
Network Working Group Y. Nishida
Internet-Draft GE Global Research
Intended status: Experimental October 17, 2015
Expires: April 19, 2016

 A-PAWS: Alternative Approach for PAWS
 draft-nishida-tcpm-apaws-02

Abstract

 This documents describe a technique called A-PAWS which can provide
 protection against old duplicates segments like PAWS. While PAWS
 requires TCP to set timestamp options in all segments in a TCP
 connection, A-PAWS supports the same feature without using
 timestamps. A-PAWS is designed to be used complementary with PAWS.
 TCP needs to use PAWS when it is necessary and activates A-PAWS only
 when it is safe to use. Without impairing the reliability and the
 robustness of TCP, A-PAWS can provide more option space to other TCP
 extensions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 19, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Nishida Expires April 19, 2016 [Page 1]

Internet-Draft Alternative PAWS October 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and Terminology 3
 3. The A-PAWS Design . 3
 3.1. Signaling Methods . 4
 3.2. A-PAWS Negotiation Logic for non-SYN Segment Signaling . 5
 3.3. Sending Behavior . 6
 3.4. Receiving Behavior 6
 4. When To Activate A-PAWS 6
 5. Discussion . 7
 5.1. Protection Against Early Incarnations 7
 5.2. Protection Against Security Threats 7
 5.3. Middlebox Considerations 8
 5.4. Aggressive Mode in A-PAWS 8
 6. Security Considerations 9
 7. IANA Considerations . 9
 8. References . 9
 8.1. Normative References 9
 8.2. Informative References 9
 Author’s Address . 10

1. Introduction

 PAWS (Protect Against Wrapped Sequences) defined in [RFC1323] is a
 technique that can identify old duplicate segments in a TCP
 connection. An old duplicate segment can be generated when it has
 been delayed by queueing, etc. If such a segment has the sequence
 number which falls within the receiver’s current window, the receiver
 will accept it without any warning or error. However, this segment
 can be a segment created by an old connection that has the same port
 and address pair, or a segments sent 2**32 bytes earlier on the same
 connection. Although this situation rarely happens, it impairs the
 reliability of TCP.

 PAWS utilizes timestamp option in [RFC1323] to provide protection
 against this. It is assumed that every received TCP segment contains
 a timestamp. PAWS can identify old duplicate segments by comparing
 the timestamp in the received segments and the timestamps from other
 segments received recently. If both TCP endpoints agree to use PAWS,
 all segments belong to this connection should have timestamp. Since
 PAWS is the only standardized protection against old duplicate
 segments, it has been implemented and used in most TCP

Nishida Expires April 19, 2016 [Page 2]

Internet-Draft Alternative PAWS October 2015

 implementations. However, as some TCP extensions such as [RFC2018],
 [RFC5925] and [RFC6824] also requires a certain amount of option
 space in non-SYN segments, using 10-12 bytes length in option space
 for timestamp in all segments tends to be considered expensive in
 recent discussions.

 In addition, although PAWS is necessary for connections which
 transmit more than 2**32 bytes, it is not very important for other
 connections since [RFC0793] already has protection against segments
 from old connections by using timers. Moreover, some research
 results indicates that most of TCP flows tend to transmit small
 amount of data, which means only small fraction of TCP connections
 really need PAWS [QIAN11]. Timestamp option is also used for RTTM
 (Round Trip Time Measurement) in [RFC1323]. Gathering many RTT
 samples from the timestamp in every TCP segment looks useful approach
 to improve RTO estimation. However, some research results shows the
 number of samples per RTT does not affect the effectiveness of the
 RTO [MALLMAN99]. Hence, we can think if PAWS is not used, sending a
 few timestamps per RTT will be sufficient.

 Based on these observations, we propose a new technique called A-PAWS
 which can archive similar protection against old duplicates segments.
 The basic idea of A-PAWS is to attain the same protection against old
 all duplicate segments as PAWS while reducing the use of TS options
 in segments. A-PAWS is designed to be used complementary with PAWS.
 This means an implementation that supports A-PAWS is still required
 to supports PAWS. A-PAWS is activated only when it is safe to use.
 This sounds the applicability of A-PAWS is limited, however, we
 believe TCP will have a lot of chances to save the option space if it
 uses A-PAWS.

 There are some discussions that PAWS can also be used to enhance
 security, however, we still believe that A-PAWS can maintain the same
 level of security as PAWS. Detailed discussions on this point are
 provided in Section 5. A-PAWS is an experimental idea yet, but we
 hope it will contribute to facilitating the use of TCP option space.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. The A-PAWS Design

 A-PAWS assumes PAWS as it is designed to be used complementary with
 PAWS. Hence, a node which supports A-PAWS MUST support PAWS. The
 following mechanisms are required in TCP in order to perform A-PAWS.

Nishida Expires April 19, 2016 [Page 3]

Internet-Draft Alternative PAWS October 2015

3.1. Signaling Methods

 An endpoint that supports A-PAWS can use the following signaling
 methods to activate A-PAWS logic.

 1) Option Exchange in SYN
 This method uses a new experimental TCP option defined in
 [RFC6994] and exchanges it during SYN negotiation. The format of
 the option is depicted in Figure 1. The option does not have any
 content as it simply indicates the endpoint supports A-PAWS. In
 this signaling method, when an endpoint wants to use A-PAWS, it
 MUST put A-PAWS option in SYN or SYN-ACK segment. If an endpoint
 does not find A-PAWS option in received SYN or SYN-ACK segment,
 it MUST not send segments with A-PAWS logic in Section 3.3.
 However, it MUST activate A-PAWS receiver logic in Section 3.4 if
 it has sent A-PAWS option in SYN or SYN-ACK segment. This is
 because some middleboxes may remove A-PAWS option in SYN or SYN-
 ACK segment. A-PAWS receiver logic in Section 3.4 can interact
 with both A-PAWS and PAWS sender. This signaling requires
 additional option space in SYN segments, hence non-SYN segment
 signaling should be used when there is not enough space in SYN
 option space.

 2) Option Exchange in non-SYN Segments
 This method uses the option in Figure 1 as well as the SYN
 segment signaling. However, the options are not exchanged during
 SYN negotiation. When a endpoint sets A-PAWS option in the
 segments, it indicates that it can receive the segments from
 A-PAWS senders. Hence, it MUST activate A-PAWS receiver logic in
 Section 3.4 if it sends the options. However, it MUST not send
 segments with A-PAWS logic in Section 3.3 until it receives
 A-PAWS options. This approach does not require extra option
 space or special timestamp value in SYN segments. However,
 negotiating features in non-SYN segments will require to address
 further arguments such as when to send the options or how to
 retransmits the options. We discuss these points in the next
 section and provide some recommended rules for implementations.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+------------------------------+
 | Kind = 254 | Length = 4 | 16-bit ExID = TBD |
 +---------------+---------------+------------------------------+

 Figure 1: A-PAWS option format

Nishida Expires April 19, 2016 [Page 4]

Internet-Draft Alternative PAWS October 2015

3.2. A-PAWS Negotiation Logic for non-SYN Segment Signaling

 One important characteristic for A-PAWS is its signaling mechanism
 does not require tight synchronization between endpoints since A-PAWS
 receivers can interact with both A-PAWS senders and PAWS senders.
 This allow us not to invent another three-way handshake like
 mechanisms for non-SYN segments. This approach will require drastic
 changes in the current TCP semantics. Instead, we propose a
 relatively simple and easy mechanism for feature negotiation by using
 the following rules on A-PAWS endpoints.

 Rule 1: An endpoint MUST activate A-PAWS receiver logic in
 Section 3.4 before it sends A-PAWS option.

 Rule 2: An endpoint MUST not send segments with A-PAWS logic in
 Section 3.3 until it receives A-PAWS option from the other
 endpoint.

 These rules can avoid situations where an endpoint sends segments by
 A-PAWS logic to an endpoint that doesn’t use A-PAWS logic.

 Another discussion point for this signaling method is when to set
 A-PAWS option in segments. As A-PAWS employs asynchronous signaling,
 both endpoints basically can set A-PAWS option in segments anytime
 they want. However, it is recommended to use the following rules for
 setting A-PAWS options.

 Rule 3: An endpoint SHOULD use a data segment when it sets A-PAWS
 option in a segment.

 Rule 4: When an endpoint receives a data segment with A-PAWS
 option, it SHOULD set A-PAWS option for its ACK segment.

 Rule 5: An endpoint MAY use A-PAWS options in retransmitted
 segments.

 These rules allow endpoints to have loose synchronized signaling so
 that they can at least solicit responses from their peers. Of
 course, even an endpoint solicit a response by setting A-PAWS option
 in a data segment, it might not receive A-PAWS option in the ACK
 segment. This can be caused by the lost of the ACK segment or
 middleboxes that remove unknown options. In order to address these
 cases, the following rules can be used.

 Rule 6: As long as an endpoint does not violate the other rules,
 it MAY set A-PAWS option in multiple data segments with a certain
 interval in case no A-PAWS options has been sent from the peer.

Nishida Expires April 19, 2016 [Page 5]

Internet-Draft Alternative PAWS October 2015

 This rule can address the cases where A-PAWS options has been removed
 by middleboxes or segments with A-PAWS options has been lost.

3.3. Sending Behavior

 A-PAWS enabled TCP transmits segments, it needs to follow the rules
 below.

 1. TCP needs to check how many bytes has been transmitted in a
 connection. If the transmitted bytes exceeds 2**32 -
 ’Sender.Offset’, TCP migrates PAWS mode and MUST set timestamp
 option in all segments to be transmitted. The value for
 ’Sender.Offset’ is discussed in Section 5.

 2. If the number of bytes transmitted in a TCP connection does not
 exceeds 2**32 - ’Sender.Offset’, TCP MAY omit timestamp option in
 segments as long as it does not affect RTTM. This draft does not
 define how much TCP can omit timestamps because it should be
 determined by RTTM.

3.4. Receiving Behavior

 A-PAWS enabled TCP receives segments, it needs to follow the rules
 below.

 1. TCP needs to check how many bytes has been received in a TCP
 connection. If it exceeds 2**32 bytes, A-PAWS nodes SHOULD
 discard the received segments which does not have timestamp
 option. TCP MUST perform PAWS check when received bytes exceeds
 2**32 bytes.

 2. If the number of bytes received in a TCP connection does not
 exceeds 2**32 bytes, A-PAWS nodes SHOULD accept the segments even
 if it does not have timestamp option. A-PAWS nodes MAY skip PAWS
 check until the received bytes exceeds 2**32 bytes.

4. When To Activate A-PAWS

 In basic principal, A-PAWS capable nodes can always use A-PAWS logic
 as long as the peers agree with them. However, the following cases
 require special considerations to enable A-PAWS.

 1. As "When To Keep Quiet" section in [RFC0793] suggests, it is
 recommended that TCP keeps quiet for a MSL upon starting up or
 recovering from a crash where memory of sequence numbers has been
 lost. However, if timestamps are being used and if the timestamp
 clock can be guaranteed to be increased monotonically, this quiet
 time may be unnecessary. Because TCP can identify the segments

Nishida Expires April 19, 2016 [Page 6]

Internet-Draft Alternative PAWS October 2015

 from old connections by checking the timestamp. We think some
 TCP implementations may disable the quiet time because of using
 timestamps from this reason. However, since A-PAWS nodes does
 not set timestamp options in all segments, TCP cannot rely on
 this approach. To avoid decreasing the robustness of TCP
 connection, TCP MUST NOT use A-PAWS for a MSL upon starting up or
 recovering from a crash.

 2. Various TCP implementations provide APIs such as setsockopt()
 that can set SO_REUSEADDR flag on TCP connections. If this flag
 is set, the TCP connection allows to reuse the same local port
 without waiting for 2 MSL period. While this option is useful
 when users want to relaunch applications immediately, it makes
 the TCP connection a little vulnerable as TCP stack might receive
 duplicate segments from earlier incarnations. It has been said
 that PAWS can contribute to mitigate this risk by checking the
 timestamps in segments. In order to keep the same level of
 protection, TCP SHOULD NOT send A-PAWS option when SO_REUSEADDR
 flag is set. This rule prevents the peer from sending segments
 to this node with A-PAWS logic. However, the node can send
 segments with A-PAWS logic as long as it received A-PAWS option
 from the peer.

5. Discussion

 As A-PAWS is an experimental logic, the following points need to be
 considered and discussed.

5.1. Protection Against Early Incarnations

 There are some discussions that timestamp can enhance the robustness
 against early incarnations. Since A-PAWS does not set timestamps in
 all segments, some may say that it degrades the robustness of TCP.
 We believe that the degradation caused by A-PAWS on this point is
 negligible. As long as TCP limits the usage of A-PAWS as described
 in Section 4, duplicate segments from early incarnations should not
 be received by TCP.

5.2. Protection Against Security Threats

 A TCP connection can be identified by a 5-tuple: source address,
 destination address, source port number, destination port number and
 protocol. Crackers need to guess all these parameters when they try
 malicious attacks on the connection. PAWS can enhance the protection
 for this as it additionally requires timestamp checking. However, we
 think the effect of PAWS against malicious attacks is limited due to
 the simplicity of PAWS check. In PAWS, a segment can be considered
 as an old duplicate if the timestamp in the segment less than some

Nishida Expires April 19, 2016 [Page 7]

Internet-Draft Alternative PAWS October 2015

 timestamps recently received on the connection. The "less than" in
 this context is determined by processing timestamp values as 32 bit
 unsigned integers in a modular 32-bit space. For example, if t1 and
 t2 are timestamp values, t1 < t2 is verified when 0 < (t2 - t1) <
 2**31 computed in unsigned 32-bit arithmetic. Hence, if crackers set
 a random value in the timestamp option, there will be 50% chance for
 them to trick PAWS check. Moreover, there will be more chances if
 they send multiple segments with different timestamps, which will not
 be difficult to perform.

 In addition, we think there might be a case where using PAWS
 increases security risks. PAWS recommends to increase timestamp over
 a system when TCP waives the "quiet time" described in [RFC0793].
 However, if timestamps are generated from a global counter, it may
 leak some information such as system uptime as discussed in
 [SILBERSACK05]. A-PAWS might be able to allows TCP to use random
 timestamp values per connections.

5.3. Middlebox Considerations

 A-PAWS is designed to be robust against middleboxes. This means that
 endpoints will not be messed up even if middleboxes discard A-PAWS
 option. This is because A-PAWS sender logic is activated only when
 TCP receives a segment with A-PAWS options. A-PAWS receiver logic
 does not need to know whether the sender is using PAWS or A-PAWS.
 Activating A-PAWS receiving logic for PAWS sender might be redundant
 as it requires additional overheads. However, we believe the
 overhead will be acceptable in most cases because of the simplicity
 of A-PAWS logic.

 Another concern on middleboxes is that they can insert or delete some
 bytes in TCP connections. If a middlebox inserts extra bytes into a
 TCP connections, there might be a situation where an A-PAWS sender
 can transmit segments without timestamp, while an A-PAWS receiver
 perform PAWS check on them as it already has received 2**32 bytes.
 In order to avoid discarding segments unnecessarily, we recommend
 that A-PAWS sender should have a certain amount of offset bytes in
 order to migrate PAWS mode before the receiver receives 2**32 bytes.
 We call this protocol parameter ’Sender.Offset’. The proper value
 for ’Sender.Offset’ needs to be discussed.

5.4. Aggressive Mode in A-PAWS

 The current A-PAWS requires TCP to migrate PAWS mode after sending/
 receiving 2**32 bytes. However, if both nodes check if 2 MSL has
 already passed during sending/receiving 2**32 bytes, it is safe to
 continue using A-PAWS. We call this Aggressive mode. The use of
 Aggressive mode will be explored in future versions.

Nishida Expires April 19, 2016 [Page 8]

Internet-Draft Alternative PAWS October 2015

6. Security Considerations

 We believe A-PAWS can maintain the same level of security as PAWS
 does, but further discussions will be needed. Some security aspects
 of A-PAWS are discussed in Section 5.

7. IANA Considerations

 This document uses the Experimental Option Experiment Identifier. An
 application for this codepoint in the IANA TCP Experimental Option
 ExID registry will be submitted.

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, DOI 10.17487/RFC1323, May
 1992, <http://www.rfc-editor.org/info/rfc1323>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

 [MALLMAN99]
 Allman, M. and V. Paxson, "On Estimating End-to-End
 Network Path Properties", Proceedings of the ACM SIGCOMM ,
 September 1999.

 [QIAN11] Qian, L. and B. Carpenter, "A Flow-Based Performance
 Analysis of TCP and TCP Applications", 3rd International
 Conference on Computer and Network Technology (ICCNT 2011)
 , February 2011.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, DOI 10.17487/
 RFC2018, October 1996,
 <http://www.rfc-editor.org/info/rfc2018>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

Nishida Expires April 19, 2016 [Page 9]

Internet-Draft Alternative PAWS October 2015

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options", RFC
 6994, August 2013.

 [SILBERSACK05]
 Silbersack, M., "Improving TCP/IP security through
 randomization without sacrificing interoperability.",
 EuroBSDCon 2005 , November 2005.

Author’s Address

 Yoshifumi Nishida
 GE Global Research
 2623 Camino Ramon
 San Ramon, CA 94583
 USA

 Email: nishida@wide.ad.jp

Nishida Expires April 19, 2016 [Page 10]

