Next step for DPRIVE: resolver-to-auth link
draft-bortzmeyer-dprive-step-2-05

Document Type Active Internet-Draft (individual)
Last updated 2016-12-20
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
DNS Privacy (dprive) Working Group                         S. Bortzmeyer
Internet-Draft                                                     AFNIC
Intended status: Standards Track                       December 20, 2016
Expires: June 23, 2017

              Next step for DPRIVE: resolver-to-auth link
                   draft-bortzmeyer-dprive-step-2-05

Abstract

   This document examines the possible future work for the DPRIVE (DNS
   privacy) working group, specially in securing the resolver-to-
   authoritative name server link with TLS under DNS.

   It is not intended to be published as a RFC.

   REMOVE BEFORE PUBLICATION: this document should be discussed in the
   IETF DPRIVE group, through its mailing list.  The source of the
   document, as well as a list of open issues, is currently kept at
   Github [1].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 23, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Bortzmeyer                Expires June 23, 2017                 [Page 1]
Internet-Draft                DPRIVE step 2                December 2016

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction and background . . . . . . . . . . . . . . . . .   2
   2.  TLS or not TLS  . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Possible solutions  . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Encode key in name  . . . . . . . . . . . . . . . . . . .   4
     3.2.  Key in DNS  . . . . . . . . . . . . . . . . . . . . . . .   5
     3.3.  PKIX  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     3.4.  "reverse" DNS . . . . . . . . . . . . . . . . . . . . . .   6
     3.5.  CGA . . . . . . . . . . . . . . . . . . . . . . . . . . .   6
     3.6.  Lax security  . . . . . . . . . . . . . . . . . . . . . .   6
   4.  Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . .   6
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   7
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   8
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   8
     8.3.  URIs  . . . . . . . . . . . . . . . . . . . . . . . . . .  10
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction and background

   To improve the privacy of the DNS user ([RFC7626]), the standard
   solution is to encrypt the requests with TLS ([RFC7858]).  Just
   encrypting, without authenticating the remote server, leaves the
   user's privacy vulnerable to active man-in-the-middle attacks.
   [RFC7858] and [I-D.ietf-dprive-dtls-and-tls-profiles] describe how to
   authenticate the DNS resolver, in the stub-to-resolver link.  We have
   currently no standard way to authenticate the authoritative name
   server, in the resolver-to-auth link.

   The two cases are quite different: a stub resolver has only a few
   resolvers, and there is typically a pre-existing relationship.  But a
   resolver speaks to many authoritative name servers, without any prior
   relationship.  This means that, for instance, having a static key for
   the resolver makes sense while it would be clearly unrealistic for
   the authoritative server.

   Another difference is that resolvers are typically known by IP
   address (obtained by DHCP or manual configuration) while
Show full document text