TCP Mai nt enance Worki ng G oup Y. Cheng

I nternet-Draft N. Cardwel |
I ntended status: Experinental Googl e, Inc
Expi res: January 7, 2017 July 6, 2016

RACK: a tinme-based fast |oss detection algorithmfor TCP
draft-cheng-tcpmrack-01

Abst r act

Thi s docunent presents a new TCP | oss detection algorithmcalled RACK
("Recent ACKnow edgnent"). RACK uses the notion of time, instead of
packet or sequence counts, to detect |osses, for nodern TCP

i npl ement ati ons that can support per-packet tinestanps and the

sel ective acknow edgnent (SACK) option. It is intended to replace
the conventional DUPACK threshol d approach and its variants, as well
as ot her nonstandard approaches.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on January 7, 2017
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of

Cheng & Cardwel | Expi res January 7, 2017 [Page 1]

Internet-Draft RACK July 2016

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

1. Introduction

Thi s docunent presents a new | oss detection algorithmcalled RACK
("Recent ACKnow edgnent"). RACK uses the notion of time instead of
the conventional packet or sequence counting approaches for detecting
| osses. RACK deens a packet lost if some packet sent sufficiently

| ater has been delivered. It does this by recording packet
transmission tinmes and inferring | osses using cunul ative

acknow edgnents or sel ective acknow edgnent (SACK) TCP options.

In the last couple of years we have been observing severa
i ncreasingly conmon | oss and reordering patterns in the Internet:

1. Lost retransnmissions. Traffic policers [POLI CERL6] and burst
| osses often cause retransmi ssions to be | ost again, severely
i ncreasing TCP | atency.

2. Tail drops. Structured request-response traffic turns nore
| osses into tail drops. In such cases, TCP is application-
limted, so it cannot send new data to probe | osses and has to
rely on retransnission tineouts (RTOs).

3. Reordering. Link |ayer protocols (e.g., 802.11 bl ock ACK) or
routers’ internal |oad-balancing can deliver TCP packets out of
order. The degree of such reordering is usually within the order
of the path round trip tine.

Despite TCP stacks (e.g. Linux) that inplenment many of the standard
and proposed | oss detection algorithns

[RFC3517] [RFC4653] [RFC5827] [RFC5681] [RFC6675] [RFC7765] [FACK] [THI N-
STREAM [TLP], we’'ve found that together they do not performwell.

The main reason is that nany of them are based on the classic rule of
counting duplicate acknow edgrments [RFC5681]. They can either detect
| oss quickly or accurately, but not both, especially when the sender
is application-limted or under reordering that is unpredictable.

And under these conditions none of them can detect |ost

retransm ssions well.

Al so, these algorithns, including RFCs, rarely address the
interactions with other algorithnms. For exanple, FACK may consider a
packet is lost while RFC3517 may not. |Inplenmenting N algorithns
while dealing with N2 interactions is a daunting task and error-
prone.

Cheng & Cardwel | Expi res January 7, 2017 [Page 2]

Internet-Draft RACK July 2016

The goal of RACK is to solve all the problens above by replacing nany
of the | oss detection al gorithns above with one sinpler, and al so
nmore effective, algorithm

2. Overview

The main idea behind RACK is that if a packet has been delivered out
of order, then the packets sent chronologically before that were
either lost or reordered. This concept is not fundamentally
different from|[RFC5681] [RFC3517][FACK]. But the key innovation in
RACK is to use a per-packet transm ssion tinestanp and wi dely

depl oyed SACK options to conduct tine-based inferences instead of
inferring | osses with packet or sequence counting approaches.

Using a threshold for counting duplicate acknow edgnents (i.e.

dupt hresh) is no longer reliable because of today's preval ent
reordering patterns. A common type of reordering is that the |ast
"runt" packet of a window s worth of packet bursts gets delivered
first, then the rest arrive shortly after in order. To handle this
effectively, a sender would need to constantly adjust the dupthresh
to the burst size; but this would risk increasing the frequency of
RTCs on real |osses.

Today’ s preval ent |ost retransm ssions al so cause problens with
packet - counti ng approaches [RFC5681] [RFC3517] [FACK], since those

appr oaches depend on reasoning in sequence nunber space.

Ret ransmi ssi ons break the direct correspondence between ordering in
sequence space and ordering in time. So when retransm ssions are

| ost, sequence-based approaches are often unable to infer and quickly
repair |osses that can be deduced with tine-based approaches.

I nstead of counting packets, RACK uses the nost recently delivered
packet’s transmission tinme to judge if sone packets sent previous to
that tinme have "expired" by passing a certain reordering settling

wi ndow. On each ACK, RACK narks any al ready-expired packets | ost,
and for any packets that have not yet expired it waits until the
reordering w ndow passes and then marks those lost as well. In
either case, RACK can repair the loss without waiting for a (long)
RTO. RACK can be applied to both fast recovery and timeout recovery
and can detect | osses on both originally transnmtted and
retransmtted packets, naking it a great all-weather recovery
mechani sm

3. Requirenents

The reader is expected to be famliar with the definitions given in
the TCP congestion control [RFC5681] and sel ective acknow edgnent

Cheng & Cardwel | Expi res January 7, 2017 [Page 3]

Internet-Draft RACK July 2016

[RFC2018] RFCs. Fanmiliarity with the conservative SACK-based
recovery for TCP [RFC6675] is not expected but hel ps.

RACK has three requirenents:

1. The connection MJST use sel ective acknow edgnent (SACK) options
[RFC2018] .

2. For each packet sent, the sender MJST store its nost recent
transmission tine with (at least) mllisecond granularity. For
round-trip tinmes lower than a mllisecond (e.g., intra-datacenter
conmuni cations) microsecond granularity would significantly help
the detection latency but is not required.

3. For each packet sent, the sender MJIST store whether the packet
has been retransnmitted or not.

We assune that requirenment 1 inplies the sender keeps a SACK
scoreboard, which is a data structure to store selective

acknow edgment i nformati on on a per-connection basis. For the ease
of explaining the algorithm we use a pseudo-scoreboard that nanages
the data in sequence nunber ranges. But the specifics of the data
structure are left to the inplenentor.

RACK does not need any change on the receiver
4. Definitions of variables
A sender needs to store these new RACK vari abl es:

"Packet.xmit_ts" is the tine of the last transmi ssion of a data
packet, including any retransm ssions, if any. The sender needs to
record the transmission time for each packet sent and not yet

acknow edged. The tinme MJUST be stored at millisecond granularity or
finer.

"RACK. xmit_ts" is the npst recent Packet.xmit_ts anong all the
packets that were delivered (either cunul atively acknow edged or
sel ectively acknow edged) on the connection

"RACK. end_seq" is the ending TCP sequence nunber of the packet that
was used to record the RACK xnmit _ts above.

"RACK. RTT" is the associated RTT neasured when RACK xmt ts, above,
was changed. 1t is the RTT of the nbst recently transmtted packet
that has been delivered (either cunulatively acknow edged or

sel ectively acknow edged) on the connection

Cheng & Cardwel | Expi res January 7, 2017 [Page 4]

Internet-Draft RACK July 2016

5.

5.

5.

"RACK.reo_wnd" is a reordering wi ndow for the connection, conputed in
the unit of time used for recording packet transmission tines. It is
used to defer the nonent at which RACK marks a packet | ost.

"RACK. min_RTT" is the estimated minimumround-trip tinme (RTT) of the
connecti on.

Note that the Packet.xmit _ts variable is per packet in flight. The
RACK. xmt _ts, RACK RTT, RACK reo_wnd, and RACK.m n_RTT vari abl es are
per connecti on.

Al gorithm Details
1. Transnmitting a data packet

Upon transmitting a new packet or retransmtting an ol d packet,
record the time in Packet.xmit_ts. RACK does not care if the
retransmssion is triggered by an ACK, new application data, an RTQ
or any other neans.

2. Upon receiving an ACK
Step 1. Update RACK m n_RTT.

Use the RTT nmeasurements obtained in [RFC6298] or [RFC7323] to update
the estimated mnimum RTT in RACK. min_RTT. The sender can track a
simple global mnimmof all RTT neasurenents fromthe connection, or
a wi ndowed nmin-filtered value of recent RTT neasurenents. This
docunent does not specify an exact approach

Step 2: Update RACK reo_wnd.

To handl e the prevalent small degree of reordering, RACK reo_wnd
serves as an all owance for settling tine before marki ng a packet

lost. By default it is 1 mllisecond. W RECOMVEND inplenenting the
reordering detection in [REORDER- DETECT] [RFC4737] to dynanically

adj ust the reordering wi ndow. \Wen the sender detects packet
reordering RACK. reo_wnd MAY be changed to RACK. min_RTT/4. W discuss
nmore about the reordering wi ndow in the next section

Step 3: Advance RACK. xmit_ts and update RACK RTT and RACK. end_seq

G ven the information provided in an ACK, each packet cunul atively
ACKed or SACKed is marked as delivered in the scoreboard. Anong all
the packets newly ACKed or SACKed in the connection, record the nost
recent Packet.xmit ts in RACK xmit ts if it is ahead of RACK xmit _ts.
I gnore the packet if any of its TCP sequences has been retransnmitted
before and either of two condition is true:

Cheng & Cardwel | Expi res January 7, 2017 [Page 5]

Internet-Draft RACK July 2016

1. The Tinestanp Echo Reply field (TSecr) of the ACK s tinestanp
option [RFC7323], if available, indicates the ACK was not
acknow edgi ng the last retransm ssion of the packet.

2. The packet was last retransnitted |l ess than RACK. nin_rtt ago.
While it is still possible the packet is spuriously retransnitted
because of a recent RTT decrease, we believe that our experience
suggests this is a reasonabl e heuristic.

If this ACK causes a change to RACK xmit _ts then record the RTT and
sequence inplied by this ACK

RACK. RTT = Nowm() - RACK. xmit_ts
RACK. end_seq = Packet. end_seq

Exit here and omit the following steps if RACK xmt _ts has not
changed.

Step 4: Detect |osses.

For each packet that has not been fully SACKed, if RACK xmit_ts is
after Packet.xmt _ts + RACK.reo_wnd, then nmark the packet (or its
correspondi ng sequence range) lost in the scoreboard. The rationale
is that if another packet that was sent |ater has been delivered, and
the reordering wi ndow or "reordering settling tinme" has already
passed, the packet was likely |ost.

If a packet that was sent |ater has been delivered, but the
reordering wi ndow has not passed, then it is not yet safe to deemthe
gi ven packet lost. Using the basic algorithm above, the sender would
wait for the next ACK to further advance RACK xmit_ts; but this risks
a tinmeout (RTO if no nore ACKs cone back (e.g, due to | osses or
application Iimt). For tinely |loss detection, the sender MAY
install a "reordering settling" tinmer set to fire at the earliest
monent at which it is safe to conclude that sone packet is lost. The
earliest nmonment is the time it takes to expire the reordering w ndow
of the earliest unacked packet in flight.

This timer expiration value can be derived as follows. As a starting
poi nt, we consider that the reordering wi ndow has passed if the RACK
packet was sent sufficiently after the packet in question, or a
sufficient tinme has el apsed since the RACK packet was S/ ACKed, or
some conbination of the two. Mre precisely, RACK nmarks a packet as
lost if the reordering wi ndow for a packet has el apsed through the
sum of :

1. deltain transmt tinme between a packet and the RACK packet

Cheng & Cardwel | Expi res January 7, 2017 [Page 6]

Internet-Draft RACK July 2016

2. deltain tine between the S/ ACK of the RACK packet (RACK. ack_ts)
and now

So we nmark a packet as lost if:

RACK. xmit _ts > Packet.xmit_ts AND
(RACK. xmit_ts - Packet.xmit_ts) + (now - RACK ack_ts) > RACK. reo_wnd

If we solve this second condition for "now', the nonent at which we
can declare a packet lost, then we get:

now > Packet.xmit ts + RACK reo_wnd + (RACK. ack ts - RACK xmit _ts)

Then (RACK ack _ts - RACK. xmit_ts) is just the RTT of the packet we
used to set RACK xmit_ts, so this reduces to:

now > Packet.xmit_ts + RACK RTT + RACK.reo_wnd

The foll owi ng pseudocode inplements the algorithmabove. Wen an ACK
is received or the RACK timer expires, call RACK detect_loss(). The
al gorithmincludes an additional optimzation to break timestanmp ties
by using the TCP sequence space. The optinmization is particularly
useful to detect losses in a tinely nmanner with TCP Segnentati on

O fload, where multiple packets in one TSO bl ob have identi cal
timestanps. It is also useful when the tinestanp clock granularity
is close to or longer than the actual round trip tine.

RACK detect | oss():
mn_ timeout = 0

For each packet, Packet, in the scoreboard:
If Packet is already SACKed, ACKed,
or marked | ost and not yet retransmtted:
Skip to the next packet

If Packet.xmit ts > RACK xmit _ts:
Skip to the next packet
If Packet.xmt _ts == RACK. xmit_ts AND // Tinmestanp tie breaker
Packet . end_seq > RACK. end_seq
Skip to the next packet

timeout = Packet.xmit_ts + RACK RTT + RACK. reo_wnd + 1

If Now() >= timeout
Mar k Packet | ost

Else If (mn_timeout == 0) or (tinmeout is before min_tineout):
m n_tinmeout = tineout

If min_timeout '=0
Arma tinmer to call RACK detect loss() after nin_tinmeout

Cheng & Cardwel | Expi res January 7, 2017 [Page 7]

Internet-Draft RACK July 2016

6. Analysis and D scussion
6.1. Advant ages

The bi ggest advantage of RACK is that every data packet, whether it
is an original data transnission or a retransnission, can be used to
detect | osses of the packets sent prior to it.

Exanpl e: tail drop. Consider a sender that transmts a w ndow of
three data packets (P1, P2, P3), and P1 and P3 are lost. Suppose the
transm ssion of each packet is at |least RACK.reo_ wnd (1 nmillisecond
by default) after the transm ssion of the previous packet. RACK wll
mark P1 as |ost when the SACK of P2 is received, and this wll
trigger the retransnmission of P1 as Rl. Wen Rl is cumnul atively
acknow edged, RACK will mark P3 as |lost and the sender will
retransmt P3 as R3. This exanple illustrates how RACK is able to
repair certain drops at the tail of a transaction w thout any tiner.
Noti ce that neither the conventional duplicate ACK threshold

[RFC5681], nor [RFC6675], nor the Forward Acknow edgment [FACK]

al gorithm can detect such |osses, because of the required packet or
sequence count.

Exanpl e: lost retransnit. Consider a window of three data packets
(P1, P2, P3) that are sent; P1 and P2 are dropped. Suppose the
transm ssion of each packet is at |east RACK.reo_wnd (1 nmillisecond
by default) after the transm ssion of the previous packet. Wen P3
is SACKed, RACK will mark P1 and P2 lost and they will be
retransmtted as Rl and R2. Suppose Rl is lost again (as a tai

drop) but R2 is SACKed; RACK will mark Rl lost for retransm ssion
again. Again, neither the conventional three duplicate ACK threshold
approach, nor [RFC6675], nor the Forward Acknow edgnent [FACK]

al gorithm can detect such |losses. And such a lost retransmission is
very common when TCP is being rate-limted, particularly by token
bucket policers with | arge bucket depth and lowrate lint.

Retransmi ssions are often | ost repeatedly because standard congestion
control requires multiple round trips to reduce the rate bel ow the
policed rate.

Exanpl e: (small) degree of reordering. Consider a common reordering
event: a wi ndow of packets are sent as (Pl1, P2, P3). Pl and P2 carry
a full payl oad of MSS octets, but P3 has only a 1-octet payload due
to application-limted behavior. Suppose the sender has detected
reordering previously (e.g., by inplenenting the algorithmin

[REORDER- DETECT]) and thus RACK.reo_wnd is mn_RTT/4. Now P3 is
reordered and delivered first, before P1 and P2. As long as P1 and
P2 are delivered within mn _RTT/4, RACK will not consider P1 and P2
lost. But if Pl and P2 are delivered outside the reordering w ndow,

Cheng & Cardwel | Expi res January 7, 2017 [Page 8]

Internet-Draft RACK July 2016

then RACK will still falsely mark P1 and P2 lost. W discuss howto
reduce the fal se positives in the end of this section

The exanpl es above show that RACK is particularly useful when the
sender is linmted by the application, which is common for
interactive, request/response traffic. Simlarly, RACK still works
when the sender is limted by the receive wi ndow, which is conmon for
applications that use the receive windowto throttle the sender.

For some inplenentations (e.g., Linux), RACK works quite efficiently
with TCP Segnentation Ofload (TSO. RACK always nmarks the entire
TSO bl ob | ost because the packets in the same TSO bl ob have the sane
transm ssion tinmestanp. By contrast, the counting based al gorithns
(e.g., [RFC3517][RFC5681]) may mark only a subset of packets in the
TSO bl ob I ost, forcing the stack to perform expensive fragnentation
of the TSO blob, or to selectively tag individual packets lost in the
scor eboar d.

6. 2. Disadvant ages

RACK requires the sender to record the transm ssion tine of each
packet sent at a clock granularity of one nmillisecond or finer. TCP
i npl ementations that record this already for RTT estimation do not
requi re any new per-packet state. But inplenentations that are not
yet recordi ng packet transmission tinmes will need to add per-packet
internal state (commonly either 4 or 8 octets per packet) to track
transm ssion tinmes. In contrast, the conventional approach requires
one variable to track nunber of duplicate ACK threshol d.

6.3. Adjusting the reordering w ndow

RACK uses a reordering window of mn_rtt / 4. 1t uses the m ni mum
RTT to accommodat e reordering introduced by packets traversing
slightly different paths (e.g., router-based parallelismschenes) or
out-of-order deliveries in the lower link layer (e.g., wireless |inks
using link-layer retransnmission). Alternatively, RACK can use the
snoot hed RTT used in RTT estimation [RFC6298]. However, snoothed RTT
can be significantly inflated by orders of nagnitude due to
congestion and buffer-bloat, which would result in an overly
conservative reordering wi ndow and sl ow | oss detection. Furthernore,
RACK uses a quarter of m ni mum RTT because Linux TCP uses the sane
factor inits inplenentation to delay Early Retransmt [RFC5827] to
reduce spurious |oss detections in the presence of reordering, and
experience shows that this seens to work reasonably well

One potential inprovenent is to further adapt the reordering w ndow

by neasuring the degree of reordering in time, instead of packet
di stances. But that requires storing the delivery tinestanp of each

Cheng & Cardwel | Expi res January 7, 2017 [Page 9]

Internet-Draft RACK July 2016

packet. Some scoreboard inplenentations currently nerge SACKed
packets together to support TSO (TCP Segnmentation O fload) for faster
scoreboard i ndexi ng. Supporting per-packet delivery timestanps is
difficult in such inplenmentations. However, we acknow edge that the
current nmetric can be inproved by further research

6.4. Relationships with other | oss recovery al gorithns

The primary nmotivation of RACKis to ultimately provide a sinple and
general replacenment for sone of the standard | oss recovery al gorithns
[RFC5681] [RFC6675] [RFC5827] [RFC4653] and nonst andard ones
[FACK]I[THIN- STREAM . Wil e RACK can be a supplemental |oss detection
on top of these algorithms, this is not necessary, because the RACK
inmplicitly subsumes nost of them

[RFC5827] [RFC4653] [THI N- STREAM dynani cal |y adjusts the duplicate ACK
threshol d based on the current or previous flight sizes. RACK takes
a different approach, by using only one ACK event and a reordering

wi ndow. RACK can be seen as an extended Early Retransnit [RFC5827]
without a FlightSize limt but with an additional reordering w ndow.

[FACK] considers an original packet to be | ost when its sequence
range is sufficiently far bel ow the hi ghest SACKed sequence. 1In sone
sense RACK can be seen as a generalized formof FACK that operates in
time space instead of sequence space, enabling it to better handle
reordering, application-limted traffic, and | ost retransni ssions.

Neverthel ess RACK is still an experinmental algorithm Since the

ol dest | oss detection algorithm the 3 duplicate ACK threshold

[RFC5681], has been standardi zed and wi dely depl oyed, we RECOVVEND
TCP i npl enentati ons use both RACK and the algorithm specified in
Section 3.2 in [RFC5681] for conpatibility.

RACK is conpatible with and does not interfere with the the standard
RTO [RFC6298], RTO-restart [RFC7765], F-RTO [RFC5682] and Eife

al gorithnms [RFC3522]. This is because RACK only detects | oss by
usi ng ACK events. |t neither changes the tinmer cal cul ation nor
detects spurious timeouts.

Furt hermore, RACK naturally works well with Tail Loss Probe [TLP]
because a tail |oss probe solicit seither an ACK or SACK, which can
be used by RACK to detect nore | osses. RACK can be used to rel ax
TLP s requirenent for using FACK and retransmitting the the highest-
sequenced packet, because RACK is agnostic to packet sequence
nunbers, and uses transnmission tine instead. Thus TLP can be
nmodified to retransmt the first unacknow edged packet, which can

i mprove application | atency.

Cheng & Cardwel | Expi res January 7, 2017 [Page 10]

Internet-Draft RACK July 2016

6.5. Interaction with congestion contro

RACK intentionally decouples | oss detection from congestion control
RACK only detects |osses; it does not nodify the congestion contro
al gorithm [RFC5681] [RFC6937]. However, RACK may detect | osses
earlier or later than the conventional duplicate ACK threshold
approach does. A packet marked | ost by RACK SHOULD NOT be
retransmtted until congestion control deems this appropriate (e.qg.
usi ng [RFC6937]) .

RACK is applicable for both fast recovery and recovery after a
retransm ssion timeout (RTO in [RFC5681]. The distinction between
fast recovery or RTO recovery i s not necessary because RACK is purely
based on the transnission tine order of packets. Wen a packet
retransmtted by RTO is acknow edged, RACK will mark any unacked
packet sent sufficiently prior to the RTO as | ost, because at | east
one RTT has el apsed since these packets were sent.

6.6. RACK for other transport protocols

RACK can be inplenmented in other transport protocols. The algorithm
can skip step 3 and sinplify if the protocol can support unique
transm ssion or packet identifier (e.g. TCP echo options). For
exanpl e, the QU C protocol inplenents RACK [QU C LR]

7. Security Considerations
RACK does not change the risk profile for TCP

An interesting scenario is ACK-splitting attacks [SCWA99]: for an
MBS- si ze packet sent, the receiver or the attacker mght send MsS
ACKs that SACK or acknow edge one additional byte per ACK. This
woul d not fool RACK. RACK xmit_ts would not advance because all the
sequences of the packet are transnmitted at the sanme tine (carry the
same transmi ssion tinmestanp). |In other words, SACKing only one byte
of a packet or SACKing the packet in entirety have the sane effect on
RACK

8. | ANA Considerations
Thi s docunent nakes no request of | ANA

Note to RFC Editor: this section may be renoved on publication as an
RFC.

Cheng & Cardwel | Expi res January 7, 2017 [Page 11]

Internet-Draft RACK July 2016

9. Acknow edgnent s

The aut hors thank Matt Mathis for his insights in FACK and M chael
Wel zI for his per-packet tinmer idea that inspired this work. Nandita
Dukki pati, Eric Dunmazet, Randy Stewart, Van Jacobson, lan Swett, and
Jana lyengar contributed to the algorithmand the inplenentations in
Li nux, FreeBSD and QUI C.

10. Ref er ences
10.1. Normative References

[RFC793] Postel, J., "Transm ssion Control Protocol", Septenber
1981.

[RFC2018] Mathis, M and J. Mahdavi, "TCP Sel ective Acknow edgnent
Options", RFC 2018, Cctober 1996.

[RFC6937] Mathis, M, Dukkipati, N, and Y. Cheng, "Proportional
Rat e Reduction for TCP', My 2013.

[RFCA737] Morton, A, Ciavattone, L., Ranmachandran, G, Shal unov,
S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
Novenber 2006.

[RFC6675] Blanton, E., Allman, M, Wang, L., Jarvinen, |., Kojo, M,
and Y. Nishida, "A Conservative Loss Recovery Al gorithm
Based on Sel ective Acknow edgnent (SACK) for TCP",
RFC 6675, August 2012.

[RFC6298] Paxson, V., Allman, M, Chu, J., and M Sargent,
"Computing TCP's Retransmi ssion Tinmer", RFC 6298, June
2011.

[RFC5827] A lman, M, Ayesta, U, Wang, L., Blanton, J., and P.
Hurtig, "Early Retransnmit for TCP and Stream Control
Transm ssion Protocol (SCTP)", RFC 5827, April 2010.

[RFC5682] Sarolahti, P., Kojo, M, Yamanoto, K, and M Hata,
"Forward RTO Recovery (F-RTO): An Algorithmfor Detecting
Spurious Retransnission Tinmeouts with TCP", RFC 5682,
Sept enber 2009.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", RFC 2119, March 1997.

[RFC5681] Al lman, M, Paxson, V., and E. Blanton, "TCP Congestion
Control", RFC 5681, Septenber 2009.

Cheng & Cardwel | Expi res January 7, 2017 [Page 12]

Internet-Draft RACK July 2016

[RFC2883] Floyd, S., Mahdavi, J., Mathis, M, and M Podol sky, "An
Extension to the Sel ective Acknow edgenent (SACK) Option
for TCP', RFC 2883, July 2000.

[RFC7323] Borman, D., Braden, B., Jacobson, V., and R
Schef f enegger, "TCP Extensions for Hi gh Perfornance",
Sept enber 2014.

10. 2. I nformati ve References

[FACK] Mathis, M and M Janshid, "Forward acknow edgenent:
refining TCP congestion control", ACM SI GCOW Conput er
Conmruni cati on Revi ew, Vol ume 26, |Issue 4, Cct. 1996. |,
1996.

[TLP] Dukki pati, N., Cardwell, N, Cheng, Y., and M Mathis,
"Tail Loss Probe (TLP): An Algorithmfor Fast Recovery of
Tai|l Drops", draft-dukkipati-tcpmtcp-loss-probe-01 (work
in progress), August 2013.

[RFC7765] Hurtig, P., Brunstrom A., Petlund, A, and M Wl zl, "TCP
and SCTP RTO Restart", February 2016.

[REORDER- DETECT]
Zi nmermann, A., Schulte, L., WIff, C, and A Hannenann,
"Detection and Quantification of Packet Reordering wth
TCP", draft-zi mrer mann-tcpmreordering-detection-02 (work
in progress), Novenber 2014.

[QUICGLR Iyengar, J. and I. Swett, "QU C Loss Recovery And
Congestion Control", draft-tsvwg-quic-loss-recovery-01
(work in progress), June 2016.

[THI N- STREAM
Petlund, A., Evensen, K, Giwdz, C., and P. Hal vorsen,
"TCP enhancenents for interactive thin-stream
applications", NOSSDAV , 2008.

[SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
"TCP Congestion Control Wth a M shehavi ng Receiver", ACM
Conput er Communi cati on Review, 29(5) , 1999.

[PCLI CER16]
Fl ach, T., Papageorge, P., Terzis, A, Pedrosa, L., Cheng,
Y., Karim T., Katz-Bassett, E., and R Govindan, "An
Anal ysis of Traffic Policing in the Wb", ACM SI GCOW ,
2016.

Cheng & Cardwel | Expi res January 7, 2017 [Page 13]

Internet-Draft RACK July 2016

Aut hors’ Addr esses

Yuchung Cheng

Googl e, Inc

1600 Anphitheat er Parkway
Mountain View, California 94043
USA

Emai | : ycheng@oogl e. com
Neal Cardwel |

Googl e, Inc

76 Ninth Avenue

New York, NY 10011

USA

Emai | : ncardwel | @oogl e. com

Cheng & Cardwel | Expi res January 7, 2017 [Page 14]

