface is stable
 when enabled before being reported as being up.
 Configured values that are too low for the hardware
 capabilties may be rejected.";
 }
 }
 }

 /*
 * Augments the IETF interfaces model with a container to hold
 * generic interface dampening
 */
 augment "/if:interfaces/if:interface" {
 if-feature "dampening";
 description
 "Add a container for interface dampening configuration";

 container dampening {
 presence "Enable interface link flap dampening with default
 settings (that are vendor/device specific)";
 description "Interface dampening limits the propagation of
 interface link state flaps over longer periods";
 leaf half-life {
 type uint32;
 units seconds;
 description
 "The Time (in seconds) after which a penalty reaches half
 its original value. Once the interface has been assigned
 a penalty, the penalty is decreased by half after the
 half-life period. For some devices, the allowed values may
 be restricted to particular multiples of seconds. The
 default value is vendor/device specific.";
 }

 leaf reuse {
 type uint32;
 description
 "Penalty value below which a stable interface is
 unsuppressed (i.e. brought up) (no units). The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is nominally 1000 units.";
 }

 leaf suppress {

Wilton, et al. Expires April 21, 2016 [Page 15]

Internet-Draft Interface Extensions YANG October 2015

 type uint32;
 description
 "Limit at which an interface is suppressed (i.e. held down)
 when its penalty exceeds that limit (no units). The value
 must be greater than the reuse threshold. The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is nominally 1000 units.";
 }

 leaf max-suppress-time {
 type uint32;
 units seconds;
 description
 "Maximum time (in seconds) that an interface can be
 suppressed. This value effectively acts as a ceiling that
 the penalty value cannot exceed. The default value is
 vendor/device specific.";
 }
 }
 }

 /*
 * Various types of interfaces support a configurable layer 2
 * encapsulation, any that are supported by YANG should be
 * listed here.
 *
 * Different encapsulations can hook into the common encaps-type
 * choice statement.
 */
 augment "/if:interfaces/if:interface" {
 when "if:type = ’ianaift:ethernetCsmacd’ or
 if:type = ’ianaift:ieee8023adLag’ or
 if:type = ’ethSubInterface’ or
 if:type = ’ianaift:pos’ or
 if:type = ’ianaift:atmSubInterface’" {
 description "All interface types that can have a configurable
 L2 encapsulation";
 /*
 * TODO - Should we introduce an abstract type to make this
 * extensible to new interface types, or vendor specific
 * interface types?
 */
 }

 description "Add encapsulation top level node to interface types
 that support a configurable L2 encapsulation";

 container encapsulation {

Wilton, et al. Expires April 21, 2016 [Page 16]

Internet-Draft Interface Extensions YANG October 2015

 description
 "Holds the L2 encapsulation associated with an interface";
 choice encaps-type {
 description "Extensible choice of L2 encapsulations";
 }
 }
 }

 /*
 * Various types of interfaces support loopback configuration, any
 * that are supported by YANG should be listed here.
 */
 augment "/if:interfaces/if:interface" {
 when "if:type = ’ianaift:ethernetCsmacd’ or
 if:type = ’ianaift:sonet’ or
 if:type = ’ianaift:atm’ or
 if:type = ’ianaift:otnOtu’" {
 description
 "All interface types that support loopback configuration.";
 }
 if-feature "loopback";
 description "Augments the IETF interface model with loopback
 configuration for interfaces that support it.";

 leaf loopback {
 type identityref {
 base loopback;
 }
 description "Enables traffic loopback.";
 }
 }

 /*
 * Many types of interfaces support a configurable layer 2 MTU.
 */
 augment "/if:interfaces/if:interface" {
 description "Add configurable layer 2 MTU to all appropriate
 interface types.";

 leaf l2-mtu {
 if-feature "configurable-l2-mtu";
 type uint16 {
 range "64 .. 65535";
 }
 description
 "The maximum size of layer 2 frames that may be transmitted
 or received on the interface (excluding any FCS overhead).
 In the case of Ethernet interfaces it also excludes the

Wilton, et al. Expires April 21, 2016 [Page 17]

Internet-Draft Interface Extensions YANG October 2015

 4-8 byte overhead of any known (i.e. explicitly matched by
 a child sub-interface) 801.1Q VLAN tags.";
 }
 }

 /*
 * Add generic support for sub-interfaces.
 *
 * This should be extended to cover all interface types that are
 * child interfaces of other interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "derived-from(if:type,
 ’ietf-if-cmn’,
 ’sub-interface’) or
 if:type = ’ianaift:atmSubInterface’ or
 if:type = ’ianaift:frameRelay’" {
 description
 "Any ianaift:types that explicitly represent sub-interfaces
 or any types that derive from the sub-interface identity";
 }
 if-feature "sub-interfaces";
 description "Add a parent interface field to interfaces that
 model sub-interfaces";
 leaf parent-interface {
 type if:interface-ref;

 mandatory true;
 description
 "This is the reference to the parent interface of this
 sub-interface.";
 }
 }

 /*
 * Augments the IETF interfaces model with a leaf that indicates
 * which layer traffic is to be transported at.
 */
 augment "/if:interfaces/if:interface" {
 if-feature "transport-layer";
 description "Add a top level node to appropriate interfaces to
 indicate which tranport layer an interface is
 operating at";

 leaf transport-layer {
 type enumeration {
 enum layer-1 {
 value 1;

Wilton, et al. Expires April 21, 2016 [Page 18]

Internet-Draft Interface Extensions YANG October 2015

 description "Layer 1 transport.";
 }
 enum layer-2 {
 value 2;
 description "Layer 2 transport";
 }
 enum layer-3 {
 value 3;
 description "Layer 3 transport";
 }
 }
 default layer-3;
 description
 "The transport layer at which the interface is operating at";
 }
 }
 }
 <CODE ENDS>

6. Interfaces Ethernet-Like YANG Module

 This YANG module augments the interface container defined in RFC 7223
 [RFC7223] for Etherlike interfaces. This includes Ethernet
 interfaces, 802.3 LAG (802.1AX) interfaces, VLAN sub-interfaces,
 Switch Virtual interfaces, and Pseudo-Wire Head-End interfaces.

 <CODE BEGINS> file "interfaces-ethernet-like@2015-06-26.yang"
 module interfaces-ethernet-like {
 namespace "urn:ietf:params:xml:ns:yang:interfaces-ethernet-like";
 prefix ethlike;

 import ietf-interfaces {
 prefix if;
 }

 import ietf-yang-types {
 prefix yang;
 }

 import iana-if-type {
 prefix ianaift;
 }

 organization
 "Cisco Systems, Inc.
 Customer Service

 Postal: 170 W Tasman Drive

Wilton, et al. Expires April 21, 2016 [Page 19]

Internet-Draft Interface Extensions YANG October 2015

 San Jose, CA 95134

 Tel: +1 1800 553-NETS

 E-mail: cs-yang@cisco.com";

 contact
 "Robert Wilton - rwilton@cisco.com";

 description
 "This module contains YANG definitions for configuration for
 ’Ethernet-like’ interfaces. It is applicable to all interface
 types that use Ethernet framing and expose an Ethernet MAC
 layer, and includes such interfaces as physical Ethernet
 interfaces, Ethernet LAG interfaces and VLAN sub-interfaces.";

 revision 2015-06-26 {
 description "Updated reference to new internet draft name.";

 reference
 "Internet draft: draft-wilton-netmod-intf-ext-yang-00";
 }

 /*
 * Configuration parameters for Etherlike interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "if:type = ’ianaift:ethernetCsmacd’ or
 if:type = ’ianaift:ieee8023adLag’ or
 if:type = ’ianaift:l2vlan’ or
 if:type = ’ianaift:ifPwType’" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augment the interface model with configuration parameters for
 all Ethernet-like interfaces";

 container ethernet-like {
 description "Contains configuration parameters for interfaces
 that use Ethernet framing and expose an Ethernet
 MAC layer.";
 leaf mac-address {
 type yang:mac-address;
 description
 "The configured MAC address of the interface.";
 }
 }
 }

Wilton, et al. Expires April 21, 2016 [Page 20]

Internet-Draft Interface Extensions YANG October 2015

 /*
 * Operational state for Etherlike interfaces.
 */
 augment "/if:interfaces-state/if:interface" {
 when "if:type = ’ianaift:ethernetCsmacd’ or
 if:type = ’ianaift:ieee8023adLag’ or
 if:type = ’ianaift:l2vlan’ or
 if:type = ’ianaift:ifPwType’" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augments the interface model with operational state parameters
 for all Ethernet-like interfaces.";
 container ethernet-like {
 description "Contains operational state parameters for
 interfaces that use Ethernet framing and expose an
 Ethernet MAC layer.";
 leaf mac-address {
 type yang:mac-address;
 description
 "The operational MAC address of the interface, if
 applicable";
 }

 leaf bia-mac-address {
 type yang:mac-address;
 description
 "The ’burnt-in’ MAC address. I.e the default MAC address
 assigned to the interface if none is explicitly
 configured.";
 }
 }
 }
 }
 <CODE ENDS>

7. Acknowledgements

 The authors wish to thank Juergen Schoenwaelder, Mahesh Jethanandani,
 Michael Zitao, Neil Ketley and Qin Wu for their helpful comments
 contributing to this draft.

8. IANA Considerations

 This document defines several new YANG module and the authors
 politely request that IANA assigns unique names to the YANG module
 files contained within this draft, and also appropriate URIs in the
 "IETF XML Registry".

Wilton, et al. Expires April 21, 2016 [Page 21]

Internet-Draft Interface Extensions YANG October 2015

9. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol RFC 6241 [RFC6241]. The lowest NETCONF layer is
 the secure transport layer and the mandatory to implement secure
 transport is SSH RFC 6242 [RFC6242]. The NETCONF access control
 model RFC 6536 [RFC6536] provides the means to restrict access for
 particular NETCONF users to a pre-configured subset of all available
 NETCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module which
 are writable/creatable/deletable (i.e. config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g. edit-config) to
 these data nodes without proper protection can have a negative effect
 on network operations. These are the subtrees and data nodes and
 their sensitivity/vulnerability:

9.1. interfaces-common.yang

 The interfaces-common YANG module contains various configuration
 leaves that affect the behavior of interfaces. Modifying these
 leaves can cause an interface to go down, or become unreliable, or to
 drop traffic forwarded over it. More specific details of the
 possible failure modes are given below.

 The following leaf could cause the interface to go down, and stop
 processing any ingress or egress traffic on the interface:

 o /if:interfaces/if:interface/loopback

 The following leaf could cause changes to the routing metrics. Any
 change in routing metrics could cause too much traffic to be routed
 through the interface, or through other interfaces in the network,
 potentially causing traffic loss due to excesssive traffic on a
 particular interface or network device:

 o /if:interfaces/if:interface/bandwidth

 The following leaves could cause instabilities at the interface link
 layer, and cause unwanted higher layer routing path changes if the
 leaves are modified, although they would generally only affect a
 device that had some underlying link stability issues:

 o /if:interfaces/if:interface/carrier-delay/down

 o /if:interfaces/if:interface/carrier-delay/up

Wilton, et al. Expires April 21, 2016 [Page 22]

Internet-Draft Interface Extensions YANG October 2015

 o /if:interfaces/if:interface/dampening/half-life

 o /if:interfaces/if:interface/dampening/reuse

 o /if:interfaces/if:interface/dampening/suppress

 o /if:interfaces/if:interface/dampening/max-suppress-time

 The following leaves could cause traffic loss on the interface
 because the received or transmitted frames do not comply with the
 frame matching criteria on the interface and hence would be dropped:

 o /if:interfaces/if:interface/encapsulation

 o /if:interfaces/if:interface/l2-mtu

 o /if:interfaces/if:interface/l3-mtu

 o /if:interfaces/if:interface/transport-layer

 Normally devices will not allow the parent-interface leaf to be
 changed after the interfce has been created. If an implementation
 did allow the parent-interface leaf to be changed then it could cause
 all traffic on the affected interface to be dropped. The affected
 leaf is:

 o /if:interfaces/if:interface/parent-interface

9.2. interfaces-ethernet-like.yang

 Generally, the configuration nodes in the interfaces-ethernet-like
 YANG module are concerned with configuration that is common across
 all types of Ethernet-like interfaces. Currently, the module only
 contains a node for configuring the operational MAC address to use on
 an interface. Adding/modifying/deleting this leaf has the potential
 risk of causing protocol instability, excessive protocol traffic, and
 general traffic loss, particularly if the configuration change caused
 a duplicate MAC address to be present on the local network . The
 following leaf is affected:

 o interfaces/interface/ethernet-like/mac-address

10. References

Wilton, et al. Expires April 21, 2016 [Page 23]

Internet-Draft Interface Extensions YANG October 2015

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7224] Bjorklund, M., "IANA Interface Type YANG Module", RFC
 7224, DOI 10.17487/RFC7224, May 2014,
 <http://www.rfc-editor.org/info/rfc7224>.

10.2. Informative References

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536, DOI
 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems

 Email: rwilton@cisco.com

 David Ball
 Cisco Systems

 Email: daviball@cisco.com

Wilton, et al. Expires April 21, 2016 [Page 24]

Internet-Draft Interface Extensions YANG October 2015

 Tapraj Singh
 Juniper Networks

 Email: tsingh@juniper.net

 Selvakumar Sivaraj
 Juniper Networks

 Email: ssivaraj@juniper.net

Wilton, et al. Expires April 21, 2016 [Page 25]

