Skip to main content

Performance Measurement Using TWAMP Light and STAMP for Segment Routing Networks
draft-gandhi-spring-twamp-srpm-06

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Replaced".
Authors Rakesh Gandhi , Clarence Filsfils , Daniel Voyer , Mach Chen , Bart Janssens
Last updated 2020-03-01 (Latest revision 2019-12-05)
Replaced by draft-gandhi-spring-stamp-srpm
RFC stream (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-gandhi-spring-twamp-srpm-06
SPRING Working Group                                      R. Gandhi, Ed.
Internet-Draft                                               C. Filsfils
Intended status: Standards Track                     Cisco Systems, Inc.
Expires: September 2, 2020                                      D. Voyer
                                                             Bell Canada
                                                                 M. Chen
                                                                  Huawei
                                                             B. Janssens
                                                                    Colt
                                                           March 1, 2020

Performance Measurement Using TWAMP Light and STAMP for Segment Routing
                                Networks
                   draft-gandhi-spring-twamp-srpm-06

Abstract

   Segment Routing (SR) leverages the source routing paradigm.  SR is
   applicable to both Multiprotocol Label Switching (SR-MPLS) and IPv6
   (SRv6) data planes.  This document specifies procedure for sending
   and processing probe query and response messages for Performance
   Measurement (PM) in Segment Routing networks.  The procedure uses the
   mechanisms defined in RFC 5357 (Two-Way Active Measurement Protocol
   (TWAMP) Light) and Simple Two-Way Active Measurement Protocol (STAMP)
   for Delay Measurement, and also uses the extensions defined in this
   document for Loss Measurement.  The procedure specified is applicable
   to SR-MPLS and SRv6 data planes and is used for both links and end-
   to-end SR Policies.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 2, 2020.

Gandhi, et al.          Expires September 2, 2020               [Page 1]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Conventions Used in This Document . . . . . . . . . . . . . .   4
     2.1.  Requirements Language . . . . . . . . . . . . . . . . . .   4
     2.2.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .   4
     2.3.  Reference Topology  . . . . . . . . . . . . . . . . . . .   5
   3.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     3.1.  Example Provisioning Model  . . . . . . . . . . . . . . .   6
     3.2.  STAMP Applicability . . . . . . . . . . . . . . . . . . .   7
   4.  Probe Messages  . . . . . . . . . . . . . . . . . . . . . . .   7
     4.1.  Probe Query Message . . . . . . . . . . . . . . . . . . .   7
       4.1.1.  Delay Measurement Query Message . . . . . . . . . . .   7
       4.1.2.  Loss Measurement Query Message  . . . . . . . . . . .   9
       4.1.3.  Loss Measurement Query Message Formats for TWAMP  . .  10
       4.1.4.  Loss Measurement Query Message Formats for STAMP  . .  13
       4.1.5.  Probe Query for SR Links  . . . . . . . . . . . . . .  14
       4.1.6.  Probe Query for End-to-end Measurement for SR Policy   14
     4.2.  Probe Response Message  . . . . . . . . . . . . . . . . .  16
       4.2.1.  One-way Measurement Mode  . . . . . . . . . . . . . .  16
       4.2.2.  Two-way Measurement Mode  . . . . . . . . . . . . . .  16
       4.2.3.  Loopback Measurement Mode . . . . . . . . . . . . . .  18
       4.2.4.  Loss Measurement Response Message Formats for TWAMP .  18
       4.2.5.  Loss Measurement Response Message Formats for STAMP .  20
     4.3.  Node Address TLV for STAMP  . . . . . . . . . . . . . . .  23
     4.4.  Return Path TLV for STAMP . . . . . . . . . . . . . . . .  23
   5.  Performance Measurement for P2MP SR Policies  . . . . . . . .  25
   6.  ECMP Support for SR Policies  . . . . . . . . . . . . . . . .  26
   7.  Additional Message Processing Rules . . . . . . . . . . . . .  26
     7.1.  TTL and Hop Limit . . . . . . . . . . . . . . . . . . . .  26
     7.2.  Router Alert Option . . . . . . . . . . . . . . . . . . .  26
     7.3.  UDP Checksum  . . . . . . . . . . . . . . . . . . . . . .  27
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  27

Gandhi, et al.          Expires September 2, 2020               [Page 2]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  27
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  28
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  28
     10.2.  Informative References . . . . . . . . . . . . . . . . .  29
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  32
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  32

1.  Introduction

   Segment Routing (SR) leverages the source routing paradigm and
   greatly simplifies network operations for Software Defined Networks
   (SDNs).  SR is applicable to both Multiprotocol Label Switching (SR-
   MPLS) and IPv6 (SRv6) data planes.  SR takes advantage of the Equal-
   Cost Multipaths (ECMPs) between source and transit nodes, between
   transit nodes and between transit and destination nodes.  SR Policies
   as defined in [I-D.ietf-spring-segment-routing-policy] are used to
   steer traffic through a specific, user-defined paths using a stack of
   Segments.  Built-in SR Performance Measurement (PM) is one of the
   essential requirements to provide Service Level Agreements (SLAs).

   The One-Way Active Measurement Protocol (OWAMP) defined in [RFC4656]
   and Two-Way Active Measurement Protocol (TWAMP) defined in [RFC5357]
   provide capabilities for the measurement of various performance
   metrics in IP networks using probe messages.  These protocols rely on
   control-channel signaling to establish a test-channel over an UDP
   path.  These protocols lack support for direct-mode Loss Measurement
   (LM) to detect actual data traffic loss which is required in SR
   networks.  The Simple Two-way Active Measurement Protocol (STAMP)
   [I-D.ietf-ippm-stamp] alleviates the control-channel signaling by
   using configuration data model to provision a test-channel.  The
   TWAMP Light [Appendix I in RFC5357] [BBF.TR-390] provides simplified
   mechanisms for active performance measurement in Customer IP networks
   by provisioning UDP paths and eliminates the control-channel
   signaling.

   This document specifies procedures for sending and processing probe
   query and response messages for Performance Measurement in SR
   networks.  The procedure uses the mechanisms defined in [RFC5357]
   (TWAMP Light) and STAMP for Delay Measurement (DM), and also uses the
   extensions defined in this document for Loss Measurement.  The
   procedure specified is applicable to SR-MPLS and SRv6 data planes and
   are used for both links and end-to-end SR Policies.  This document
   also defines mechanisms for handling ECMPs of SR Policies for
   performance delay measurement.

Gandhi, et al.          Expires September 2, 2020               [Page 3]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

2.  Conventions Used in This Document

2.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119] [RFC8174]
   when, and only when, they appear in all capitals, as shown here.

2.2.  Abbreviations

   BSID: Binding Segment ID.

   DM: Delay Measurement.

   ECMP: Equal Cost Multi-Path.

   HMAC: Hashed Message Authentication Code.

   LM: Loss Measurement.

   MPLS: Multiprotocol Label Switching.

   NTP: Network Time Protocol.

   OWAMP: One-Way Active Measurement Protocol.

   PM: Performance Measurement.

   PSID: Path Segment Identifier.

   PTP: Precision Time Protocol.

   SID: Segment ID.

   SL: Segment List.

   SR: Segment Routing.

   SRH: Segment Routing Header.

   SR-MPLS: Segment Routing with MPLS data plane.

   SRv6: Segment Routing with IPv6 data plane.

   STAMP: Simple Two-way Active Measurement Protocol.

   TC: Traffic Class.

Gandhi, et al.          Expires September 2, 2020               [Page 4]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   TWAMP: Two-Way Active Measurement Protocol.

2.3.  Reference Topology

   In the reference topology shown below, the sender node R1 initiates a
   probe query for performance measurement and the reflector node R5
   sends a probe response for the query message received.  The probe
   response is sent to the sender node R1.  The nodes R1 and R5 may be
   directly connected via a link enabled with Segment Routing or there
   exists a Point-to-Point (P2P) SR Policy
   [I-D.ietf-spring-segment-routing-policy] on node R1 with destination
   to node R5.  In case of Point-to-Multipoint (P2MP), SR Policy
   originating from source node R1 may terminate on multiple destination
   leaf nodes [I-D.voyer-spring-sr-replication-segment].

               +-------+        Query        +-------+
               |       | - - - - - - - - - ->|       |
               |   R1  |---------------------|   R5  |
               |       |<- - - - - - - - - - |       |
               +-------+       Response      +-------+
                Sender                       Reflector

                         Reference Topology

3.  Overview

   For one-way, two-way and round-trip delay measurements in Segment
   Routing networks, the TWAMP Light procedures defined in Appendix I of
   [RFC5357] are used.  For one-way and two-way direct-mode and
   inferred-mode loss measurements in Segment Routing networks, the
   procedures defined in this document are used.  One-way loss
   measurement provides receive packet loss whereas two-way loss
   measurement provides both transmit and receive packet loss.  Separate
   UDP destination port numbers are user-configured for delay and loss
   measurements from the range specified in [I-D.ietf-ippm-stamp].  The
   sender uses the UDP port number following the guidelines specified in
   Section 6 in [RFC6335].  For both links and end-to-end SR Policies,
   no PM session for delay or loss measurement is created on the
   reflector node R5 [RFC5357].

   For Performance Measurement, probe query and response messages are
   sent as following:

   o  For Delay Measurement, the probe messages are sent on the
      congruent path of the data traffic by the sender node, and are
      used to measure the delay experienced by the actual data traffic
      flowing on the links and SR Policies.

Gandhi, et al.          Expires September 2, 2020               [Page 5]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   o  For Loss Measurement, the probe messages are sent on the congruent
      path of the data traffic by the sender node, and are used to
      collect the receive traffic counters for the incoming link or
      incoming SID where the probe query messages are received at the
      reflector node (incoming link or incoming SID needed since the
      reflector node does not have PM session state present).

   The In-Situ Operations, Administration, and Maintenance (IOAM)
   mechanisms for SR-MPLS defined in [I-D.gandhi-spring-ioam-sr-mpls]
   and for SRv6 defined in [I-D.ali-spring-ioam-srv6] are used to carry
   PM information such as timestamp in-band as part of the data packets,
   and are outside the scope of this document.

3.1.  Example Provisioning Model

   An example of a provisioning model and typical measurement parameters
   for performance delay and loss measurements is shown in the following
   Figure:

                             +------------+
                             | Controller |
                             +------------+
   Measurement Protocol           /  \         Measurement Protocol
   Destination UDP Port          /    \        Destination UDP port
   Measurement Type             /      \       Measurement Type
     Delay/Loss                /        \        Delay/Loss
   Authentication Mode & Key  /          \     Authentication Mode & Key
   Timestamp Format          /            \    Loss Measurement Mode
   Delay Measurement Mode   /              \
   Padding/MBZ Bytes       /                \
   Loss Measurement Mode  /                  \
                         v                    v
                     +-------+            +-------+
                     |       |            |       |
                     |   R1  |------------|   R5  |
                     |       |            |       |
                     +-------+            +-------+
                      Sender              Reflector

                       Example Provisioning Model

   The reflector node R5 uses the parameters for the timestamp format,
   delay measurement mode (i.e. one-way, two-way or loopback mode) and
   packet padding size from the received probe query message.

   Examples of Measurement Protocol is TWAMP Light or STAMP, the
   Timestamp Format is PTPv2 [IEEE1588] or NTP and the Loss Measurement

Gandhi, et al.          Expires September 2, 2020               [Page 6]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   mode is inferred or direct mode.  The mechanisms to provision the
   sender and reflector nodes are outside the scope of this document.

3.2.  STAMP Applicability

   The Simple Two-way Active Measurement Protocol (STAMP)
   [I-D.ietf-ippm-stamp] and the STAMP TLVs
   [I-D.ietf-ippm-stamp-option-tlv] are both equally applicable to the
   procedures specified in this document.  This is because the delay
   measurement message formats defined for STAMP are backwards
   compatible with the delay measurement message formats defined in
   [RFC5357].  The STAMP with a TLV for "direct measurement" can be used
   for combined delay + loss measurement using a different user-
   configured UDP destination port.

4.  Probe Messages

4.1.  Probe Query Message

   In this document, the probe messages defined in [RFC5357] are used
   for Delay and Loss measurements for SR links and end-to-end SR
   Policies.  The user-configured destination UDP ports (separate UDP
   ports for different delay and loss message formats) are used for
   identifying the PM probe packets as described in Appendix I of
   [RFC5357].

   The Sender IPv4 or IPv6 address is used as the source address.  When
   known, the reflector IPv4 or IPv6 address is used as the destination
   address.  If not known, the address in the range of 127/8 for IPv4 or
   0:0:0:0:0:FFFF:7F00/104 for IPv6 is used as destination address.
   This is the case for example, when using SR Policy with IPv4 endpoint
   of 0.0.0.0 or IPv6 endpoint of ::0
   [I-D.ietf-spring-segment-routing-policy].

4.1.1.  Delay Measurement Query Message

   The message content for Delay Measurement probe query message using
   UDP header [RFC0768], is shown in Figure 1.  The DM probe query
   message is sent with user-configured Destination UDP port number for
   DM.  The Destination UDP port cannot be used as Source port, since
   the message does not have any indication to distinguish between query
   and response.  The DM probe query message contains the payload for
   delay measurement defined in Section 4.1.2 of [RFC5357].  For
   symmetrical size query and response messages [RFC6038], the DM probe
   query message contains the payload format defined in Section 4.2.1 of
   [RFC5357].

Gandhi, et al.          Expires September 2, 2020               [Page 7]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    +---------------------------------------------------------------+
    | IP Header                                                     |
    .  Source IP Address = Sender IPv4 or IPv6 Address              .
    .  Destination IP Address = Reflector IPv4 or IPv6 Address      .
    .  Protocol = UDP                                               .
    .                                                               .
    +---------------------------------------------------------------+
    | UDP Header                                                    |
    .  Source Port = As chosen by Sender                            .
    .  Destination Port = User-configured Port for Delay Measurement.
    .                                                               .
    +---------------------------------------------------------------+
    | Payload = Message as specified in Section 4.2.1 of RFC 5357 | |
    . Payload = Message as specified in Section 4.1.2 of RFC 5357 | .
    . Payload = Message specified in Section 4.2 of ietf-ippm-stamp .
    .                                                               .
    +---------------------------------------------------------------+

                     Figure 1: DM Probe Query Message

   Timestamp field is eight bytes and use the format defined in
   Section 4.2.1 of [RFC5357].  It is recommended to use the IEEE 1588v2
   Precision Time Protocol (PTP) truncated 64-bit timestamp format
   [IEEE1588] as specified in [RFC8186], with hardware support in
   Segment Routing networks.

4.1.1.1.  Control Code Field in TWAMP and STAMP Message

   The Control Code field is defined in the modified DM probe message
   format as follows for both TWAMP and STAMP packet formats in
   unautenticated an authenticated modes.  This DM probe message format
   is backwards compatible with the format defined in [RFC5357] as its
   reflector MUST ignore the received MBZ field.

Gandhi, et al.          Expires September 2, 2020               [Page 8]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    .                                                               .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Timestamp                            |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Error Estimate        | Reserved      |  Control Code |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                                                               .

   Control Code: Set as follows in TWAMP and STAMP probe query and
   response messages.

     For a Query:

       0x0: Out-of-band Response Requested.  Indicates that the probe
       response is not required over the same path in the reverse
       direction.  This is also the default behavior.

       0x1: In-band Response Requested.  Indicates that this query has
       been sent over a bidirectional path and the probe response is
       required over the same path in the reverse direction.

      For a Response:

        0x1: Error - Invalid Message.  Indicates that the operation
        failed because the received query message was malformed.

   Reserved: Reserved for future use.

4.1.1.2.  Delay Measurement Authentication Mode

   When using the authenticated mode for delay measurement, the matching
   authentication type (e.g.  HMAC-SHA-256) and key are user-configured
   on both the sender and reflector nodes.  A separate user-configured
   destination UDP port is used for the delay measurement in
   authentication mode due to the different probe message format.

4.1.2.  Loss Measurement Query Message

   The message content for Loss Measurement probe query message using
   UDP header [RFC0768] is shown in Figure 2.  The LM probe query
   message is sent with user-configured Destination UDP port number for
   LM.  Separate Destination UDP ports are used for direct-mode and
   inferred-mode loss measurements.  The Destination UDP port cannot be

Gandhi, et al.          Expires September 2, 2020               [Page 9]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   used as Source port, since the message does not have any indication
   to distinguish between query and response.  The LM probe query
   message contains the payload for loss measurement as defined in
   Figure 3-6.

    +---------------------------------------------------------------+
    | IP Header                                                     |
    .  Source IP Address = Sender IPv4 or IPv6 Address              .
    .  Destination IP Address = Reflector IPv4 or IPv6 Address      .
    .  Protocol = UDP                                               .
    .                                                               .
    +---------------------------------------------------------------+
    | UDP Header                                                    |
    .  Source Port = As chosen by Sender                            .
    .  Destination Port = User-configured Port for Loss Measurement .
    .                                                               .
    +---------------------------------------------------------------+
    | Payload = Message as specified in Figure 3 or 4 |             |
    . Payload = Message as specified in Figure 5 or 6               .
    .                                                               .
    +---------------------------------------------------------------+

                     Figure 2: LM Probe Query Message

4.1.2.1.  Loss Measurement Authentication Mode

   When using the authenticated mode for loss measurement, the matching
   authentication type (e.g.  HMAC-SHA-256) and key are user-configured
   on both the sender and reflector nodes.  A separate user-configured
   destination UDP port is used for the loss measurement in
   authentication mode due to the different message format.

4.1.3.  Loss Measurement Query Message Formats for TWAMP

   In this document, TWAMP probe query message formats are defined for
   loss measurement as shown in Figure 3 and 4.  The message formats are
   hardware efficient due to the small size payload and well-known
   locations of counters.  They are similar to the delay measurement
   message formats and do not require any backwards compatibility and
   support for the existing DM message formats from [RFC5357].

Gandhi, et al.          Expires September 2, 2020              [Page 10]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                        Packet Padding                         .
    .                                                               .
    |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |      Checksum Complement      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 3: LM Probe Query Message Format

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (12 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (4 octets)                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        HMAC (16 octets)                       |
    |                                                               |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                        Packet Padding                         .
    .                                                               .
    |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |      Checksum Complement      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 4: LM Probe Query Message Format - Authenticated Mode

Gandhi, et al.          Expires September 2, 2020              [Page 11]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   Sequence Number (32-bit): As defined in [RFC5357].

   Transmit Counter (64-bit): The number of packets or octets sent by
   the sender node in the query message and by the reflector node in the
   response message.  The counter is always written at the fixed
   location in the probe query and response messages.

   Receive Counter (64-bit): The number of packets or octets received at
   the reflector node.  It is written by the reflector node in the probe
   response message.

   Sender Counter (64-bit): This is the exact copy of the transmit
   counter from the received query message.  It is written by the
   reflector node in the probe response message.

   Sender Sequence Number (32-bit): As defined in [RFC5357].

   Sender TTL: As defined in [RFC5357].

   LM Flags: The meanings of the Flag bits are:

      X: Extended counter format indicator.  Indicates the use of
      extended (64-bit) counter values.  Initialized to 1 upon creation
      (and prior to transmission) of an LM Query and copied from an LM
      Query to an LM response.  Set to 0 when the LM message is
      transmitted or received over an interface that writes 32-bit
      counter values.

      B: Octet (byte) count.  When set to 1, indicates that the Counter
      1-4 fields represent octet counts.  The octet count applies to all
      packets within the LM scope, and the octet count of a packet sent
      or received includes the total length of that packet (but excludes
      headers, labels, or framing of the channel itself).  When set to
      0, indicates that the Counter fields represent packet counts.

   Block Number (8-bit): The Loss Measurement using Alternate-Marking
   method defined in [RFC8321] requires to color the data traffic.  To
   be able to compare the transmit and receive traffic counters of the
   matching color, the Block Number (or color) of the traffic counters
   is carried by the probe query and response messages for loss
   measurement.

   HMAC: The PM probe packet in authenticated mode includes a key Hashed
   Message Authentication Code (HMAC) ([RFC2104]) hash.  Each probe
   query and response messages are authenticated by adding Sequence
   Number with Hashed Message Authentication Code (HMAC) TLV.  It can
   use HMAC-SHA-256 truncated to 128 bits (similarly to the use of it in

Gandhi, et al.          Expires September 2, 2020              [Page 12]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   IPSec defined in [RFC4868]); hence the length of the HMAC field is 16
   octets.

   HMAC uses its own key and the mechanism to distribute the HMAC key is
   outside the scope of this document.

   In authenticated mode, only the sequence number is encrypted, and the
   other payload fields are sent in clear text.  The probe packet MAY
   include Comp.MBZ (Must Be Zero) variable length field to align the
   packet on 16 octets boundary.

4.1.4.  Loss Measurement Query Message Formats for STAMP

   In this document, STAMP probe query message formats are defined for
   loss measurement as shown in Figures 5 and 6.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                        MBZ (28 octets)                        |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 5: STAMP LM Probe Query Message Format

Gandhi, et al.          Expires September 2, 2020              [Page 13]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (12 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                                                               ~
    |                        MBZ (68 octets)                        |
    ~                                                               ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        HMAC (16 octets)                       |
    |                                                               |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 6: STAMP LM Probe Query Message Format - Authenticated Mode

4.1.5.  Probe Query for SR Links

   The probe query message as defined in Figure 1 is sent on the
   congruent path of the data traffic for Delay measurement.  The probe
   query message as defined in Figure 2 is sent on the congruent path of
   the data traffic for Loss measurement.

4.1.6.  Probe Query for End-to-end Measurement for SR Policy

   The performance delay and loss measurement for segment routing is
   applicable to both SR-MPLS and SRv6 Policies.

4.1.6.1.  Probe Query Message for SR-MPLS Policy

   The probe query messages for end-to-end performance measurement of an
   SR-MPLS Policy is sent using its SR-MPLS header containing the MPLS
   segment list as shown in Figure 7.

Gandhi, et al.          Expires September 2, 2020              [Page 14]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Segment(1)             | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                                                               .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Segment(n)             | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                PSID                   | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Message as shown in Figure 1 for DM or Figure 2 for LM      |
    .                                                               .
    +---------------------------------------------------------------+

             Figure 7: Probe Query Message for SR-MPLS Policy

   The Segment List (SL) can be empty to indicate Implicit NULL label
   case for a single-hop SR Policy.

   The Path Segment Identifier (PSID)
   [I-D.ietf-spring-mpls-path-segment] of the SR-MPLS Policy is used for
   accounting received traffic on the egress node for loss measurement.

4.1.6.2.  Probe Query Message for SRv6 Policy

   An SRv6 Policy setup using the SRv6 Segment Routing Header (SRH) and
   a Segment List as defined in [I-D.ietf-6man-segment-routing-header].
   For SRv6, network programming is defined in
   [I-D.ietf-spring-srv6-network-programming].  The probe query messages
   for end-to-end performance measurement of an SRv6 Policy is sent
   using its SRH with Segment List as shown in Figure 8.

    +---------------------------------------------------------------+
    |                           SRH                                 |
    .                                                               .
    +---------------------------------------------------------------+

    |   Message as shown in Figure 1 for DM or Figure 2 for LM      |
    .   (Using IPv6 Source and Destination Addresses)               .
    .                                                               .
    +---------------------------------------------------------------+

               Figure 8: Probe Query Message for SRv6 Policy

Gandhi, et al.          Expires September 2, 2020              [Page 15]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   For delay measurement of SRv6 Policy using SRH, END function END.OTP
   [I-D.ietf-6man-spring-srv6-oam] is used with the target SRv6 SID to
   punt probe messages on the target node, as shown in Figure 8.
   Similarly, for loss measurement of SRv6 Policy, END function END.OP
   [I-D.ietf-6man-spring-srv6-oam] is used with target SRv6 SID to punt
   probe messages on the target node.

4.2.  Probe Response Message

   The probe response message is sent using the IP/UDP information from
   the received probe query message.  The content of the probe response
   message is shown in Figure 9.

    +---------------------------------------------------------------+
    | IP Header                                                     |
    .  Source IP Address = Reflector IPv4 or IPv6 Address           .
    .  Destination IP Address = Source IP Address from Query        .
    .  Protocol = UDP                                               .
    .                                                               .
    +---------------------------------------------------------------+
    | UDP Header                                                    |
    .  Source Port = As chosen by Reflector                         .
    .  Destination Port = Source Port from Query                    .
    .                                                               .
    +---------------------------------------------------------------+
    | DM Payload as specified in Section 4.2.1 of RFC 5357 |        |
    . DM payload as specified in Section 4.3 of ietf-ippm-stamp |   .
    . LM Payload as specified in Figure 12 or 13 in this document | .
    . LM Payload as specified in Figure 14 or 15 in this document | .
    .                                                               .
    +---------------------------------------------------------------+

                     Figure 9: Probe Response Message

4.2.1.  One-way Measurement Mode

   In one-way performance measurement mode, the probe response message
   as defined in Figure 9 is sent back out-of-band to the sender node,
   for both SR links and SR Policies.  The Control Code is set to "Out-
   of-band Response Requested".

4.2.2.  Two-way Measurement Mode

   In two-way performance measurement mode, when using a bidirectional
   path, the probe response message as defined in Figure 9 is sent back
   to the sender node on the congruent path of the data traffic on the
   same reverse direction SR Link or associated reverse SR Policy

Gandhi, et al.          Expires September 2, 2020              [Page 16]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   [I-D.ietf-pce-sr-bidir-path].  The Control Code is set to "In-band
   Response Requested".

   Specifically, the probe response message is sent back on the incoming
   physical interface where the probe query message is received.  This
   is useful for example, in case of two-way measurement mode for SR
   link delay.

4.2.2.1.  Probe Response Message for SR-MPLS Policy

   The message content for sending probe response message for two-way
   end-to-end performance measurement of an SR-MPLS Policy is shown in
   Figure 10.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Segment(1)             | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .

    .                                                               .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Segment(n)             | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Message as shown in Figure 9                   |
    .                                                               .
    +---------------------------------------------------------------+

           Figure 10: Probe Response Message for SR-MPLS Policy

   The Path Segment Identifier (PSID)
   [I-D.ietf-spring-mpls-path-segment] of the forward SR Policy in the
   probe query can be used to find the associated reverse SR Policy
   [I-D.ietf-pce-sr-bidir-path] to send the probe response message for
   two-way measurement of SR Policy unless when using STAMP with Return
   Path TLV.

4.2.2.2.  Probe Response Message for SRv6 Policy

   The message content for sending probe response message on the
   congruent path of the data traffic for two-way end-to-end performance
   measurement of an SRv6 Policy with SRH is shown in Figure 11.

Gandhi, et al.          Expires September 2, 2020              [Page 17]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    +---------------------------------------------------------------+
    |                           SRH                                 |
    .                                                               .
    +---------------------------------------------------------------+
    |   Message as shown in Figure 9                                |
    .   (Using IPv6 Source and Destination Addresses)               .
    .                                                               .
    +---------------------------------------------------------------+

             Figure 11: Probe Response Message for SRv6 Policy

4.2.3.  Loopback Measurement Mode

   The Loopback measurement mode can be used to measure round-trip delay
   for a bidirectional SR Path.  The IP header of the probe query
   message contains the destination address equals to the sender address
   and the source address equals to the reflector address.  Optionally,
   the probe query message can carry the reverse path information (e.g.
   reverse path label stack for SR-MPLS) as part of the SR header.  The
   reflector node does not process the PM probe messages and generate
   response messages.

4.2.4.  Loss Measurement Response Message Formats for TWAMP

   In this document, TWAMP probe response message formats are defined
   for loss measurement as shown in Figure 12 and 13.  The message
   formats are hardware efficient due to the small size payload and well
   known locations of the counters.  They are also similar to the delay
   measurement message formats.

Gandhi, et al.          Expires September 2, 2020              [Page 18]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Receive Counter                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Sequence Number                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Counter                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  |Sender Block Nu| MBZ                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Sender TTL   |                                               |
    +-+-+-+-+-+-+-+-+                                               +
    |                        Packet Padding                         |
    .                                                               .
    |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |      Checksum Complement      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 12: LM Probe Response Message Format

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (12 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (4 octets)                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Receive Counter                        |
    |                                                               |

Gandhi, et al.          Expires September 2, 2020              [Page 19]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (8 octets)                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Sequence Number                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (12 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Counter                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  |Sender Block Nu| MBZ                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (4 octets)                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Sender TTL   |                                               |
    +-+-+-+-+-+-+-+-+                                               +
    |                        MBZ (15 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        HMAC (16 octets)                       |
    |                                                               |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                                                               .
    .                        Packet Padding                         .
    .                                                               .
    |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                               |     Checksum Complement       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 13: LM Probe Response Message Format - Authenticated Mode

4.2.5.  Loss Measurement Response Message Formats for STAMP

   In this document, STAMP probe response message formats are defined
   for loss measurement as shown in Figure 14 and 15.

Gandhi, et al.          Expires September 2, 2020              [Page 20]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Receive Counter                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Sequence Number                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Counter                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  |Sender Block Nu| MBZ                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Ses-Sender TTL| Reserved                                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 14: STAMP LM Probe Response Message Format

Gandhi, et al.          Expires September 2, 2020              [Page 21]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (12 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Transmit Counter                       |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  | Block Number  | Reserved      | Control Code  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (4 octets)                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Receive Counter                        |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (8 octets)                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Sequence Number                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (12 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sender Counter                         |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|B| Reserved  |Sender Block Nu| MBZ                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        MBZ (4 octets)                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Ses-Sender TTL|                                               |
    +-+-+-+-+-+-+-+-+                                               +
    |                        MBZ (15 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        HMAC (16 octets)                       |
    |                                                               |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Figure 15: STAMP LM Probe Response Message Format - Authenticated

Gandhi, et al.          Expires September 2, 2020              [Page 22]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

4.3.  Node Address TLV for STAMP

   The Node Address TLV is defined for STAMP
   [I-D.ietf-ippm-stamp-option-tlv] in this document and has the
   following format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |    Length     |        Address Family         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                           Address                             ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 16: Node Address TLV Format

   The Address Family field indicates the type of the address, and it
   SHALL be set to one of the assigned values in the "IANA Address
   Family Numbers" registry.

   The following Type is defined in this document and it ontains Node
   Address TLV:

   Destination Node Address (value TBA2):

   The Destination Node Address TLV is optional.  The Destination Node
   Address TLV indicates the address of the intended recipient of the
   probe message.  The destination node SHOULD NOT send response if it
   is not the intended destination node of the probe query message.
   This check is useful for example, for performance measurement of SR
   Policy when using the destination address in 127/8 range for IPv4 or
   in 0:0:0:0:0:FFFF:7F00/104 range for IPv6.

4.4.  Return Path TLV for STAMP

   For two-way performance measurement, the reflector node needs to send
   the probe response message on a specific reverse path.  The sender
   node can request in the probe query message to the reflector node to
   send a response back on a given reverse path (e.g. co-routed
   bidirectional path).  This way the destination node does not require
   any additional SR Policy state.

   For one-way performance measurement, the sender node address may not
   be reachable via IP route from the reflector node.  The sender node
   in this case needs to send its reachability path information to the
   reflector node.

Gandhi, et al.          Expires September 2, 2020              [Page 23]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   [I-D.ietf-ippm-stamp-option-tlv] defines STAMP probe query messages
   that can include one or more optional TLVs.  The TLV Type (value
   TBA1) is defined in this document for Return Path to carry reverse
   path for probe response messages (in the payload of the message).
   The format of the Return Path TLV is shown in Figure 17:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Type = TBA1  |    Length     |      Reserved                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Return Path Sub-TLVs                       |
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 17: Return Path TLV

   The following Type defined for the Return Path TLV contains the Node
   Address sub-TLV (shown in Figure 16):

   o  Type (value 0): Return Address.  Target node address of the
      response different than the Source Address in the query

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |    Length     |      Reserved                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Segment(1)                                 |
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    .                                                               .
    .                                                               .
    .                                                               .

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    Segment(n)                                 |
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 18: Segment List Sub-TLV in Return Path TLV

   The Segment List Sub-TLV (shown in Figure 18) in the Return Path TLV
   can be one of the following Types:

   o  Type (value 1): SR-MPLS Label Stack of the Reverse SR Path

Gandhi, et al.          Expires September 2, 2020              [Page 24]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   o  Type (value 2): SR-MPLS Binding SID
      [I-D.ietf-pce-binding-label-sid] of the Reverse SR Policy

   o  Type (value 3): SRv6 Segment List of the Reverse SR Path

   o  Type (value 4): SRv6 Binding SID [I-D.ietf-pce-binding-label-sid]
      of the Reverse SR Policy

   The Return Path TLV is optional.  The PM sender node MUST only insert
   one Return Path TLV in the probe query message and the reflector node
   MUST only process the first Return Path TLV in the probe query
   message and ignore other Return Path TLVs if present.  The reflector
   node MUST send probe response message back on the reverse path
   specified in the Return Path TLV and MUST NOT add Return Path TLV in
   the probe response message.

5.  Performance Measurement for P2MP SR Policies

   The procedures for delay and loss measurement described in this
   document for Point-to-Point (P2P) SR Policies
   [I-D.ietf-spring-segment-routing-policy] are also equally applicable
   to the Point-to-Multipoint (P2MP) SR Policies as following:

   o  The sender root node sends probe query messages using the
      Replication Segment defined in
      [I-D.voyer-spring-sr-replication-segment] for the P2MP SR Policy
      as shown in Figure 19.

   o  Each reflector leaf node sends its IP address in the Source
      Address of the probe response messages as shown in Figure 9.  This
      allows the sender root node to identify the reflector leaf nodes
      of the P2MP SR Policy.

   o  The P2MP root node measures the end-to-end delay and loss
      performance for each P2MP leaf node of the P2MP SR Policy.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              Replication SID          | TC  |S|      TTL      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Message as shown in Figure 1 for DM or Figure 2 for LM      |
    .                                                               .
    +---------------------------------------------------------------+

          Figure 19: With Replication Segment for SR-MPLS Policy

Gandhi, et al.          Expires September 2, 2020              [Page 25]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

6.  ECMP Support for SR Policies

   An SR Policy can have ECMPs between the source and transit nodes,
   between transit nodes and between transit and destination nodes.
   Usage of Anycast SID [RFC8402] by an SR Policy can result in ECMP
   paths via transit nodes part of that Anycast group.  The PM probe
   messages need to be sent to traverse different ECMP paths to measure
   performance delay of an SR Policy.

   Forwarding plane has various hashing functions available to forward
   packets on specific ECMP paths.  The mechanisms described in
   [RFC8029] and [RFC5884] for handling ECMPs are also applicable to the
   performance measurement.  In the IP header of the PM probe messages,
   sweeping of Destination Addresses in 127/8 range for IPv4 or
   0:0:0:0:0:FFFF:7F00/104 range for IPv6 can be used to exercise
   particular ECMP paths.  As specified in [RFC6437], Flow Label field
   in the IPv6 header can also be used for sweeping.

   The considerations for performance loss measurement for different
   ECMP paths of an SR Policy are outside the scope of this document.

7.  Additional Message Processing Rules

7.1.  TTL and Hop Limit

   The TTL field in the IPv4 and MPLS headers of the probe query
   messages is set to 255 [RFC5357].  Similarly, the Hop Limit field in
   the IPv6 and SRH headers of the probe query messages is set to 255
   [RFC5357].

   When using the Destination IPv4 Address from the 127/8 range, the TTL
   in the IPv4 header is set to 1 [RFC8029].  Similarly, when using the
   Destination IPv6 Address from the 0:0:0:0:0:FFFF:7F00/104 range, the
   Hop Limit field in the inner IPv6 header is set to 1 whereas in the
   outer IPv6 header is set to 255.

   For SR link performance delay and loss measurement, the probe
   messages are pre-routed over the link and the TTL and Hop Limit field
   are set to 1 in both one-way and two-way measurement modes.

7.2.  Router Alert Option

   The Router Alert IP option is not set when using the routable
   Destination IP Address in the probe messages.

   When using the Destination IPv4 Address from the 127/8 range, to be
   able to punt probe packets on the reflector node, the Router Alert IP
   Option of value 0x0 [RFC2113] for IPv4 MAY be added [RFC8029].

Gandhi, et al.          Expires September 2, 2020              [Page 26]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   Similarly, when using the Destination IPv6 Address from the
   0:0:0:0:0:FFFF:7F00/104 range, the Router Alert IP Option of value 69
   [RFC7506] for IPv6 MAY be added in the destination option header,
   Section 4.6 of [RFC8200].  For SRv6 Policy using SRH, it is added in
   the inner IPv6 header.

7.3.  UDP Checksum

   The Checksum Complement for delay and loss measurement messages
   follows the procedure defined in [RFC7820] and can be optionally used
   with the procedures defined in this document.

   For IPv4 and IPv6 probe messages, where the hardware is not capable
   of re-computing the UDP checksum or adding checksum complement
   [RFC7820], the sender node sets the UDP checksum to 0 [RFC6936]
   [RFC8085].  The receiving node bypasses the checksum validation and
   accepts the packets with UDP checksum value 0 for the UDP port being
   used for PM delay and loss measurements.

8.  Security Considerations

   The performance measurement is intended for deployment in well-
   managed private and service provider networks.  As such, it assumes
   that a node involved in a measurement operation has previously
   verified the integrity of the path and the identity of the far-end
   reflector node.

   If desired, attacks can be mitigated by performing basic validation
   and sanity checks, at the sender, of the counter or timestamp fields
   in received measurement response messages.  The minimal state
   associated with these protocols also limits the extent of measurement
   disruption that can be caused by a corrupt or invalid message to a
   single query/response cycle.

   Use of HMAC-SHA-256 in the authenticated mode protects the data
   integrity of the probe messages.  SRv6 has HMAC protection
   authentication defined for SRH
   [I-D.ietf-6man-segment-routing-header].  Hence, PM probe messages for
   SRv6 may not need authentication mode.  Cryptographic measures may be
   enhanced by the correct configuration of access-control lists and
   firewalls.

9.  IANA Considerations

   IANA is requested to allocate a value for the following optional
   Return Path TLV Type for [I-D.ietf-ippm-stamp-option-tlv] to be
   carried in PM probe query messages:

Gandhi, et al.          Expires September 2, 2020              [Page 27]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   o  Type TBA1: Return Path TLV

   IANA is also requested to allocate the values for the following Sub-
   TLV Types for the Return Path TLV.

   o  Type (value 0): Return Address

   o  Type (value 1): SR-MPLS Label Stack of the Reverse SR Path

   o  Type (value 2): SR-MPLS Binding SID
      [I-D.ietf-pce-binding-label-sid] of the Reverse SR Policy

   o  Type (value 3): SRv6 Segment List of the Reverse SR Path

   o  Type (value 4): SRv6 Binding SID [I-D.ietf-pce-binding-label-sid]
      of the Reverse SR Policy

   IANA is requested to allocate a value for the following optional
   Destination Address TLV Type for [I-D.ietf-ippm-stamp-option-tlv] to
   be carried in PM probe message:

   o  Type TBA2: Destination Node Address TLV

10.  References

10.1.  Normative References

   [RFC0768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              DOI 10.17487/RFC0768, August 1980,
              <https://www.rfc-editor.org/info/rfc768>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC4656]  Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
              Zekauskas, "A One-way Active Measurement Protocol
              (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
              <https://www.rfc-editor.org/info/rfc4656>.

   [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
              Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
              RFC 5357, DOI 10.17487/RFC5357, October 2008,
              <https://www.rfc-editor.org/info/rfc5357>.

Gandhi, et al.          Expires September 2, 2020              [Page 28]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [I-D.ietf-6man-spring-srv6-oam]
              Ali, Z., Filsfils, C., Matsushima, S., Voyer, D., and M.
              Chen, "Operations, Administration, and Maintenance (OAM)
              in Segment Routing Networks with IPv6 Data plane (SRv6)",
              draft-ietf-6man-spring-srv6-oam-03 (work in progress),
              December 2019.

   [I-D.ietf-ippm-stamp]
              Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple
              Two-way Active Measurement Protocol", draft-ietf-ippm-
              stamp-10 (work in progress), October 2019.

   [I-D.ietf-ippm-stamp-option-tlv]
              Mirsky, G., Xiao, M., Nydell, H., Foote, R., Masputra, A.,
              and E. Ruffini, "Simple Two-way Active Measurement
              Protocol Optional Extensions", draft-ietf-ippm-stamp-
              option-tlv-03 (work in progress), February 2020.

10.2.  Informative References

   [IEEE1588]
              IEEE, "1588-2008 IEEE Standard for a Precision Clock
              Synchronization Protocol for Networked Measurement and
              Control Systems", March 2008.

   [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
              DOI 10.17487/RFC2104, February 1997,
              <https://www.rfc-editor.org/info/rfc2104>.

   [RFC2113]  Katz, D., "IP Router Alert Option", RFC 2113,
              DOI 10.17487/RFC2113, February 1997,
              <https://www.rfc-editor.org/info/rfc2113>.

   [RFC4868]  Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
              384, and HMAC-SHA-512 with IPsec", RFC 4868,
              DOI 10.17487/RFC4868, May 2007,
              <https://www.rfc-editor.org/info/rfc4868>.

   [RFC5884]  Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow,
              "Bidirectional Forwarding Detection (BFD) for MPLS Label
              Switched Paths (LSPs)", RFC 5884, DOI 10.17487/RFC5884,
              June 2010, <https://www.rfc-editor.org/info/rfc5884>.

Gandhi, et al.          Expires September 2, 2020              [Page 29]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   [RFC6038]  Morton, A. and L. Ciavattone, "Two-Way Active Measurement
              Protocol (TWAMP) Reflect Octets and Symmetrical Size
              Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
              <https://www.rfc-editor.org/info/rfc6038>.

   [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
              Cheshire, "Internet Assigned Numbers Authority (IANA)
              Procedures for the Management of the Service Name and
              Transport Protocol Port Number Registry", BCP 165,
              RFC 6335, DOI 10.17487/RFC6335, August 2011,
              <https://www.rfc-editor.org/info/rfc6335>.

   [RFC6437]  Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
              "IPv6 Flow Label Specification", RFC 6437,
              DOI 10.17487/RFC6437, November 2011,
              <https://www.rfc-editor.org/info/rfc6437>.

   [RFC6936]  Fairhurst, G. and M. Westerlund, "Applicability Statement
              for the Use of IPv6 UDP Datagrams with Zero Checksums",
              RFC 6936, DOI 10.17487/RFC6936, April 2013,
              <https://www.rfc-editor.org/info/rfc6936>.

   [RFC7506]  Raza, K., Akiya, N., and C. Pignataro, "IPv6 Router Alert
              Option for MPLS Operations, Administration, and
              Maintenance (OAM)", RFC 7506, DOI 10.17487/RFC7506, April
              2015, <https://www.rfc-editor.org/info/rfc7506>.

   [RFC7820]  Mizrahi, T., "UDP Checksum Complement in the One-Way
              Active Measurement Protocol (OWAMP) and Two-Way Active
              Measurement Protocol (TWAMP)", RFC 7820,
              DOI 10.17487/RFC7820, March 2016,
              <https://www.rfc-editor.org/info/rfc7820>.

   [RFC8029]  Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N.,
              Aldrin, S., and M. Chen, "Detecting Multiprotocol Label
              Switched (MPLS) Data-Plane Failures", RFC 8029,
              DOI 10.17487/RFC8029, March 2017,
              <https://www.rfc-editor.org/info/rfc8029>.

   [RFC8085]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
              Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
              March 2017, <https://www.rfc-editor.org/info/rfc8085>.

   [RFC8186]  Mirsky, G. and I. Meilik, "Support of the IEEE 1588
              Timestamp Format in a Two-Way Active Measurement Protocol
              (TWAMP)", RFC 8186, DOI 10.17487/RFC8186, June 2017,
              <https://www.rfc-editor.org/info/rfc8186>.

Gandhi, et al.          Expires September 2, 2020              [Page 30]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.

   [RFC8321]  Fioccola, G., Ed., Capello, A., Cociglio, M., Castaldelli,
              L., Chen, M., Zheng, L., Mirsky, G., and T. Mizrahi,
              "Alternate-Marking Method for Passive and Hybrid
              Performance Monitoring", RFC 8321, DOI 10.17487/RFC8321,
              January 2018, <https://www.rfc-editor.org/info/rfc8321>.

   [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
              Decraene, B., Litkowski, S., and R. Shakir, "Segment
              Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
              July 2018, <https://www.rfc-editor.org/info/rfc8402>.

   [I-D.ietf-spring-segment-routing-policy]
              Filsfils, C., Sivabalan, S., Voyer, D., Bogdanov, A., and
              P. Mattes, "Segment Routing Policy Architecture", draft-
              ietf-spring-segment-routing-policy-06 (work in progress),
              December 2019.

   [I-D.voyer-spring-sr-replication-segment]
              Voyer, D., Filsfils, C., Parekh, R., Bidgoli, H., and Z.
              Zhang, "SR Replication Segment for Multi-point Service
              Delivery", draft-voyer-spring-sr-replication-segment-02
              (work in progress), November 2019.

   [I-D.ietf-spring-mpls-path-segment]
              Cheng, W., Li, H., Chen, M., Gandhi, R., and R. Zigler,
              "Path Segment in MPLS Based Segment Routing Network",
              draft-ietf-spring-mpls-path-segment-02 (work in progress),
              February 2020.

   [I-D.ietf-6man-segment-routing-header]
              Filsfils, C., Dukes, D., Previdi, S., Leddy, J.,
              Matsushima, S., and D. Voyer, "IPv6 Segment Routing Header
              (SRH)", draft-ietf-6man-segment-routing-header-26 (work in
              progress), October 2019.

   [I-D.ietf-spring-srv6-network-programming]
              Filsfils, C., Camarillo, P., Leddy, J., Voyer, D.,
              Matsushima, S., and Z. Li, "SRv6 Network Programming",
              draft-ietf-spring-srv6-network-programming-10 (work in
              progress), February 2020.

Gandhi, et al.          Expires September 2, 2020              [Page 31]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   [I-D.ietf-pce-binding-label-sid]
              Sivabalan, S., Filsfils, C., Tantsura, J., Hardwick, J.,
              Previdi, S., and C. Li, "Carrying Binding Label/Segment-ID
              in PCE-based Networks.", draft-ietf-pce-binding-label-
              sid-01 (work in progress), November 2019.

   [BBF.TR-390]
              "Performance Measurement from IP Edge to Customer
              Equipment using TWAMP Light", BBF TR-390, May 2017.

   [I-D.gandhi-spring-ioam-sr-mpls]
              Gandhi, R., Ali, Z., Filsfils, C., Brockners, F., Wen, B.,
              and V. Kozak, "Segment Routing with MPLS Data Plane
              Encapsulation for In-situ OAM Data", draft-gandhi-spring-
              ioam-sr-mpls-02 (work in progress), August 2019.

   [I-D.ali-spring-ioam-srv6]
              Ali, Z., Gandhi, R., Filsfils, C., Brockners, F., Kumar,
              N., Pignataro, C., Li, C., Chen, M., and G. Dawra,
              "Segment Routing Header encapsulation for In-situ OAM
              Data", draft-ali-spring-ioam-srv6-02 (work in progress),
              November 2019.

   [I-D.ietf-pce-sr-bidir-path]
              Li, C., Chen, M., Cheng, W., Gandhi, R., and Q. Xiong,
              "PCEP Extensions for Associated Bidirectional Segment
              Routing (SR) Paths", draft-ietf-pce-sr-bidir-path-01 (work
              in progress), February 2020.

Acknowledgments

   The authors would like to thank Thierry Couture for the discussions
   on the use-cases for TWAMP Light in Segment Routing.  The authors
   would also like to thank Greg Mirsky for reviewing this document and
   providing useful comments and suggestions.  Patrick Khordoc and Radu
   Valceanu, both from Cisco Systems have helped significantly improve
   the mechanisms defined in this document.  The authors would like to
   acknowledge the earlier work on the loss measurement using TWAMP
   described in draft-xiao-ippm-twamp-ext-direct-loss.  The authors
   would also like to thank Sam Aldrin for the discussions to check for
   broken path.

Authors' Addresses

Gandhi, et al.          Expires September 2, 2020              [Page 32]
Internet-Draft       TWAMP Light for Segment Routing          March 2020

   Rakesh Gandhi (editor)
   Cisco Systems, Inc.
   Canada

   Email: rgandhi@cisco.com

   Clarence Filsfils
   Cisco Systems, Inc.

   Email: cfilsfil@cisco.com

   Daniel Voyer
   Bell Canada

   Email: daniel.voyer@bell.ca

   Mach(Guoyi) Chen
   Huawei

   Email: mach.chen@huawei.com

   Bart Janssens
   Colt

   Email: Bart.Janssens@colt.net

Gandhi, et al.          Expires September 2, 2020              [Page 33]