TCPI NG E. Rescorla
I nternet-Draft Mozill a
I ntended status: Standards Track May 03, 2016
Expi res: Novenber 4, 2016

Using TLS to Protect TCP Streans
draft-ietf-tcpinc-use-tls-01

Abst r act

Thi s docunent defines the use of TLS [RFC5246] with the TCP- ENO
option [I-D. bittau-tcpinc-tcpeno].

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute

wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on Novenber 4, 2016.
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Rescorl a Expi res Novenber 4, 2016 [Page 1]

Internet-Draft TCP-use-TLS May 2016

Tabl e of Contents

1. Introduction 2
2. Overview . . . 3
3. TCP-ENO Blndlng .o 3
3.1. Suboption Deflnltlon 3
3.2. Session ID . . 4
3.3. Channel d ose . 4
4. TLS Profile . . . 4
4.1. TLS 1.3 Prof|Ie . . 5
4.1.1. Handshake Modes 5
4.1.2. Basic 1-RTT Handshake . . . 6
4.1.3. Hello Retry Request [6.3.1. 3] 10
4.1.4. Zero-RTT Exchange . . 10
4.1.5. Key Schedul e 12
4.1.6. Record Protection . 13
4.2. TLS 1.2 Profile . 13
4.3. Deprecated Features . . 14
4.4. Cryptographic Algorlthns 14
5. Transport Integrity . 14
6. APl Considerations . 15
7. Inplenmentation Cbn5|derat|ons . 15
8. NAT/Firewal | considerations . 15
9. | ANA Consi derations . 15
10. Security Considerations . 16
11. References . 16
11.1. Normmative References . 16
11.2. Informmtive References . 18
Aut hor’ s Addr ess 18

1. Introduction

RFC EDI TOR: PLEASE REMOVE THE FOLLOW NG PARAGRAPH The source for this
draft is maintained in GtHub. Suggested changes should be submitted
as pull requests at https://github.comekr/tcpinc-tls. Instructions

are on that page as well.

The TCPINC W5 is chartered to define protocols to provide ubiquitous,
transparent security for TCP connections. The Wsis specifying The
TCP Encryption Negotiation Option (TCP-ENO

[1-D. bittau-tcpinc-tcpeno] which allows for negotiation of encryption
at the TCP layer. This docunment describes a binding of TLS [RFC5246]
to TCP-ENO as what ENO calls an "encryption spec", thus allow ng TCP-
ENO to negotiate TLS.

Rescorl a Expi res Novenber 4, 2016 [Page 2]

Internet-Draft TCP-use-TLS May 2016

3.

3.

Overvi ew

The basic idea behind this draft is sinple. The SYN and SYN ACK
messages carry the TCP-ENO options indicating the willingness to do
TLS. If both sides want to do TLS, then a TLS handshake is started
and once that conpletes, the data is TLS protected prior to being
sent over TCP. Qherw se, the application data is sent as usual.

Cient Server
SYN + TCP-ENO [TLS] - >

<- SYN ACK + TCP-ENO [TLS]
ACK + TCP-ENO - >

R TLS Handshake --------------- >

<--------- Application Data over TLS ---------- >
Figure 1

Cient Server

SYN + TCP-ENO [TLS] ->

S Application Data over TCP ---------- >
Figure 2: Fall back to TCP

If use of TLS is negotiated, the data sent over TCP sinply is TLS
data in conpliance with TLS 1.2 [RFC5246] or TLS 1.3
[I-Dietf-tls-tls13].
Once the TLS handshake has conpleted, all application data SHALL be
sent over that negotiated TLS channel. Application data MJST NOT be
sent prior to the TLS handshake.

If the TLS handshake fails, the endpoint MJST tear down the TCP
connection and MJST NOT send pl ai ntext data over the connection.

TCP- ENO Bi ndi ng
1. Suboption Definition
TCP- ENO suboption with c¢cs value set to [TBD]. Specifically, this

means that the SYN contains a 1-byte suboption indicating support for
this specification.

Rescorl a Expi res Novenber 4, 2016 [Page 3]

Internet-Draft TCP-use-TLS May 2016

bi t 7 6 5 4 3 2 1 0
M S Sy S S
| O] TBD |
i S S

[[OPEN I SSUE: It would be nice to indicate the desire to have 0-RTT,
but that would require a variable | ength suboption, which seens
per haps excessive. Mybe that’s the right answer anyway.]]

The SYN ACK can be in one of two forns:
0 A 1-byte suboption as in the SYN

o0 A variable-length suboption. 1In this case, the remainder of the
option contains a nonce to be used for O-RTT (see Section 4.1.4.
This nonce MUST be gl obally unique. Servers MJST NOT use this
form of the suboption unless explicitly configured (see
Section 6). [[OPEN ISSUE: | just thought this up recently, so
it’s possible it’s totally hal f-baked and won’'t work. In
particular, am| chewi ng up too nmuch option space?]]

The ACK sinply contains the bare TCP- ENO suboption
3.2. Session ID

TCP-ENO Section 4.1 defines a session ID feature (not to be confused
with TLS Session IDs). When the protocol in use is TLS, the session
IDis conputed via a TLS Exporter [RFC5705] using the Exporter Labe
[[TBD]] and without a context value (the TCP-ENO transcript is

i ncorporated via the TCPENOIranscri pt extension).

3.3. Channel d ose

Because TLS security is provided in the TCP transport streamrather
than at the segnent level, the FINis not an authenticated indicator
of end of data. |Instead inplenentations following this specification
MUST send a TLS close_notify alert prior to sending a FIN and MJST
raise an error if a FINor RST is receive prior to receiving a

cl ose_notify.

4, TLS Profile

The TLS Profile defined in this docunent is intended to be a
conmprom se between two separate use cases. For the straight TCPINC
use case of ubiquitous transport encryption, we desire that

i npl ementations solely inplenent TLS 1.3 [I-D.ietf-tls-tls13] or
greater. However, we also want to allow the use of TCP-ENO as a
signal for applications to do out-of-band negotiation of TLS, and

Rescorl a Expi res Novenber 4, 2016 [Page 4]

Internet-Draft TCP-use-TLS May 2016

those applications are likely to already have support for TLS 1.2

[RFC5246]. In order to acconpdate both cases, we specify a wire
encoding that allows for negotiation of nultiple TLS versions
(Section 3.1) but encourage inplenentations to inplenent only TLS
1.3. Inplenmentations which also inplenent TLS 1.2 MJST inplenent the
profile described in Section 4.2

4.1. TLS 1.3 Profile

TLS 1.3 is the preferred version of TLS for this specification. In
order to facilitate inplenentation, this section provides a non-
normati ve description of the parts of TLS 1.3 which are relevant to
TCPI NC and defines a normative baseline of algorithnms and nodes which
MUST be supported. O her nopdes, cipher suites, key exchange
algorithnms, certificate formats as defined in [I-D.ietf-tls-tls13]
MAY al so be used and that docunment remains the normative reference
for TLS 1.3. Bracketed references (e.g., [S. 1.2.3.4] refer to the
correspondi ng section in that docunent.) 1In order to match TLS
term nol ogy, we use the term"client" to indicate the TCP-ENO "A"
role (See [I-D. bittau-tcpinc-tcpeno]; Section 3.1) and "server" to
indicate the "B" role

4.1.1. Handshake Modes

TLS 1.3 as used in TCPINC supports two handshake nodes, both based on
Elliptic Curve Diffie-Hellnman Epheneral (ECDHE) key exchange.

0 A 1-RTT node which is used when the client has no information
about the server’s keying nmaterial (see Figure 3)

0 A O-RTT node which is used when the client and server have
connected previous and which allows the client to send data on the
first flight (see Figure 4)

In both case, the server is expected to have an Elliptic-Curve
Digital Signature Al gorithm (ECDSA) signing key which may either be a
freshly-generated key or a long-termkey (allow ng Trust-On-First-Use
(TOFU) style applications). The key need not be associated with any
certificate and can sinply be a bare key.

Full TLS 1.3 includes support for additional nodes based on pre-
shared keys, but TCPINC i npl enentations MAY opt to omit them

| mpl enent ati ons MUST i npl enent the 1-RTT node and SHOULD i npl enent
the 0-RTT node.

Rescorl a Expi res Novenber 4, 2016 [Page 5]

Internet-Draft TCP-use-TLS May 2016

dient Server

ClientHello
+ Cli ent KeyShare

+ TCPENOTranscript — ------- >
ServerHell o

Server KeyShar e

{ Encr ypt edExt ensi ons}
{Server Confi guration*}
{Certificate}
{CertificateVerify}

<mmmmm--- {Fi ni shed}
<-------- [Application Data]
{Finished} -------- >
[Application Data] <------- > [Application Data]

* Indicates optional or situation-dependent
messages that are not always sent.

{} I'ndicates nessages protected using keys
derived fromthe epheneral secret.

[T I'ndicates nmessages protected using keys
derived fromthe naster secret.

Figure 3: Message flow for full TLS Handshake

Not e: Al t hough these diagrans indicate a nessage call ed
"Certificate", this nmessage MAY either contain a bare public key or
an X. 509 certificate (this is intended to support the out-of-band use
case indicated above). |I|nplenmentations MIST support bare public keys
and MAY support X. 509 certificates.

4,1.2. Basic 1-RTT Handshake
4.1.2.1. dient’'s First Flight

4.1.2.1.1. Sending

In order to initiate the TLS handshake, the client sends a
"ClientHell 0" nessage [S. 6.3.1.1].

Rescorl a Expi res Novenber 4, 2016 [Page 6]

Internet-Draft TCP-use-TLS May 2016

struct {
Prot ocol Version client_version = { 3, 4 }; [* TLS v1.3 */
Random r andom
uint 8 session_id | en RESERVED, /* Must be zero */
Ci pher Sui te ci pher_sui tes<2..2"16-2>;
ui nt 8 conpressi on_met hods_| en_RESERVED,; /* Must be zero */

Ext ensi on ext ensi ons<0..2"16-1>;
} dientHell o;

The fields |isted here have the foll owi ng neani ngs:

client_version
The version of the TLS protocol by which the client wi shes to
communi cate during this session.

random
A 32-byte random nonce.

ci pher_suites
This is a list of the cryptographic options supported by the
client, with the client’s first preference first.

extensions contains a set of extension fields. The client MJST
i nclude the follow ng extensions:

SignatureAl gorithns [S. 6.3.2.1]
A list of signature/hash algorithmpairs the client supports.

NanedG oup [S. 6.3.2.2]
A list of ECDHE groups that the client supports

ClientKeyShare [S. 6.3.2.3]
Zero or nore ECDHE shares drawn fromthe groups in NanedG oup.
This SHOULD contain either a P-256 key or an X25519 key.

The client MJST al so include a ServerCert TypeExt ensi on cont ai ni ng
type "Raw Public Key" [RFC7250], indicating its willingness to accept
a raw public key rather than an X. 509 certificate in the server’s
Certificate nessage.

The client MJST include a TCPENOTranscri pt extension containing the
TCP- ENO options that were used to negotiate ENO

4.1.2.2. The TCPENOTranscri pt
TCPENOTr anscri pt TLS Extension is used to carry the TCP ENO

negoti ation transcript. The body of the extension sinply includes
the TCP- ENO negotiation transcript as defined in TCP-ENO Section 3. 4.

Rescorl a Expi res Novenber 4, 2016 [Page 7]

Internet-Draft TCP-use-TLS May 2016

This serves two purposes:
o0 It binds the TCP-ENO negotiation into the TLS handshake.

0 In O-RTT node (see Section 4.1.4) it allows the server to provide
an anti-replay nonce which is then nmixed into the TLS handshake.

The server MJST validate that the TCPENOTranscri pt extension matches
the transcript. |If not, it MIJST fail the handshake with a fata
"handshake failure" exception

4.1.2.2.1. Receiving

Upon receiving the client’s CientHello, the server selects a

ci phersuite and ECDHE group out of the lists provided by the client
in the cipher _suites list and the NanedG oup extension. If the
client supplied an appropriate CientKeyShare for that group, then
the server responds with a ServerHello (see Section 4.1.2.3).

O herwise, it replies with a Hell oRetryRequest (Section 4.1.3),
indicating that the client needs to re-send the ientHello with an
appropriate key share; because all TCPINC inplenmentations are
required to support P-256, this should not happen unless P-256 is
deprecated by a subsequent specification

4.1.2.3. Server's First Flight
4.1.2.3.1. Sending

The server responds to the client’s first flight with a sequence of
nessages:

ServerHello [6.3.1.2]
Contai ns a nonce and the cipher suite that the server has sel ected
out of the client’s list. The server MJST support the extensions
listed in Section 4.1.2.1.1 and MJST al so ignore any extensions it
does not recognize; this inplies that the server can inpl enent
solely the extensions listed in Section 4.1.2.1.1

Server KeyShare [6. 3. 3]
Contains the server’s ECDHE share for one of the groups offered in
the client’s dientKeyShare nessage. Al nessages after
Server KeyShare are encrypted using keys derived fromthe
Cli ent KeyShare and Server KeyShar e.

Encr ypt edExt ensi ons [6. 3. 4]

Responses to the extensions offered by the client. In this case,
the only relevant extension is the ServerCert TypeExt ensi on

Rescorl a Expi res Novenber 4, 2016 [Page 8]

Internet-Draft TCP-use-TLS May 2016

Certificate [6.3.5]
The server’s certificate. |If the client offered a "Raw Public
Key" type in ServerCert TypeExtension this nessage SHALL contain a
Subj ect Publ i cKeyl nfo value for the server’s key as specified in
[RFC7250]. O herwise, it SHALL contain one or nore X 509
Certificates, as specified in [I-Dietf-tls-tlsl13], Section 6.3.5.
In either case, this nessage MJST contain a key which is
consistent with the client’s SignatureAl gorithnms and NamedG oup
ext ensi ons.

Server Configuration [6.3.7]
A server configuration value for use in O-RTT (see Section 4.1.4).

CertificateVerify [6.3.8]
A signature over the handshake transcript using the key provided
in the certificate nessage

Fi ni shed [6. 3. 9]
A MAC over the entire handshake transcript up to this point.

Once the server has sent the Finished nessage, it can i mediately
generate the application traffic keys and start sending application
traffic to the client.

4.1.2.4. Receiving

Upon receiving the server’s first flight, the client proceeds as
fol | ows:

0 Read the ServerHell o nmessage to determine the cryptographic
par anet ers

0 Read the ServerKeyShare nessage and use that in conbination with
the ClientKeyShare to conpute the keys which are used to encrypt
the rest of the handshake.

0 Read the EncryptedExt ensi ons nmessage. As noted above, the main
ext ensi on whi ch needs to be processed is ServerCert TypeExt ensi on
whi ch indicates the format of the server’s certificate nessage

0 Read the server’'s certificate nessage and store the server’'s
public key. Unless the inplenentation is specifically configured
otherwi se, it SHOULD NOT attenpt to validate the certificate, even
if it is of type X. 509 but nerely extract the key.

0 Read the server’'s CertificateVerify nessage and verify the
server’s signature over the handshake transcript. |If the

Rescorl a Expi res Novenber 4, 2016 [Page 9]

Internet-Draft TCP-use-TLS May 2016

signature does not verify, the client term nates the handshake
with an alert (Section 6.1.2).

0 Read the server’s Finished nessage and verify the finished MAC
based on the DH shared secret. |f the MAC does not verify, the
client term nates the handshake with an alert.

4.1.2.5. dient’s Second Flight

Finally, the client sends a Finished nessage which contains a MAC
over the handshake transcript (except for the server’s Finished).
[[TODO In the upconming draft of TLS 1.3, the client’'s Finished wll
likely include the server’s Finished.]] Once the client has
transmitted the Finished, it can begin sending encrypted traffic to
the server.

The server reads the client’s Finished nessage and verifies the MAC
If the MAC does not verify, the client terninates the handshake with
an alert.

4.1.3. Hello Retry Request [6.3.1.3]

Because there are a snall nunber of recommended groups, the
ClientKeyShare will generally contain a key share for a group that
the server supports. However, it is possible that the client wll
not send such a key share, but there may be another group that the
client and server jointly support. In that case, the server MJST
send a Hel |l oRetryRequest indicating the desired group:

struct {
Pr ot ocol Ver si on server_version;
Ci pher Sui te ci pher_suite;
NanmedG oup sel ect ed_group;
Ext ensi on ext ensi ons<0..2"16- 1>;
} Hel | oRet ryRequest;

In response to the Hell oRetryRequest the client re-sends its
ClientHello but with the addition of the group indicated in
"sel ect ed_group".

4.1.4. Zero-RTT Exchange

TLS 1.3 allows the server to send its first application data nessage
to the client imediately upon receiving the client’s first handshake
message (which the client can send upon receiving the server’s SYN
ACK). However, in the basic handshake, the client is required to
wait for the server’s first flight before it can send to the server.

Rescorl a Expi res Novenber 4, 2016 [Page 10]

Internet-Draft TCP-use-TLS May 2016

TLS 1.3 also includes a "Zero-RTT" feature which allows the client to
send data on its first flight to the server.

In order to enable this feature, in an initial handshake the server
sends a ServerConfiguration nmessage which contains the server’s sem -
static (EC)DH key which can be used for a future handshake:

struct {

opaque configuration_id<l..2"16-1>;

ui nt 32 expiration_date;

NanedGr oup group;

opaque server_key<l..2"16-1>;

Earl yDat aType early_data_type;

Confi gur ati onExt ensi on extensi ons<0..2"16-1>;
} Server Configuration;

The group and server_key fields contain the server’'s (EC)DH key and
the early_data_type field is used to indicate what data can be sent
in zero-RTT. Because client authentication is forbidden in TCPI NC
uses of TLS 1.3 (see Section 4.3), the only valid value here is
"early_data", indicating that the client can send data in O-RTT.

In a future connection, a client MAY send O-RTT data only if the
followi ng three conditions obtain:

o It has been specifically configured to do so (see Section 6).
0 A ServerConfiguration is avail able.

0 The server supplied a nonce in its SYN ACK suboption [[TODO Work
out how to make this work with TFOif at all.]]

In this case, the client sends an Earl yDat al ndi cati on extension in

its CientHello and can start sending data inmedi ately, as shown
bel ow.

Rescorl a Expi res Novenber 4, 2016 [Page 11]

Internet-Draft TCP-use-TLS May 2016

dient Server

ClientHello
+ Cli ent KeyShare
+ Earl yDat al ndi cati on
+ TCPENOTr anscri pt
(Encr ypt edExt ensi ons)

(Application Data) -------- >
ServerHello

+ Earl yDat al ndi cati on

Ser ver KeyShar e

{ Encr ypt edExt ensi ons}

{Server Confi guration*}
{Certificate}

{CertificateVerify}

R {Fi ni shed}
<-m-m---- [Application Data]

{Finished} -------- >
[Application Data] <-mmmm-- > [Application Data]

() I'ndicates nessages protected using keys
derived fromthe static secret.

Figure 4: Message flow for a zero round trip handshake

| MPORTANT NOTE: TLS 1.3 Zero-RTT does not provide PFS and therefore
MUST only be used when explicitly configured.

Note: TLS 1.3 Zero-RTT data is inherently replayable (see the note in
[I-Dietf-tls-tls13] Section 6.2.2). However, because the client and
server have already exchanged data in the _TCP_ handshake, this data
can be used to provide anti-replay for a 0-RTT node TLS handshake vi a

t he TCPENOTr anscri pt extension.

4.1.5. Key Schedul e

TLS 1.3 derives its traffic keys fromtwo input keying materi al
val ues:

Epheneral Secret (ES): A secret which is derived fromdientKeyShare
and Server KeyShare.

Static Secret (SS): A secret which which is derived from
Client KeyShare and either ServerKeyShare (in the 1-RTT case) or the
public key in the ServerConfiguration (in the O0-RTT case).

Rescorl a Expi res Novenber 4, 2016 [Page 12]

Internet-Draft TCP-use-TLS May 2016

The handshake is encrypted under keys derived fromES. The ordinary
traffic keys are derived fromthe conbination of ES and SS. The
O-RTT traffic keys are derived solely fromES and therefore have
limted forward security. All key derivation is done using the HKDF
key-derivation al gorithm[RFC5869].

4.1.6. Record Protection

Once the TLS handshake has conpleted, all data is protected as a
series of TLS Records

struct {
Cont ent Type opaque_type = application_data(23); /* see fragnent.type
*/
Prot ocol Version record_version = { 3, 1 }; [* TLS v1.x */
uint16 | ength;
aead- ci phered struct {
opaque content[TLSPl ai ntext.| ength];
Cont ent Type type;
uint8 zeros[| ength_of padding];
} fragnent;
} TLSCGi phertext;

Each record is encrypted with an Authenticated Encryption with
Addi tional Data (AEAD) cipher with the foll owi ng paraneters

o The AEAD nonce is constructed by generating a per-connection nonce
mask of |ength nax(8 bytes, NMN) for the AEAD algorithm (N.MN
is the m ni mum nonce size defined in [RFC5116] Section 4) and
XCRing it with the sequence nunber of the TLS record (| eft-padded
with zeroes).

o The additional data is the sequence nunber + the TLS version
numnber .

The record data MAY BE padded with zeros to the right. Because the
content type byte value is always non-zero, the padding is renoved by
renovi ng bytes fromthe right until a non-zero byte is encountered.

4.2. TLS 1.2 Profile

| mpl enent ati ons MUST i npl enent and require the TLS Ext ended Master
Secret Extension [I-D.ietf-tls-session-hash] and MJUST NOT negoti ate
versions of TLS prior to TLS 1.2. Inplenentati ons MJST NOT negotiate
non- AEAD ci pher suites and MJST use only PFS cipher suites with a key
of at |east 2048 bits (finite field) or 256 bites (elliptic curve).
TLS 1.2 inplenentations MUST NOT initiate renegotiation and MJST
respond to renegotiation with a fatal "no_renegotiation" alert.

Rescorl a Expi res Novenber 4, 2016 [Page 13]

I nt

4. 3.

4.4.

Res

ernet-Draft TCP-use-TLS May 2016

Deprecat ed Features

Wien TLS is used with TCPINC, a nunber of TLS features MJST NOT be
used, including:

0o TLS certificate-based client authentication
0 Session resunption

These features have only nmininmal advantage in this context and
interfere with offering a reduced profile.

Cryptographic Al gorithns

I mpl enent ati ons of this specification MIST inplenent the foll ow ng
ci pher suite:

TLS_ECDHE_ECDSA W TH_AES 128 GCM SHA256

These ci pher suites MJST support both digital signatures and key
exchange with secp256rl1 (NI ST P-256) and SHOULD support key agrenent
with X25519 [I-D.irtf-cfrg-curves].

I mpl ement ations of this specification SHOULD i npl ement the follow ng
ci pher suites:

TLS_ECDHE_ECDSA W TH_CHACHA20 POLY1305
TLS_ECDHE_ECDSA W TH_AES 256 _GCM SHA384

Transport Integrity

The basic operational node defined by TCP-TLS protects only the
application layer content, but not the TCP segnent netadata. Upon
receiving a packet, inplenentations MIST first check the TCP checksum
and di scard corrupt packets without presenting themto TLS. |If the
TCP checksum passes but TLS integrity fails, the connection MJST be
torn down.

Thus, TCP-TLS provides automatic security for the content, but not
protection agai nst DoS-style attacks. For instance, attackers wll
be able to inject RST packets, bogus application segnents, etc.
regardl ess of whether TLS authentication is used. Because the
application data is TLS protected, this will not result in the
application receiving bogus data, but it will constitute a DoS on the
connecti on.

This attack could be countered by using TCP-TLS in conbination with
TCP- AO [RFC5925], using Application-Layer Protocol Negotiation (ALPN)

corla Expi res Novenber 4, 2016 [Page 14]

Internet-Draft TCP-use-TLS May 2016

[RFC7301] to negotiate the use of AO [[OPEN ISSUE Is this
somet hing we want? Maybe in a separate specification.]]

6. APl Considerations
Needed here:
0 How to configure O-RTT and send O-RTT data (some sort of sockopt).
0 Wien is the session-id avail abl e (post-connect() conpletion).
0 How to indicate that the certificate should be vali dated.
7. Inplenmentation Considerations
There are two prinmary inplenentation options for TCP-TLS
o Inplenment all of TCP-TLS in the operating system kernel

0 |Inplenment just the TCP-TLS negotiation option in the operating
system kernel with an interface to tell the application that TCP-
TLS has been negotiated and therefore that the application nust
negotiate TLS

The former option obviously achi eves easi er depl oynent for
applications, which don't have to do anything, but is nore effort for
kernel devel opers and requires a wider interface to the kernel to
configure the TLS stack. The latter option is inherently nore

flexi ble but does not provide as i medi ate transparent depl oynent.

It is also possible for systens to offer both options.

8. NAT/ Firewal | consi derati ons

If use of TLS is negotiated, the data sent over TCP sinply is TLS
data in conpliance with [RFC5246]. Thus it is extrenely likely to
pass through NATs, firewalls, etc. The only kind of middlebox that
is likely to cause a problemis one which does protocol enforcenent
that blocks TLS on arbitrary (non-443) ports but _al so_ passes
unknown TCP options. Although no doubt such devices do exist,
because this is a common scenario, a client nmachine should be able to
probe to determine if it is behind such a device relatively readily.

9. | ANA Consi derati ons

| ANA [shall register/has registered] the TCP-ENO suboption XX for
TCP-TLS

Rescorl a Expi res Novenber 4, 2016 [Page 15]

Internet-Draft TCP-use-TLS May 2016

10.

11.

11.

| ANA [shall register/has registered] the ALPN code point "tcpao" to
i ndicate the use of TCP-TLS with TCP- AQ.

Security Considerations

The mechanisns in this docunent are inherently vulnerable to active
attack because an attacker can renove the TCP-TLS option, thus
downgradi ng you to ordinary TCP. Even when TCP-AO is used, all that
is being provided is continuity of authentication fromthe initial
handshake. |f sonme sort of external authentication mechani smwas
provided or certificates are used, then you night get sonme protection
agai nst active attack.

Once the TCP-TLS option has been negotiated, then the connection is

resistant to active data injection attacks. |If TCP-AO is not used,

then injected packets appear as bogus data at the TLS layer and wll
result in MAC errors followed by a fatal alert. The result is that

while data integrity is provided, the connection is not resistant to
DoS attacks intended to terminate it.

If TCP-AO is used, then any bogus packets injected by an attacker
will be rejected by the TCP-AO integrity check and therefore wll
never reach the TLS layer. Thus, in this case, the connection is
al so resistant to DoS attacks, provided that endpoints require
integrity protection for RST packets. |If endpoints accept

unaut henti cated RST, then no DoS protection is provided.

Ref er ences
1. Nornmtive References

[1-D. bittau-tcpinc-tcpeno]
Bittau, A, Boneh, D., Gffin, D, Handley, M, Mazieres,
D., and E. Smith, "TCP-ENO Encryption Negotiation
Option", draft-bittau-tcpinc-tcpeno-02 (work in progress),
Sept enber 2015.

[I-D.ietf-tls-applayerprotoneg]
Friedl, S., Popov, A, Langley, A, and S. Emle,
"Transport Layer Security (TLS) Application Layer Protocol
Negoti ati on Extension", draft-ietf-tls-applayerprotoneg-05
(work in progress), March 2014.

Rescorl a Expi res Novenber 4, 2016 [Page 16]

Internet-Draft TCP-use-TLS May 2016

[I-D.ietf-tls-chacha20- pol y1305]
Langl ey, A., Chang, W, Mavrogi annopoul os, N.,
Stronbergson, J., and S. Josefsson, "ChaCha20- Pol y1305
Ci pher Suites for Transport Layer Security (TLS)", draft-
ietf-tls-chacha20-pol y1305-04 (work in progress), Decenber
2015.

[I-D.ietf-tls-session-hash]
Bhar gavan, K., Delignat-Lavaud, A., Pironti, A., Langl ey,
A., and M Ray, "Transport Layer Security (TLS) Session
Hash and Extended Master Secret Extension", draft-ietf-
tls-session-hash-06 (work in progress), July 2015.

[I-Dietf-tls-tlsl3]
Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", draft-ietf-tls-tlsl13-12 (work in progress),
March 2016.

[I-Dirtf-cfrg-curves]
Langley, A. and M Hanburg, "Elliptic Curves for
Security", draft-irtf-cfrg-curves-11 (work in progress),
Cct ober 2015.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DO 10.17487/ RFC2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>.

[RFC5116] MG ew, D., "An Interface and Al gorithns for Authenticated
Encryption", RFC 5116, DO 10.17487/ RFC5116, January 2008,
<http://wwv rfc-editor.org/info/rfc5116>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10.17487/ RFC5246, August 2008,
<http://wwv. rfc-editor.org/info/rfc5246>.

[RFC5705] Rescorla, E., "Keying Material Exporters for Transport
Layer Security (TLS)", RFC 5705, DA 10.17487/ RFC5705,
March 2010, <http://ww.rfc-editor.org/info/rfc5705>.

[RFC5869] Krawczyk, H and P. Eronen, "HMAC based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869,
DA 10.17487/ RFC5869, May 2010,
<http://ww. rfc-editor.org/info/rfc5869>.

Rescorl a Expi res Novenber 4, 2016 [Page 17]

Internet-Draft TCP-use-TLS May 2016

[RFC5925] Touch, J., Mankin, A, and R Bonica, "The TCP
Aut hentication Option", RFC 5925, DA 10.17487/ RFC5925,
June 2010, <http://ww.rfc-editor.org/info/rfc5925>.

[RFC7250] Wouters, P., Ed., Tschofenig, H, Ed., Glnore, J.,
Wiler, S., and T. Kivinen, "Using Raw Public Keys in
Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)", RFC 7250, DA 10.17487/ RFC7250,
June 2014, <http://ww.rfc-editor.org/info/rfc7250>.

11.2. Informative References

[I-D.bittau-tcp-crypt]
Bittau, A, Boneh, D., Hanmburg, M, Handley, M, Mazieres,
D., and Q Slack, "Cryptographic protection of TCP Streans
(tcpecrypt)", draft-bittau-tcp-crypt-04 (work in progress),
February 2014.

[I-Dietf-tls-fal sestart]
Langl ey, A., Mdadugu, N., and B. Meller, "Transport
Layer Security (TLS) False Start", draft-ietf-tls-
fal sestart-01 (work in progress), Novenber 2015.

[RFC5929] Altman, J., Wllians, N, and L. Zhu, "Channel Bindings
for TLS', RFC 5929, DA 10.17487/RFC5929, July 2010,
<http://ww. rfc-editor.org/info/rfc5929>.

[RFC6919] Barnes, R, Kent, S., and E. Rescorla, "Further Key Wrds
for Use in RFCs to I ndicate Requirenent Levels", RFC 6919,
DA 10.17487/ RFC6919, April 2013,
<http://wwv. rfc-editor.org/info/rfc6919>.

[RFC7301] Friedl, S., Popov, A, Langley, A, and E. Stephan,
"Transport Layer Security (TLS) Application-Layer Protocol
Negoti ati on Extension", RFC 7301, DO 10.17487/ RFC7301,
July 2014, <http://ww.rfc-editor.org/info/rfc7301>.
Aut hor’ s Addr ess

Eric Rescorla
Mozilla

EMail: ekr@tfmcom

Rescorl a Expi res Novenber 4, 2016 [Page 18]

