
NETMOD Working Group L. Lhotka
Internet-Draft CZ.NIC
Intended status: Standards Track October 07, 2015
Expires: April 9, 2016

 JSON Encoding of Data Modeled with YANG
 draft-ietf-netmod-yang-json-06

Abstract

 This document defines encoding rules for representing configuration,
 state data, RPC operation or action input and output parameters, and
 notifications defined using YANG as JavaScript Object Notation (JSON)
 text.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 9, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lhotka Expires April 9, 2016 [Page 1]

Internet-Draft JSON Encoding of YANG Data October 2015

Table of Contents

 1. Introduction . 2
 2. Terminology and Notation 3
 3. Properties of the JSON Encoding 4
 4. Names and Namespaces . 4
 5. Encoding of YANG Data Node Instances 6
 5.1. The "leaf" Data Node 7
 5.2. The "container" Data Node 7
 5.3. The "leaf-list" Data Node 7
 5.4. The "list" Data Node 8
 5.5. The "anydata" Data Node 9
 5.6. The "anyxml" Data Node 10
 6. Representing YANG Data Types in JSON Values 10
 6.1. Numeric Types . 10
 6.2. The "string" Type . 11
 6.3. The "boolean" Type 11
 6.4. The "enumeration" Type 11
 6.5. The "bits" Type . 11
 6.6. The "binary" Type . 11
 6.7. The "leafref" Type 12
 6.8. The "identityref" Type 12
 6.9. The "empty" Type . 12
 6.10. The "union" Type . 13
 6.11. The "instance-identifier" Type 14
 7. I-JSON Compliance . 14
 8. Security Considerations 15
 9. Acknowledgments . 15
 10. References . 15
 10.1. Normative References 15
 10.2. Informative References 16
 Appendix A. A Complete Example 16
 Appendix B. Change Log . 18
 B.1. Changes Between Revisions -05 and -06 18
 B.2. Changes Between Revisions -04 and -05 18
 B.3. Changes Between Revisions -03 and -04 19
 B.4. Changes Between Revisions -02 and -03 19
 B.5. Changes Between Revisions -01 and -02 19
 B.6. Changes Between Revisions -00 and -01 19
 Author’s Address . 20

1. Introduction

 The NETCONF protocol [RFC6241] uses XML [W3C.REC-xml-20081126] for
 encoding data in its Content Layer. Other management protocols might
 want to use other encodings while still benefiting from using YANG
 [I-D.ietf-netmod-rfc6020bis] as the data modeling language.

Lhotka Expires April 9, 2016 [Page 2]

Internet-Draft JSON Encoding of YANG Data October 2015

 For example, the RESTCONF protocol [I-D.ietf-netconf-restconf]
 supports two encodings: XML (media type "application/yang.data+xml")
 and JSON (media type "application/yang.data+json").

 The specification of YANG 1.1 data modelling language
 [I-D.ietf-netmod-rfc6020bis] defines only XML encoding for data
 instances, i.e., contents of configuration datastores, state data,
 RPC operation or action input and output parameters, and event
 notifications. The aim of this document is to define rules for
 encoding the same data as JavaScript Object Notation (JSON)
 text [RFC7159].

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [I-D.ietf-netmod-rfc6020bis]:

 o action,

 o anydata,

 o anyxml,

 o augment,

 o container,

 o data node,

 o data tree,

 o identity,

 o instance identifier,

 o leaf,

 o leaf-list,

 o list,

 o module,

 o RPC operation,

Lhotka Expires April 9, 2016 [Page 3]

Internet-Draft JSON Encoding of YANG Data October 2015

 o submodule.

3. Properties of the JSON Encoding

 This document defines JSON encoding for YANG data trees and their
 subtrees. It is always assumed that the top-level structure in JSON-
 encoded data is an object.

 Instances of YANG data nodes (leafs, containers, leaf-lists, lists,
 anydata and anyxml nodes) are encoded as members of a JSON object,
 i.e., name/value pairs. Section 4 defines how the name part is
 formed, and the following sections deal with the value part.

 Unlike XML element content, JSON values carry partial type
 information (number, string, boolean). The JSON encoding is defined
 so that this information is never in conflict with the data type of
 the corresponding YANG leaf or leaf-list.

 With the exception of anyxml and schema-less anydata nodes, it is
 possible to map a JSON-encoded data tree to XML encoding as defined
 in [I-D.ietf-netmod-rfc6020bis], and vice versa. However, such
 conversions require the YANG data model to be available.

 In order to achieve maximum interoperability while allowing
 implementations to use a variety of existing JSON parsers, the JSON
 encoding rules follow, as much as possible, the constraints of the
 I-JSON restricted profile [RFC7493]. Section 7 discusses I-JSON
 conformance in more detail.

4. Names and Namespaces

 An object member name MUST be in one of the following forms:

 o simple - identical to the identifier of the corresponding YANG
 data node;

 o namespace-qualified - the data node identifier is prefixed with
 the name of the module in which the data node is defined,
 separated from the data node identifier by the colon character
 (":").

 The name of a module determines the namespace of all data node names
 defined in that module. If a data node is defined in a submodule,
 then the namespace-qualified member name uses the name of the main
 module to which the submodule belongs.

Lhotka Expires April 9, 2016 [Page 4]

Internet-Draft JSON Encoding of YANG Data October 2015

 ABNF syntax [RFC5234] of a member name is shown in Figure 1, where
 the production for "identifier" is defined in sec. 13 of
 [I-D.ietf-netmod-rfc6020bis].

 member-name = [identifier ":"] identifier

 Figure 1: ABNF production for a JSON member name.

 A namespace-qualified member name MUST be used for all members of a
 top-level JSON object, and then also whenever the namespaces of the
 data node and its parent node are different. In all other cases, the
 simple form of the member name MUST be used.

 For example, consider the following YANG module:

 module foomod {

 namespace "http://example.com/foomod";

 prefix "foo";

 container top {
 leaf foo {
 type uint8;
 }
 }
 }

 If the data model consists only of this module, then the following is
 a valid JSON-encoded configuration:

 {
 "foomod:top": {
 "foo": 54
 }
 }

 Note that the member of the top-level object uses the namespace-
 qualified name but the "foo" leaf doesn’t because it is defined in
 the same module as its parent container "top".

 Now, assume the container "top" is augmented from another module,
 "barmod":

Lhotka Expires April 9, 2016 [Page 5]

Internet-Draft JSON Encoding of YANG Data October 2015

 module barmod {

 namespace "http://example.com/barmod";

 prefix "bar";

 import foomod {
 prefix "foo";
 }

 augment "/foo:top" {
 leaf bar {
 type boolean;
 }
 }
 }

 A valid JSON-encoded configuration containing both leafs may then
 look like this:

 {
 "foomod:top": {
 "foo": 54,
 "barmod:bar": true
 }
 }

 The name of the "bar" leaf is prefixed with the namespace identifier
 because its parent is defined in a different module.

 Explicit namespace identifiers are sometimes needed when encoding
 values of the "identityref" and "instances-identifier" types. The
 same form of namespace-qualified name as defined above is then used.
 See Sections 6.8 and 6.11 for details.

5. Encoding of YANG Data Node Instances

 Every data node instance is encoded as a name/value pair where the
 name is formed from the data node identifier using the rules of
 Section 4. The value depends on the category of the data node as
 explained in the following subsections.

 Character encoding MUST be UTF-8.

Lhotka Expires April 9, 2016 [Page 6]

Internet-Draft JSON Encoding of YANG Data October 2015

5.1. The "leaf" Data Node

 A leaf instance is encoded as a name/value pair where the value can
 be a string, number, literal "true" or "false", or the special array
 "[null]", depending on the type of the leaf (see Section 6 for the
 type encoding rules).

 Example: For the leaf node definition

 leaf foo {
 type uint8;
 }

 the following is a valid JSON-encoded instance:

 "foo": 123

5.2. The "container" Data Node

 A container instance is encoded as a name/object pair. The
 container’s child data nodes are encoded as members of the object.

 Example: For the container definition

 container bar {
 leaf foo {
 type uint8;
 }
 }

 the following is a valid JSON-encoded instance:

 "bar": {
 "foo": 123
 }

5.3. The "leaf-list" Data Node

 A leaf-list is encoded as a name/array pair, and the array elements
 are values of some scalar type, which can be a string, number,
 literal "true" or "false", or the special array "[null]", depending
 on the type of the leaf-list (see Section 6 for the type encoding
 rules).

 The ordering of array elements follows the same rules as the ordering
 of XML elements representing leaf-list entries in the XML encoding.
 Specifically, the "ordered-by" properties (sec. 7.7.7 in
 [I-D.ietf-netmod-rfc6020bis]) MUST be observed.

Lhotka Expires April 9, 2016 [Page 7]

Internet-Draft JSON Encoding of YANG Data October 2015

 Example: For the leaf-list definition

 leaf-list foo {
 type uint8;
 }

 the following is a valid JSON-encoded instance:

 "foo": [123, 0]

5.4. The "list" Data Node

 A list instance is encoded as a name/array pair, and the array
 elements are JSON objects.

 The ordering of array elements follows the same rules as the ordering
 of XML elements representing list entries in the XML encoding.
 Specifically, the "ordered-by" properties (sec. 7.7.7 in
 [I-D.ietf-netmod-rfc6020bis]) MUST be observed.

 Unlike the XML encoding, where list keys are required to precede any
 other siblings within a list entry, and appear in the order specified
 by the data model, the order of members in a JSON-encoded list entry
 is arbitrary because JSON objects are fundamentally unordered
 collections of members.

 Example: For the list definition

 list bar {
 key foo;
 leaf foo {
 type uint8;
 }
 leaf baz {
 type string;
 }
 }

 the following is a valid JSON-encoded instance:

Lhotka Expires April 9, 2016 [Page 8]

Internet-Draft JSON Encoding of YANG Data October 2015

 "bar": [
 {
 "foo": 123,
 "baz": "zig"
 },
 {
 "baz": "zag",
 "foo": 0
 }
]

5.5. The "anydata" Data Node

 Anydata data node serves as a container for an arbitrary set of nodes
 that otherwise appear as normal YANG-modeled data. A data model for
 anydata content may or may not be known at run time. In the latter
 case, converting JSON-encoded instances to the XML encoding defined
 in [I-D.ietf-netmod-rfc6020bis] may be impossible.

 An anydata instance is encoded in the same way as a container, i.e.,
 as a value/object pair. The requirement that anydata content can be
 modeled by YANG implies the following rules for the JSON text inside
 the object:

 o It is valid I-JSON [RFC7493].

 o All object member names satisfy the ABNF production in Figure 1.

 o Any JSON array contains either only unique scalar values (as a
 leaf-list, see Section 5.3), or only objects (as a list, see
 Section 5.4).

 o The "null" value is only allowed in the single-element array
 "[null]" corresponding to the encoding of the "empty" type, see
 Section 6.9.

 Example: for the anydata definition

 anydata data;

 the following is a valid JSON-encoded instance:

Lhotka Expires April 9, 2016 [Page 9]

Internet-Draft JSON Encoding of YANG Data October 2015

 "data": {
 "ietf-notification:notification": {
 "eventTime": "2014-07-29T13:43:01Z",
 "example-event:event": {
 "event-class": "fault",
 "reporting-entity": {
 "card": "Ethernet0"
 },
 "severity": "major"
 }
 }
 }

5.6. The "anyxml" Data Node

 An anyxml instance is encoded as a JSON name/value pair which MUST
 satisfy I-JSON constraints. Otherwise it is unrestricted, i.e., the
 value can be an object, array, number, string or one of the literals
 "true", "false" and "null".

 There is no universal procedure for mapping JSON-encoded anyxml
 instances to XML, and vice versa.

 Example: For the anyxml definition

 anyxml bar;

 the following is a valid JSON-encoded instance:

 "bar": [true, null, true]

6. Representing YANG Data Types in JSON Values

 The type of the JSON value in an instance of the leaf or leaf-list
 data node depends on the type of that data node as specified in the
 following subsections.

6.1. Numeric Types

 A value of the types "int8", "int16", "int32", "uint8", "uint16" and
 "uint32" is represented as a JSON number.

 A value of the "int64", "uint64" or "decimal64" type is represented
 as a JSON string whose content is the lexical representation of the
 corresponding YANG type as specified in sections 9.2.1 and 9.3.1 of
 [I-D.ietf-netmod-rfc6020bis].

Lhotka Expires April 9, 2016 [Page 10]

Internet-Draft JSON Encoding of YANG Data October 2015

 For example, if the type of the leaf "foo" in Section 5.1 was
 "uint64" instead of "uint8", the instance would have to be encoded as

 "foo": "123"

 The special handling of 64-bit numbers follows from the I-JSON
 recommendation to encode numbers exceeding the IEEE 754-2008 double
 precision range as strings, see sec. 2.2 in [RFC7493].

6.2. The "string" Type

 A "string" value is represented as a JSON string, subject to JSON
 string encoding rules.

6.3. The "boolean" Type

 A "boolean" value is represented as the corresponding JSON literal
 name "true" or "false".

6.4. The "enumeration" Type

 An "enumeration" value is represented as a JSON string - one of the
 names assigned by "enum" statements in YANG.

 The representation is identical to the lexical representation of the
 "enumeration" type in XML, see sec. 9.6 in
 [I-D.ietf-netmod-rfc6020bis].

6.5. The "bits" Type

 A "bits" value is represented as a JSON string - a space-separated
 sequence of names of bits that are set. The permitted bit names are
 assigned by "bit" statements in YANG.

 The representation is identical to the lexical representation of the
 "bits" type, see sec. 9.7 in [I-D.ietf-netmod-rfc6020bis].

6.6. The "binary" Type

 A "binary" value is represented as a JSON string - base64-encoding of
 arbitrary binary data.

 The representation is identical to the lexical representation of the
 "binary" type in XML, see sec. 9.8 in [I-D.ietf-netmod-rfc6020bis].

Lhotka Expires April 9, 2016 [Page 11]

Internet-Draft JSON Encoding of YANG Data October 2015

6.7. The "leafref" Type

 A "leafref" value is represented using the same rules as the type of
 the leaf to which the leafref value refers.

6.8. The "identityref" Type

 An "identityref" value is represented as a string - the name of an
 identity. If the identity is defined in another module than the leaf
 node containing the identityref value, the namespace-qualified form
 (Section 4) MUST be used. Otherwise, both the simple and namespace-
 qualified forms are permitted.

 For example, consider the following schematic module:

 module exmod {
 ...
 import ietf-interfaces {
 prefix if;
 }
 import iana-if-type {
 prefix ianaift;
 }
 ...
 leaf type {
 type identityref {
 base "if:interface-type";
 }
 }
 }

 A valid instance of the "type" leaf is then encoded as follows:

 "type": "iana-if-type:ethernetCsmacd"

 The namespace identifier "iana-if-type" must be present in this case
 because the "ethernetCsmacd" identity is not defined in the same
 module as the "type" leaf.

6.9. The "empty" Type

 An "empty" value is represented as "[null]", i.e., an array with the
 "null" literal being its only element. For the purposes of this
 document, "[null]" is considered an atomic scalar value.

 This encoding of the "empty" type was chosen instead of using simply
 "null" in order to facilitate the use of empty leafs in common

Lhotka Expires April 9, 2016 [Page 12]

Internet-Draft JSON Encoding of YANG Data October 2015

 programming languages where the "null" value of a member is treated
 as if the member is not present.

 Example: For the leaf definition

 leaf foo {
 type empty;
 }

 a valid instance is

 "foo": [null]

6.10. The "union" Type

 A value of the "union" type is encoded as the value of any of the
 member types.

 When validating a value of the "union" type, the type information
 conveyed by the JSON encoding MUST also be taken into account. JSON
 syntax thus provides additional means for resolving union member type
 that are not available in XML encoding.

 For example, consider the following YANG definition:

 leaf bar {
 type union {
 type uint16;
 type string;
 }
 }

 In RESTCONF [I-D.ietf-netconf-restconf], it is possible to set the
 value of "bar" in the following way when using the "application/
 yang.data+xml" media type:

 <bar>13.5</bar>

 because the value may be interpreted as a string, i.e., the second
 member type of the union. When using the "application/
 yang.data+json" media type, however, this is an error:

 "bar": 13.5

 In this case, the JSON encoding indicates the value is supposed to be
 a number rather than a string, and it is not a valid "uint16" value.

 Conversely, the value of

Lhotka Expires April 9, 2016 [Page 13]

Internet-Draft JSON Encoding of YANG Data October 2015

 "bar": "1"

 is to be interpreted as a string.

6.11. The "instance-identifier" Type

 An "instance-identifier" value is encoded as a string that is
 analogical to the lexical representation in XML encoding, see
 sec. 9.13.3 in [I-D.ietf-netmod-rfc6020bis]. However, the encoding
 of namespaces in instance-identifier values follows the rules stated
 in Section 4, namely:

 o The leftmost (top-level) data node name is always in the
 namespace-qualified form.

 o Any subsequent data node name is in the namespace-qualified form
 if the node is defined in another module than its parent node, and
 the simple form is used otherwise. This rule also holds for node
 names appearing in predicates.

 For example,

 /ietf-interfaces:interfaces/interface[name=’eth0’]/ietf-ip:ipv4/ip

 is a valid instance-identifer value because the data nodes
 "interfaces", "interface" and "name" are defined in the module "ietf-
 interfaces", whereas "ipv4" and "ip" are defined in "ietf-ip".

7. I-JSON Compliance

 I-JSON [RFC7493] is a restricted profile of JSON that guarantees
 maximum interoperability for protocols that use JSON in their
 messages, no matter what JSON encoders/decoders are used in protocol
 implementations. The encoding defined in this document therefore
 observes the I-JSON requirements and recommendations as closely as
 possible.

 In particular, the following properties are guaranteed:

 o Character encoding is UTF-8.

 o Member names within the same JSON object are always unique.

 o The order of JSON object members is never relied upon.

 o Numbers of any type supported by YANG can be exchanged reliably.
 See Section 6.1 for details.

Lhotka Expires April 9, 2016 [Page 14]

Internet-Draft JSON Encoding of YANG Data October 2015

 The JSON encoding defined in this document deviates from I-JSON only
 in the representation of the "binary" type. In order to remain
 compatible with XML encoding, the base64 encoding scheme is used
 (Section 6.6), whilst I-JSON recommends base64url instead.

8. Security Considerations

 This document defines an alternative encoding for data modeled in the
 YANG data modeling language. As such, it doesn’t contribute any new
 security issues beyond those discussed in sec. 16 of
 [I-D.ietf-netmod-rfc6020bis].

 JSON processing is rather different from XML, and JSON parsers may
 thus suffer from other types of vulnerabilities than their XML
 counterparts. To minimize these new security risks, software on the
 receiving side SHOULD reject all messages that do not comply to the
 rules of this document and reply with an appropriate error message to
 the sender.

9. Acknowledgments

 The author wishes to thank Andy Bierman, Martin Bjorklund, Dean
 Bogdanovic, Balazs Lengyel, Juergen Schoenwaelder and Phil Shafer for
 their helpful comments and suggestions.

10. References

10.1. Normative References

 [I-D.ietf-netmod-rfc6020bis]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 draft-ietf-netmod-rfc6020bis-07 (work in progress),
 September 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/
 RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

Lhotka Expires April 9, 2016 [Page 15]

Internet-Draft JSON Encoding of YANG Data October 2015

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI
 10.17487/RFC7493, March 2015,
 <http://www.rfc-editor.org/info/rfc7493>.

10.2. Informative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-07 (work in
 progress), July 2015.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

Appendix A. A Complete Example

 The JSON document shown below represents the same data as the reply
 to the NETCONF <get> request appearing in Appendix D of [RFC7223].
 The data model is a combination of two YANG modules: "ietf-
 interfaces" and "ex-vlan" (the latter is an example module from
 Appendix C of [RFC7223]). The "if-mib" feature defined in the "ietf-
 interfaces" module is considered to be active.

 {
 "ietf-interfaces:interfaces": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "enabled": false
 },
 {
 "name": "eth1",
 "type": "iana-if-type:ethernetCsmacd",
 "enabled": true,
 "ex-vlan:vlan-tagging": true

Lhotka Expires April 9, 2016 [Page 16]

Internet-Draft JSON Encoding of YANG Data October 2015

 },
 {
 "name": "eth1.10",
 "type": "iana-if-type:l2vlan",
 "enabled": true,
 "ex-vlan:base-interface": "eth1",
 "ex-vlan:vlan-id": 10
 },
 {
 "name": "lo1",
 "type": "iana-if-type:softwareLoopback",
 "enabled": true
 }
]
 },
 "ietf-interfaces:interfaces-state": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 2,
 "phys-address": "00:01:02:03:04:05",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth1",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 7,
 "phys-address": "00:01:02:03:04:06",
 "higher-layer-if": [
 "eth1.10"
],
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth1.10",
 "type": "iana-if-type:l2vlan",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 9,

Lhotka Expires April 9, 2016 [Page 17]

Internet-Draft JSON Encoding of YANG Data October 2015

 "lower-layer-if": [
 "eth1"
],
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth2",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 8,
 "phys-address": "00:01:02:03:04:07",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "lo1",
 "type": "iana-if-type:softwareLoopback",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 1,
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 }
]
 }
 }

Appendix B. Change Log

 RFC Editor: Remove this section upon publication as an RFC.

B.1. Changes Between Revisions -05 and -06

 o More text and a new example about resolving union-type values.

B.2. Changes Between Revisions -04 and -05

 o Removed section "Validation of JSON-encoded Instance Data" and
 other text about XML-JSON mapping.

 o Added section "Properties of the JSON Encoding".

Lhotka Expires April 9, 2016 [Page 18]

Internet-Draft JSON Encoding of YANG Data October 2015

B.3. Changes Between Revisions -03 and -04

 o I-D.ietf-netmod-rfc6020bis is used as a normative reference
 instead of RFC 6020.

 o Removed noncharacters as an I-JSON issue because it doesn’t exist
 in YANG 1.1.

 o Section about anydata encoding was added.

 o Require I-JSON for anyxml encoding.

 o Use ABNF for defining qualified name.

B.4. Changes Between Revisions -02 and -03

 o Namespace encoding is defined without using RFC 2119 keywords.

 o Specification for anyxml nodes was extended and clarified.

 o Text about ordering of list entries was corrected.

B.5. Changes Between Revisions -01 and -02

 o Encoding of namespaces in instance-identifiers was changed.

 o Text specifying the order of array elements in leaf-list and list
 instances was added.

B.6. Changes Between Revisions -00 and -01

 o Metadata encoding was moved to a separate I-D, draft-lhotka-
 netmod-yang-metadata.

 o JSON encoding is now defined directly rather than via XML-JSON
 mapping.

 o The rules for namespace encoding has changed. This affect both
 node instance names and instance-identifiers.

 o I-JSON-related changes. The most significant is the string
 encoding of 64-bit numbers.

 o When validating union type, the partial type info present in JSON
 encoding is taken into account.

 o Added section about I-JSON compliance.

Lhotka Expires April 9, 2016 [Page 19]

Internet-Draft JSON Encoding of YANG Data October 2015

 o Updated the example in appendix.

 o Wrote Security Considerations.

 o Removed IANA Considerations as there are none.

Author’s Address

 Ladislav Lhotka
 CZ.NIC

 Email: lhotka@nic.cz

Lhotka Expires April 9, 2016 [Page 20]

