IGP Extensions for Segment Routing based Enhanced VPN
draft-dong-lsr-sr-enhanced-vpn-02

Document Type Active Internet-Draft (individual)
Last updated 2019-11-04
Stream (None)
Intended RFC status (None)
Formats plain text pdf htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
LSR Working Group                                                J. Dong
Internet-Draft                                                     Z. Hu
Intended status: Standards Track                     Huawei Technologies
Expires: May 7, 2020                                           S. Bryant
                                                  Futurewei Technologies
                                                        November 4, 2019

         IGP Extensions for Segment Routing based Enhanced VPN
                   draft-dong-lsr-sr-enhanced-vpn-02

Abstract

   Enhanced VPN (VPN+) is an enhancement to VPN services to support the
   needs of new applications, particularly including the applications
   that are associated with 5G services.  These applications require
   better isolation and have more stringent performance requirements
   than that can be provided with traditional overlay VPNs.  An enhanced
   VPN may be used for 5G transport network slicing, and will also be of
   use in more generic scenarios.  This document specifies the IGP
   mechanisms with necessary extensions to build a set of Segment
   Routing (SR) based virtual networks with customized topology and
   resource attributes in the network.  These virtual networks could be
   used as the underlay of enhanced VPN service.  The proposed mechanism
   is applicable to both Segment Routing with MPLS data plane (SR-MPLS)
   and segment routing with IPv6 data plane (SRv6).

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

Dong, et al.               Expires May 7, 2020                  [Page 1]
Internet-Draft         IGP Extensions for SR VPN+          November 2019

   This Internet-Draft will expire on May 7, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Transport Network Slice Definition Advertisement  . . . . . .   3
   3.  Advertisement of Network Topology Attribute . . . . . . . . .   6
     3.1.  MTR based Topology Advertisement  . . . . . . . . . . . .   6
     3.2.  Flex-Algo based Topology Advertisement  . . . . . . . . .   6
   4.  Advertisement of Network Resource Attribute . . . . . . . . .   7
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   9
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  11
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  11

1.  Introduction

   Driven largely by needs arising from the 5G mobile network, the
   concept of network slicing has gained traction.  There is a need to
   provide VPN service with enhanced isolation and performance
   characteristics.  Specifically, there is a need for a transport
   network to provide a set of virtual networks, each of which provides
   the tenant with a customized network topology, the required degree of
   isolation and performance guarantee to meet the tenant's requirement.

   These properties cannot be met with pure overlay networks, as they
   require integration between the underlay and the overlay networks.
   [I-D.ietf-teas-enhanced-vpn] specifies the framework of enhanced VPN
   and describes the candidate component technologies in different
Show full document text