Multi-homing Deployment Considerations for Distributed-Denial-of-Service Open Threat Signaling (DOTS)
draft-boucadair-dots-multihoming-02

Document Type Active Internet-Draft (individual)
Last updated 2017-10-17
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                       M. Boucadair
Internet-Draft                                                    Orange
Intended status: Standards Track                                T. Reddy
Expires: April 19, 2018                                           McAfee
                                                        October 16, 2017

Multi-homing Deployment Considerations for Distributed-Denial-of-Service
                      Open Threat Signaling (DOTS)
                  draft-boucadair-dots-multihoming-02

Abstract

   This document discusses multi-homing considerations for Distributed-
   Denial-of-Service Open Threat Signaling (DOTS).  The goal is to
   provide a set of guidance for DOTS clients/gateways when multihomed.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 19, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents

Boucadair & Reddy        Expires April 19, 2018                 [Page 1]
Internet-Draft              DOTS Multihoming                October 2017

   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Multi-Homing Scenarios  . . . . . . . . . . . . . . . . . . .   4
     3.1.  Residential CPE . . . . . . . . . . . . . . . . . . . . .   4
     3.2.  Multi-homed Enterprise: Single CPE, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     3.3.  Multi-homed Enterprise: Multiple CPEs, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .   6
     3.4.  Multi-homed Enterprise with the Same ISP  . . . . . . . .   7
   4.  DOTS Deployment Considerations  . . . . . . . . . . . . . . .   7
     4.1.  Residential CPE . . . . . . . . . . . . . . . . . . . . .   7
     4.2.  Multi-homed Enterprise: Single CPE, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .   8
     4.3.  Multi-homed Enterprise: Multiple CPEs, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .  10
     4.4.  Multi-homed Enterprise: Single ISP  . . . . . . . . . . .  11
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  12
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  12
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14

1.  Introduction

   In many deployments, it may not be possible for a network to
   determine the cause for a distributed Denial-of-Service (DoS) attack
   [RFC4732], but instead just realize that some resources seem to be
   under attack.  To fill that gap, the IETF is specifying an
   architecture, called DDoS Open Threat Signaling (DOTS)
   [I-D.ietf-dots-architecture], in which a DOTS client can inform a
   DOTS server that the network is under a potential attack and that
   appropriate mitigation actions are required.  Indeed, because the
   lack of a common method to coordinate a real-time response among
   involved actors and network domains inhibits the effectiveness of
   DDoS attack mitigation, DOTS protocol is meant to carry requests for
Show full document text