Skip to main content

A YANG model to manage the optical parameters for in a WDM network
draft-galimbe-ccamp-iv-yang-04

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Expired".
Authors Gabriele Galimberti , Ruediger Kunze , Dharini Hiremagalur , Gert Grammel
Last updated 2017-12-31 (Latest revision 2017-06-30)
RFC stream (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-galimbe-ccamp-iv-yang-04
Internet Engineering Task Force                        G.Galimberti, Ed.
Internet-Draft                                                     Cisco
Intended status: Informational                                   R.Kunze
Expires: July 4, 2018                                   Deutsche Telekom
                                                     D. Hiremagalur, Ed.
                                                         G. Grammel, Ed.
                                                                 Juniper
                                                       December 31, 2017

   A YANG model to manage the optical parameters for in a WDM network
                     draft-galimbe-ccamp-iv-yang-04

Abstract

   This memo defines a Yang model that translate the information model
   to support Impairment-Aware (IA) Routing and Wavelength Assignment
   (RWA) functionality.  The information model is defined in draft-ietf-
   ccamp-wson-iv-info and draft-martinelli-ccamp-wson-iv-encode.  This
   document defines proper encoding and extend to the models defined in
   draft-lee-ccamp-wson-yang tu support Impairment-Aware (IA) Routing
   and Wavelength Assignment (RWA) functions

   The Yang model defined in this memo can be used for Optical
   Parameters monitoring and/or configuration of the multivendor
   Endpoints and ROADMs

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on July 4, 2018.

G.Galimberti, et al.      Expires July 4, 2018                  [Page 1]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  The Internet-Standard Management Framework  . . . . . . . . .   3
   3.  Conventions . . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Definition  . . . . . . . . . . . . . . . . . . . . . . . . .   4
   5.  Applicability . . . . . . . . . . . . . . . . . . . . . . . .   4
   6.  Properties  . . . . . . . . . . . . . . . . . . . . . . . . .   4
   7.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     7.1.  Optical Parameters Description  . . . . . . . . . . . . .   5
       7.1.1.  Optical path from point Ss to Rs  . . . . . . . . . .   6
       7.1.2.  Rs and Ss Configuration . . . . . . . . . . . . . . .   7
       7.1.3.  Table of Application Codes  . . . . . . . . . . . . .   7
     7.2.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . .   7
     7.3.  Optical Parameters for impairment validation in a WDM
           network . . . . . . . . . . . . . . . . . . . . . . . . .   7
   8.  Structure of the Yang Module  . . . . . . . . . . . . . . . .   8
   9.  Yang Module . . . . . . . . . . . . . . . . . . . . . . . . .   8
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  17
   11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  17
   12. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  17
   13. Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  17
   14. References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
     14.1.  Normative References . . . . . . . . . . . . . . . . . .  18
     14.2.  Informative References . . . . . . . . . . . . . . . . .  20
   Appendix A.  Change Log . . . . . . . . . . . . . . . . . . . . .  21
   Appendix B.  Open Issues  . . . . . . . . . . . . . . . . . . . .  21
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  21

G.Galimberti, et al.      Expires July 4, 2018                  [Page 2]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

1.  Introduction

   This memo defines a Yang model that translates the existing mib
   module defined in draft-ietf-ccamp-wson-iv-info and draft-martinelli-
   ccamp-wson-iv-encode to provide the network impairment information to
   an SDN controller.  One of the key SDN controller features is to
   support multi vendor network and support the service calculation and
   deployment in multilayer topologies, for the DWDM layer it is
   fundamentad that the SDN controller is aware of the optical
   impairments to verify the feasibility of new circuits before their
   provisioning.  Although SDN controller will not apply exhaustive and
   accurate algorithms and the optical channel feasibility verification
   may have a degree of unreliability this function can work on a
   multivendor common set of parameter and algorithms to ensure the
   operator the best change to set a circuit.  This document follows the
   same impairment definition and applicability of draft-ietf-ccamp-
   wson-iv-info.

   The optical impairments related to the DWDM Transceiver are described
   by draft draft-dharini-ccamp-if-param-yang.  Applications are defined
   in G.698.2 [ITU.G698.2] using optical interface parameters at the
   single-channel connection points between optical transmitters and the
   optical multiplexer, as well as between optical receivers and the
   optical demultiplexer in the DWDM system.  This Recommendation uses a
   methodology which explicitly specify the details of the optical
   network between reference point Ss and Rs, e.g., the passive and
   active elements or details of the design.

   This draft refers and supports the draft-ietf-ccamp-dwdm-if-mng-ctrl-
   fwk

   The building of a yang model describing the optical parameters allows
   the different vendors and operator to retrieve, provision and
   exchange information across multi-vendor domains in a standardized
   way.  In addition to the parameters specified in ITU recommendations
   the Yang models support also the "vendor specific parameters".

2.  The Internet-Standard Management Framework

   For a detailed overview of the documents that describe the current
   Internet-Standard Management Framework, please refer to section 7 of
   RFC 3410 [RFC3410].

   This memo specifies a Yang model for optical interfaces.

G.Galimberti, et al.      Expires July 4, 2018                  [Page 3]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

3.  Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119] In
   the description of OIDs the convention: Set (S) Get (G) and Trap (T)
   conventions will describe the action allowed by the parameter.

4.  Definition

   For a detailed definition this draft refers to draft-ietf-ccamp-wson-
   iv-info.

5.  Applicability

   This document targets at Scenario C defined in [RFC6566] section
   4.1.1.  as approximate impairment estimation.  The Approximate
   concept refer to the fact that this Information Model covers
   information mainly provided by [ITU.G680] Computational Model.
   Although the [RFC6566] provides no or little approximation the
   parameters described in this draft can be applied to the algorithms
   verifying the circuit feasibility in the new coherent non compensated
   DWDM networks In this case the impairments verification can reach a
   good reliability and accuracy.  This draft does not address
   computational matters but provides all the information suitable to
   cover most of the full coherent network algoritms, not being
   exhaustive the information can give a acceptable or even good
   approximation in therm of connection feasibility.  This may not be
   true for legacy compensated network.

6.  Properties

   For the signal properties this traft refers the draft-ietf-ccamp-
   wson-iv-info Ch.2.3 with some extension of the parameters.

7.  Overview

G.Galimberti, et al.      Expires July 4, 2018                  [Page 4]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

   Figure 1 shows a set of reference points, for single-channel
   connection between transmitters (Tx) and receivers (Rx).  Here the
   DWDM network elements include an OM and an OD (which are used as a
   pair with the opposing element), one or more optical amplifiers and
   may also include one or more OADMs.

          +-------------------------------------------------+
       Ss |                   DWDM Network                  | Rs
   +--+ | |  | \                                       / |  |  | +--+
   Tx L1--|->|   \                                   /   |--|-->Rx L1
   +---+  |  |    |             +------+            |    |  |    +--+
   +---+  |  |    |             |      |            |    |  |    +--+
   Tx L2--|->| OM |------------>|ROADM |-- -------->| OD |--|-->Rx L2
   +---+  |  |    |     DWDM    |      |    DWDM    |    |  |    +--+
   +---+  |  |    |     Link    +------+    Link    |    |  |    +--+
   Tx L3--|->|   /                |  ^               \   |--|-->Rx L3
   +---+  |  | /                  |  |                 \ |  |    +--+
          +-----------------------|--|----------------------+
                               +--+  +--+
                               |        |
                            Rs v        | Ss
                            +-----+  +-----+
                            |RxLx |  |TxLx |
                            +-----+  +-----+
   Ss = reference point at the DWDM network element tributary output
   Rs = reference point at the DWDM network element tributary input
   Lx = Lambda x
   OM = Optical Mux
   OD = Optical Demux
   ROADM = Reconfigurable Optical Add Drop Mux

   from Fig. 5.1/G.698.2

               Figure 1: External transponder in WDM netwoks

7.1.  Optical Parameters Description

   The link between the external transponders through a WDM network
   media channels are managed at the edges, i.e. at the transmitters
   (Tx) and receivers (Rx) attached to the S and R reference points
   respectively.  The set of parameters that could be managed are
   defined by the "application code" notation

   The definitions of the optical parameters are provided below to
   increase the readability of the document, where the definition is

G.Galimberti, et al.      Expires July 4, 2018                  [Page 5]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

   ended by (R) the parameter can be retrieve with a read, when (W) it
   can be provisioned by a write, (R,W) can be either read or written.

7.1.1.  Optical path from point Ss to Rs

   The following parameters for the optical path from point S and R are
   defined in G.698.2 [ITU.G698.2].

   Maximum and minimum (residual) chromatic dispersion:
      These parameters define the maximum and minimum value of the
      optical path "end to end chromatic dispersion" (in ps/nm) that the
      system shall be able to tolerate.  (R)

   Minimum optical return loss at Ss:
      These parameter defines minimum optical return loss (in dB) of the
      cable plant at the source reference point (Ss), including any
      connectors (R)

   Maximum discrete reflectance between Ss and Rs:
      Optical reflectance is defined to be the ratio of the reflected
      optical power present at a point, to the optical power incident to
      that point.  Control of reflections is discussed extensively in
      ITU-T Rec. G.957 (R)

   Maximum differential group delay:
      Differential group delay (DGD) is the time difference between the
      fractions of a pulse that are transmitted in the two principal
      states of polarization of an optical signal.  For distances
      greater than several kilometres, and assuming random (strong)
      polarization mode coupling, DGD in a fibre can be statistically
      modelled as having a Maxwellian distribution.  (R)

   Maximum polarization dependent loss:
      The polarization dependent loss (PDL) is the difference (in dB)
      between the maximum and minimum values of the channel insertion
      loss (or gain) of the black link from point SS to RS due to a
      variation of the state of polarization (SOP) over all SOPs.  (R)

   Maximum inter-channel crosstalk:
      Inter-channel crosstalk is defined as the ratio of total power in
      all of the disturbing channels to that in the wanted channel,
      where the wanted and disturbing channels are at different
      wavelengths.  The parameter specify the isolation of a link
      conforming to the "black link" approach such that under the worst-
      case operating conditions the inter-channel crosstalk at any
      reference point RS is less than the maximum inter-channel
      crosstalk value (R)

G.Galimberti, et al.      Expires July 4, 2018                  [Page 6]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

   Maximum interferometric crosstalk:
      This parameter places a requirement on the isolation of a link
      conforming to the "black link" approach such that under the worst
      case operating conditions the interferometric crosstalk at any
      reference point RS is less than the maximum interferometric
      crosstalk value.  (R)

   Maximum optical path OSNR penalty:
      The optical path OSNR penalty is defined as the difference between
      the Lowest OSNR at Rs and Lowest OSNR at Ss that meets the BER
      requirement (R)

   Maximum ripple:
      Although is defined in G.698.2 (R).

7.1.2.  Rs and Ss Configuration

   For the Rs and Ss configuration this draft refers the draft-dharini-
   ccamp-dwdm-if-param-yang while for the Rs-Ss extended parameters for
   coherent transmission interfaces refer to draft-dharini-ccamp-dwdm-
   if-param-yang

7.1.3.  Table of Application Codes

   For Application Codes configuration this draft refers the draft-
   dharini-ccamp-dwdm-if-param-yang

7.2.  Use Cases

   The use cases are described in draft-ietf-ccamp-dwdm-if-mng-ctrl-fwk

7.3.  Optical Parameters for impairment validation in a WDM network

   The ietf-opt-parameters-wdm is an augment to the ????. It allows the
   user to get and set the application Optical Parameters of a DWDM
   network.

   module: ietf-opt-parameters-wdm
       +--rw gain-degrade-high?   dbm-t
     augment /if:interfaces/if:interface:
       +--rw optical-transport
          +--rw attenuator-value?    attenuator-t
          +--rw offset?              decimal64
          +--rw channel-power-ref?   decimal64
          +--rw tilt-calibration?    tilt-t

G.Galimberti, et al.      Expires July 4, 2018                  [Page 7]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

8.  Structure of the Yang Module

   ietf-opt-parameters-wdm is a top level model for the support of this
   feature.

9.  Yang Module

   The ietf-opt-parameters-wdm is defined as an extension to ietf
   interfaces ????.

   <CODE BEGINS> file "ietf-opt-parameters-wdm.yang"

   module ietf-opt-parameters-wdm {
      namespace "urn:ietf:params:xml:ns:yang:ietf-opt-parameters-wdm";
      prefix iietf-opt-parameters-wdm;

        import ietf-interfaces {
          prefix if;
        }

        import iana-if-type {
          prefix ianaift;
        }

        organization
          "IETF CCAMP
          Working Group";

        contact
          "WG Web:   <http://tools.ietf.org/wg/ccamp/>
           WG List:  <mailto:ccamp@ietf.org>

           Editor:   Gabriele Galimberti
                     <mailto:ggalimbe@cisco.com>";

        description
          "This module contains a collection of YANG definitions for
           collecting and configuring Optical Parameters
           in Optical Networks and calculate the circuit feasibility.

           Copyright (c) 2016 IETF Trust and the persons identified
           as authors of the code.  All rights reserved.

G.Galimberti, et al.      Expires July 4, 2018                  [Page 8]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

           Redistribution and use in source and binary forms, with or
           without modification, is permitted pursuant to, and
           subject to the license terms contained in, the Simplified
           BSD License set forth in Section 4.c of the IETF Trust's
           Legal Provisions Relating to IETF Documents
           (http://trustee.ietf.org/license-info).";

       revision "2016-10-30" {
              description
                  "Initial revision.";
              reference
                "RFC XXXX: A YANG Data Model for Optical Paramenters
                of DWDM Networks
                   ";
       }

    typedef tilt-t {
       type decimal64 {
         fraction-digits 2;
         range "-5..5";
       }
       description "Tilt Type";
     }

     typedef signal-output-power-t {
         type decimal64 {
           fraction-digits 2;
           range "-10..30";
         }
       description "
         Amplifier Power provisioning ";
     }

     typedef active-channel-t {
       type union {
         type uint8 {
           range "0..200";
         }
       }
       description "
         Number of channels active on a span - and on an amplifier";
     }

     typedef dbm-t {
       type decimal64 {

G.Galimberti, et al.      Expires July 4, 2018                  [Page 9]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

         fraction-digits 2;
         range "-50..-30 | -10..5 | 10000000";
       }
       description "
         Amplifier Power in dBm ";
     }

     typedef attenuator-t {
       type decimal64 {
         fraction-digits 2;
         range "-15..-5";
       }
       description "
       Attenuation value (attenuator) applied after the Amplifier";
     }

     augment "/if:interfaces/if:interface" {
       when "if:type = 'ianaift:opticalTransport'" {
           description "Specific optical-transport Interface Data";
       }
       description "Specific optical-transport Interface Data";
       container optical-transport {
         description "Specific optical-transport Data";

         leaf attenuator-value {
           type attenuator-t;
           description "External attenuator value ";
         }

         leaf offset {
           type decimal64 {
             fraction-digits 2;
             range "-30..30";
           }
           description "Raman and power amplifiers offset";
         }

         leaf channel-power-ref {
           type decimal64 {
             fraction-digits 2;
             range "-10..15";
           }
           description "Optical power per channel";
         }

         leaf tilt-calibration {
           type tilt-t;
           description "Amplifier Tilt tuning";

G.Galimberti, et al.      Expires July 4, 2018                 [Page 10]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

         }
        }
     }

      grouping opwr-threshold-warning-grp {
       description "
         Minimum Optical Power threshold
          - this is used to rise Power alarm ";

       leaf opwr-min {
         type dbm-t;
         units "dBm";
         default -1;
         description "Minimum Power Value";
       }

       leaf opwr-min-clear {
         type dbm-t;
         units "dBm";
         default -1;
         description "threshold to clear Minimum Power value Alarm";
       }

       leaf opwr-max {
         type dbm-t;
         units "dBm";
         default 1;
         description "
           Maximum Optical Power threshold
            - this is used to rise Power alarm ";
       }
     }

     grouping gain-degrade-alarm-grp {
       description "
         Low Optical Power gain threshold
          - this is used to rise Power alarm ";

       leaf gain-degrade-low {
         type dbm-t;
         units "dBm";
         default -1;
         description "Low Gain Degrade Value";
       }
     }

     leaf gain-degrade-high {
         type dbm-t;

G.Galimberti, et al.      Expires July 4, 2018                 [Page 11]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

         units "dBm";
         default 1;
         description "
           High Optical Power gain threshold
            - this is used to rise Power alarm ";
       }
     }

     grouping power-degrade-high-alarm-grp {
       description "
         High Optical Power gain alarm ";

       leaf gain-degrade-high {
         type dbm-t;
         units "dBm";
         default 1;
         description "Low Gain Degrade Value";
       }
     }

     grouping power-degrade-low-alarm-grp {
       description "
         Low Optical Power gain alarm ";

       leaf power-degrade-low {
         type dbm-t;
         units "dBm";
         default -1;
         description "High Gain Degrade Value";
       }
     }

     grouping noise {
       leaf noise {
         type decimal64 {
           fraction-digits 2;
         }
         units "dB";
         description "Noise feasibility - reference ITU-T G.680
          OSNR added to the signal by the OMS. The noise is intended
          per channel and is independent of the number of active
          channels in OMS";
       }
       description "Noise feasibility";
     }

     grouping noise-sigma {

G.Galimberti, et al.      Expires July 4, 2018                 [Page 12]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

       leaf noise-sigma {
         type decimal64 {
           fraction-digits 2;
         }
         units "dB";
         description "Noise Sigma feasibility - accuracy of the
             OSNR added to
            the signal by the OMS";
       }
       description "Noise Sigma feasibility";
     }

     grouping chromatic-dispersion {
       leaf chromatic-dispersion {
         type decimal64 {
           fraction-digits 2;
         }
         units "ps/nm";
         description "Chromatic Dispersion (CD) related to the OMS";
       }
       description "Chromatic Dispersion (CD) feasibility";
     }

     grouping chromatic-dispersion-slope {
       leaf chromatic-dispersion-slope {
         type decimal64 {
           fraction-digits 2;
         }
         units "ps/nm^2";
         description "Chromatic Dispersion (CD) Slope related to
             the OMS";
       }
       description "Chromatic Dispersion (CD) Slope feasibility";
     }

     grouping pmd {
       leaf pmd {
         type decimal64 {
           fraction-digits 2;
         }
         units "ps";
         description "Polarization Mode Dispersion (PMD) relared
             to OMS";
       }
       description "Polarization Mode Dispersion (PMD) feasibility";
     }

     grouping pdl {

G.Galimberti, et al.      Expires July 4, 2018                 [Page 13]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

       leaf pdl {
         type decimal64 {
           fraction-digits 2;
         }
         units "dB";
         description "Polarization Dependent Loss (PDL) related to
               the OMS";
       }
       description "Polarization Dependent Loss (PDL) feasibility";
     }

     grouping drop-power {
       leaf drop-power {
         type decimal64 {
           fraction-digits 2;
         }
         units "dBm";
         description "Drop Power value at the DWDM Transceiver RX
              side";
       }
       description "Drop Power feasibility";
     }

     grouping drop-power-sigma {
       leaf drop-power-sigma {
         type decimal64 {
           fraction-digits 2;
         }
         units "db";
         description "Drop Power Sigma value at the DWDM Transceiver
         RX side";
       }
       description "Drop Power Sigma feasibility";
     }

       grouping ripple {
       leaf ripple {
         type decimal64 {
           fraction-digits 2;
         }
         units "db";
         description "Channel Ripple";
       }
       description "Channel Ripple";
     }

       grouping ch-noise-figure {
       list ch-noise-figure {

G.Galimberti, et al.      Expires July 4, 2018                 [Page 14]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

        description "Channel signal-spontaneous noise figure";

       leaf input-to-output {
           type decimal64 {
             fraction-digits 2;
           }
           units "dB";
           description "from input port to output port";
         }

       leaf input-to-drop {
           type decimal64 {
             fraction-digits 2;
           }
           units "dB";
           description "from input port to drop port";
         }

       leaf add-to-output {
           type decimal64 {
             fraction-digits 2;
           }
           units "dB";
           description "from add port to output port";
         }
       }
       description "Channel signal-spontaneous noise figure";
     }

       grouping dgd {
       leaf dgd {
         type decimal64 {
           fraction-digits 2;
         }
         units "db";
         description "differential group delay";
       }
       description "differential group delay";
     }

       grouping ch-isolation {
       list ch-isolation {
        description "adjacent and not adjacent channel isolation";

       leaf ad-ch-isol {
           type decimal64 {
             fraction-digits 2;
           }

G.Galimberti, et al.      Expires July 4, 2018                 [Page 15]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

           units "dB";
           description "adjecent channel isolation";
         }

       leaf no-ad-ch-iso {
           type decimal64 {
             fraction-digits 2;
           }
           units "dB";
           description "non adjecent channel isolation";
         }
       }
       description "djacent and not adjacent channel isolation";
     }

       grouping ch-extinction {
       leaf cer {
         type decimal64 {
           fraction-digits 2;
         }
         units "db";
         description "channel extinction";
       }
       description "channel extinction";
     }

       grouping att-coefficient {
       leaf att {
         type decimal64 {
           fraction-digits 2;
         }
         units "db";
         description "Attenuation coefficient (for a fibre segment)";
       }
       description "Attenuation coefficient (for a fibre segment)";
      }

       }

   }

   <CODE ENDS>

G.Galimberti, et al.      Expires July 4, 2018                 [Page 16]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

10.  Security Considerations

   The YANG module defined in this memo is designed to be accessed via
   the NETCONF protocol [RFC6241]. he lowest NETCONF layer is the secure
   transport layer and the mandatory-to-implement secure transport is
   SSH [RFC6242].  The NETCONF access control model [RFC6536] provides
   the means to restrict access for particular NETCONF users to a pre-
   configured subset of all available NETCONF protocol operation and
   content.

11.  IANA Considerations

   This document registers a URI in the IETF XML registry [RFC3688].
   Following the format in [RFC3688], the following registration is
   requested to be made:

   URI: urn:ietf:params:xml:ns:yang:ietf-interfaces:ietf-ext-xponder-
   wdm-if

   Registrant Contact: The IESG.

   XML: N/A, the requested URI is an XML namespace.

   This document registers a YANG module in the YANG Module Names
   registry [RFC6020].

   This document registers a YANG module in the YANG Module Names
   registry [RFC6020].

   prefix: ietf-ext-xponder-wdm-if reference: RFC XXXX

12.  Acknowledgements

   Marco Cardani.

13.  Contributors

G.Galimberti, et al.      Expires July 4, 2018                 [Page 17]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

               Dean Bogdanovic
                 Juniper Networks
                 Westford
                 U.S.A.
                 email deanb@juniper.net

               Walid Wakim
                 Cisco
                 9501 Technology Blvd
                 ROSEMONT, ILLINOIS 60018
                 UNITED STATES
                 email wwakim@cisco.com

               Marco Cardani
                 Cisco
                 vis S.Maria Molgora, 48c
                 20871 - Vimercate
                 Monza Brianza
                 Italy
                 email mcardani@cisco.com

               Giovanni Martinelli
                 Cisco
                 vis S.Maria Molgora, 48c
                 20871 - Vimercate
                 Monza Brianza
                 Italy
                 email giomarti@cisco.com

14.  References

14.1.  Normative References

   [ITU.G694.1]
              International Telecommunications Union, "Spectral grids
              for WDM applications: DWDM frequency grid",
              ITU-T Recommendation G.694.1, June 2002.

   [ITU.G698.2]
              International Telecommunications Union, "Amplified
              multichannel dense wavelength division multiplexing
              applications with single channel optical interfaces",
              ITU-T Recommendation G.698.2, November 2009.

G.Galimberti, et al.      Expires July 4, 2018                 [Page 18]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

   [ITU.G709]
              International Telecommunications Union, "Interface for the
              Optical Transport Network (OTN)", ITU-T Recommendation
              G.709, March 2003.

   [ITU.G7710]
              International Telecommunications Union, "Common equipment
              management function requirements", ITU-T Recommendation
              G.7710, May 2008.

   [ITU.G798]
              International Telecommunications Union, "Characteristics
              of optical transport network hierarchy equipment
              functional blocks", ITU-T Recommendation G.798, October
              2010.

   [ITU.G8201]
              International Telecommunications Union, "Error performance
              parameters and objectives for multi-operator international
              paths within the Optical Transport Network (OTN)",
              ITU-T Recommendation G.8201, April 2011.

   [ITU.G826]
              International Telecommunications Union, "End-to-end error
              performance parameters and objectives for international,
              constant bit-rate digital paths and connections",
              ITU-T Recommendation G.826, November 2009.

   [ITU.G872]
              International Telecommunications Union, "Architecture of
              optical transport networks", ITU-T Recommendation G.872,
              November 2001.

   [ITU.G874]
              International Telecommunications Union, "Management
              aspects of optical transport network elements",
              ITU-T Recommendation G.874, July 2010.

   [ITU.G874.1]
              International Telecommunications Union, "Optical transport
              network (OTN): Protocol-neutral management information
              model for the network element view", ITU-T Recommendation
              G.874.1, January 2002.

   [ITU.G959.1]
              International Telecommunications Union, "Optical transport
              network physical layer interfaces", ITU-T Recommendation
              G.959.1, November 2009.

G.Galimberti, et al.      Expires July 4, 2018                 [Page 19]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Structure of Management Information
              Version 2 (SMIv2)", STD 58, RFC 2578,
              DOI 10.17487/RFC2578, April 1999,
              <https://www.rfc-editor.org/info/rfc2578>.

   [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Textual Conventions for SMIv2",
              STD 58, RFC 2579, DOI 10.17487/RFC2579, April 1999,
              <https://www.rfc-editor.org/info/rfc2579>.

   [RFC2580]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Conformance Statements for SMIv2",
              STD 58, RFC 2580, DOI 10.17487/RFC2580, April 1999,
              <https://www.rfc-editor.org/info/rfc2580>.

   [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
              MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
              <https://www.rfc-editor.org/info/rfc2863>.

   [RFC3591]  Lam, H-K., Stewart, M., and A. Huynh, "Definitions of
              Managed Objects for the Optical Interface Type", RFC 3591,
              DOI 10.17487/RFC3591, September 2003,
              <https://www.rfc-editor.org/info/rfc3591>.

   [RFC6205]  Otani, T., Ed. and D. Li, Ed., "Generalized Labels for
              Lambda-Switch-Capable (LSC) Label Switching Routers",
              RFC 6205, DOI 10.17487/RFC6205, March 2011,
              <https://www.rfc-editor.org/info/rfc6205>.

14.2.  Informative References

   [I-D.ietf-ccamp-dwdm-if-mng-ctrl-fwk]
              Kunze, R., Grammel, G., Beller, D., and G. Galimberti, "A
              framework for Management and Control of DWDM optical
              interface parameters", draft-ietf-ccamp-dwdm-if-mng-ctrl-
              fwk-00 (work in progress), April 2016.

   [RFC2629]  Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
              DOI 10.17487/RFC2629, June 1999,
              <https://www.rfc-editor.org/info/rfc2629>.

G.Galimberti, et al.      Expires July 4, 2018                 [Page 20]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

   [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
              "Introduction and Applicability Statements for Internet-
              Standard Management Framework", RFC 3410,
              DOI 10.17487/RFC3410, December 2002,
              <https://www.rfc-editor.org/info/rfc3410>.

   [RFC4054]  Strand, J., Ed. and A. Chiu, Ed., "Impairments and Other
              Constraints on Optical Layer Routing", RFC 4054,
              DOI 10.17487/RFC4054, May 2005,
              <https://www.rfc-editor.org/info/rfc4054>.

   [RFC4181]  Heard, C., Ed., "Guidelines for Authors and Reviewers of
              MIB Documents", BCP 111, RFC 4181, DOI 10.17487/RFC4181,
              September 2005, <https://www.rfc-editor.org/info/rfc4181>.

Appendix A.  Change Log

   This optional section should be removed before the internet draft is
   submitted to the IESG for publication as an RFC.

   Note to RFC Editor: please remove this appendix before publication as
   an RFC.

Appendix B.  Open Issues

   Note to RFC Editor: please remove this appendix before publication as
   an RFC.

Authors' Addresses

   Gabriele Galimberti (editor)
   Cisco
   Via Santa Maria Molgora, 48 c
   20871 - Vimercate
   Italy

   Phone: +390392091462
   Email: ggalimbe@cisco.com

   Ruediger Kunze
   Deutsche Telekom
   Dddd, xx
   Berlin
   Germany

   Phone: +49xxxxxxxxxx
   Email: RKunze@telekom.de

G.Galimberti, et al.      Expires July 4, 2018                 [Page 21]
Internet-Draft       draft-galimbe-ccamp-iv-yang-04        December 2017

   Dharini Hiremagalur (editor)
   Juniper
   1194 N Mathilda Avenue
   Sunnyvale - 94089 California
   USA

   Email: dharinih@juniper.net

   Gert Grammel (editor)
   Juniper
   Oskar-Schlemmer Str. 15
   80807 Muenchen
   Germany

   Phone: +49 1725186386
   Email: ggrammel@juniper.net

G.Galimberti, et al.      Expires July 4, 2018                 [Page 22]