Skip to main content

Deterministic Networking (DetNet) Data Plane - guaranteed Latency Based Forwarding (gLBF) for bounded latency with low jitter and asynchronous forwarding in Deterministic Networks
draft-eckert-detnet-glbf-03

Document Type Expired Internet-Draft (individual)
Expired & archived
Authors Toerless Eckert , Alexander Clemm , Stewart Bryant , Stefan Hommes
Last updated 2025-01-06 (Latest revision 2024-07-05)
RFC stream (None)
Intended RFC status (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state Expired
Telechat date (None)
Responsible AD (None)
Send notices to (None)

This Internet-Draft is no longer active. A copy of the expired Internet-Draft is available in these formats:

Abstract

This memo proposes a mechanism called "guaranteed Latency Based Forwarding" (gLBF) as part of DetNet for hop-by-hop packet forwarding with per-hop deterministically bounded latency and minimal jitter. gLBF is intended to be useful across a wide range of networks and applications with need for high-precision deterministic networking services, including in-car networks or networks used for industrial automation across on factory floors, all the way to ++100Gbps country-wide networks. Contrary to other mechanisms, gLBF does not require network wide clock synchronization, nor does it need to maintain per-flow state at network nodes, avoiding drawbacks of other known methods while leveraging their advantages. Specifically, gLBF uses the queuing model and calculus of Urgency Based Scheduling (UBS, [UBS]), which is used by TSN Asynchronous Traffic Shaping [TSN-ATS]. gLBF is intended to be a plug-in replacement for TSN-ATN or as a parallel mechanism beside TSN-ATS because it allows to keeping the same controller-plane design which is selecting paths for TSN-ATS, sizing TSN-ATS queues, calculating latencies and admitting flows to calculated paths for calculated latencies. In addition to reducing the jitter compared to TSN-ATS by additional buffering (dampening) in the network, gLBF also eliminates the need for per-flow, per-hop state maintenance required by TSN-ATS. This avoids the need to signal per-flow state to every hop from the controller-plane and associated scaling problems. It also reduces implementation cost for high-speed networking hardware due to the avoidance of additional high-speed speed read/write memory access to retrieve, process and update per-flow state variables for a large number of flows.

Authors

Toerless Eckert
Alexander Clemm
Stewart Bryant
Stefan Hommes

(Note: The e-mail addresses provided for the authors of this Internet-Draft may no longer be valid.)