Service Function Chaining Use Cases in Fog RAN
draft-bernardos-sfc-fog-ran-01

Document Type Active Internet-Draft (individual)
Last updated 2017-05-04
Stream (None)
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
SFC WG                                                     CJ. Bernardos
Internet-Draft                                                      UC3M
Intended status: Informational                                 A. Rahman
Expires: November 5, 2017                                      A. Mourad
                                                            InterDigital
                                                             May 4, 2017

             Service Function Chaining Use Cases in Fog RAN
                     draft-bernardos-sfc-fog-ran-01

Abstract

   Fog Radio Access Networks (RAN) refers to the part of the RAN that is
   virtualized at the very edge of the network, even at the end-user
   device.  Fog RAN support is considered critical for the 5G mobile
   network architectures currently being developed in various research,
   standardization and industry forums.  Since fog RAN builds on top of
   virtualization and can involve several virtual functions running on
   different virtualized resources, Service function chaining (SFC)
   support for the fog RAN will be critical.  This document describes
   the overall fog RAN approach and also gives some use cases.  Finally
   it proposes some requirements to be considered in the development of
   the SFC architecture and related protocols.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 5, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Bernardos, et al.       Expires November 5, 2017                [Page 1]
Internet-Draft                 Fog RAN SFC                      May 2017

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Fog RAN Overview  . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Applicability of SFC to Fog RAN . . . . . . . . . . . . . . .   8
   5.  Fog RAN requirements  . . . . . . . . . . . . . . . . . . . .  11
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  12
   8.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  12
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  12
   Appendix A.  4G (LTE) . . . . . . . . . . . . . . . . . . . . . .  13
   Appendix B.  5G . . . . . . . . . . . . . . . . . . . . . . . . .  15
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15

1.  Introduction

   The telecommunications sector is experiencing a major revolution that
   will shape the way networks and services are designed and deployed
   for the next decade.  We are witnessing an explosion in the number of
   applications and services demanded by users, which are now really
   capable of accessing them on the move.  In order to cope with such a
   demand, some network operators are looking at the cloud computing
   paradigm, which enables a potential reduction of the overall costs by
   outsourcing communication services from specific hardware in the
   operator's core to server farms scattered in data centers.  These
   services have different characteristics if compared with conventional
   IT services that have to be taken into account in this cloudification
   process.  Also the transport network is affected in that it is
   evolving to a more sophisticated form of IP architecture with trends
Show full document text