Threshold Modes in Elliptic Curves
draft-hallambaker-threshold-09
Document | Type |
Expired Internet-Draft
(individual)
Expired & archived
|
|
---|---|---|---|
Author | Phillip Hallam-Baker | ||
Last updated | 2023-12-30 (Latest revision 2023-06-28) | ||
RFC stream | (None) | ||
Intended RFC status | (None) | ||
Formats | |||
Stream | Stream state | (No stream defined) | |
Consensus boilerplate | Unknown | ||
RFC Editor Note | (None) | ||
IESG | IESG state | Expired | |
Telechat date | (None) | ||
Responsible AD | (None) | ||
Send notices to | (None) |
This Internet-Draft is no longer active. A copy of the expired Internet-Draft is available in these formats:
Abstract
Threshold cryptography operation modes are described with application to the Ed25519, Ed448, X25519 and X448 Elliptic Curves. Threshold key generation allows generation of keypairs to be divided between two or more parties with verifiable security guaranties. Threshold decryption allows elliptic curve key agreement to be divided between two or more parties such that all the parties must co-operate to complete a private key agreement operation. The same primitives may be applied to improve resistance to side channel attacks. A Threshold signature scheme is described in a separate document. https://mailarchive.ietf.org/arch/browse/cfrg/ (http://whatever)Discussion of this draft should take place on the CFRG mailing list (cfrg@irtf.org), which is archived at .
Authors
(Note: The e-mail addresses provided for the authors of this Internet-Draft may no longer be valid.)