Skip to main content

BRSKI-AE: Alternative Enrollment Protocols in BRSKI
draft-ietf-anima-brski-ae-10

Document Type Active Internet-Draft (anima WG)
Authors David von Oheimb , Steffen Fries , Hendrik Brockhaus
Last updated 2024-05-01 (Latest revision 2024-03-01)
Replaces draft-ietf-anima-brski-async-enroll
RFC stream Internet Engineering Task Force (IETF)
Intended RFC status Proposed Standard
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Toerless Eckert
Shepherd write-up Show Last changed 2023-12-21
IESG IESG state AD Evaluation
Action Holder
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Mahesh Jethanandani
Send notices to tte@cs.fau.de
draft-ietf-anima-brski-ae-10
ANIMA WG                                              D. von Oheimb, Ed.
Internet-Draft                                                  S. Fries
Intended status: Standards Track                            H. Brockhaus
Expires: 2 September 2024                                        Siemens
                                                            1 March 2024

          BRSKI-AE: Alternative Enrollment Protocols in BRSKI
                      draft-ietf-anima-brski-ae-10

Abstract

   This document defines an enhancement of Bootstrapping Remote Secure
   Key Infrastructure (BRSKI, RFC 8995).  It supports alternative
   certificate enrollment protocols, such as CMP, that use authenticated
   self-contained signed objects for certification messages.

   This offers the following advantages.  The origin of requests and
   responses can be authenticated independently of message transfer.
   This supports end-to-end authentication (proof of origin) also over
   multiple hops, as well as asynchronous operation of certificate
   enrollment.  This in turn provides architectural flexibility where
   and when to ultimately authenticate and authorize certification
   requests while retaining full-strength integrity and authenticity of
   certification requests.

About This Document

   This note is to be removed before publishing as an RFC.

   Status information for this document may be found at
   https://datatracker.ietf.org/doc/draft-ietf-anima-brski-ae/.

   Source for this draft and an issue tracker can be found at
   https://github.com/anima-wg/anima-brski-ae.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

von Oheimb, et al.      Expires 2 September 2024                [Page 1]
Internet-Draft                  BRSKI-AE                      March 2024

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Supported Scenarios . . . . . . . . . . . . . . . . . . .   4
     1.2.  List of Application Examples  . . . . . . . . . . . . . .   5
   2.  Terminology and abbreviations . . . . . . . . . . . . . . . .   6
   3.  Basic Requirements and Mapping to Solutions . . . . . . . . .   7
     3.1.  Solution Options for Proof of Possession  . . . . . . . .   8
     3.2.  Solution Options for Proof of Identity  . . . . . . . . .   8
   4.  Adaptations to BRSKI  . . . . . . . . . . . . . . . . . . . .  10
     4.1.  Architecture  . . . . . . . . . . . . . . . . . . . . . .  11
     4.2.  Message Exchange  . . . . . . . . . . . . . . . . . . . .  15
       4.2.1.  Pledge - Registrar Discovery  . . . . . . . . . . . .  15
       4.2.2.  Pledge - Registrar - MASA Voucher Exchange  . . . . .  15
       4.2.3.  Pledge - Registrar - MASA Voucher Status Telemetry  .  15
       4.2.4.  Pledge - Registrar - RA/CA Certificate Enrollment . .  16
       4.2.5.  Pledge - Registrar Enrollment Status Telemetry  . . .  19
     4.3.  Enhancements to the Endpoint Addressing Scheme of
           BRSKI . . . . . . . . . . . . . . . . . . . . . . . . . .  19
   5.  Instantiation to Existing Enrollment Protocols  . . . . . . .  21
     5.1.  BRSKI-CMP: Instantiation to CMP . . . . . . . . . . . . .  21
     5.2.  Support of Other Enrollment Protocols . . . . . . . . . .  23
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  23
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  23
   8.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  24
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  25
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  25

von Oheimb, et al.      Expires 2 September 2024                [Page 2]
Internet-Draft                  BRSKI-AE                      March 2024

     9.2.  Informative References  . . . . . . . . . . . . . . . . .  25
   Appendix A.  Application Examples . . . . . . . . . . . . . . . .  28
     A.1.  Rolling Stock . . . . . . . . . . . . . . . . . . . . . .  28
     A.2.  Building Automation . . . . . . . . . . . . . . . . . . .  29
     A.3.  Substation Automation . . . . . . . . . . . . . . . . . .  29
     A.4.  Electric Vehicle Charging Infrastructure  . . . . . . . .  30
     A.5.  Infrastructure Isolation Policy . . . . . . . . . . . . .  30
     A.6.  Sites with Insufficient Level of Operational Security . .  30
   Appendix B.  History of Changes TBD RFC Editor: please delete . .  31
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  40
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  40

1.  Introduction

   BRSKI [RFC8995] is typically used with Enrollment over Secure
   Transport (EST, [RFC7030]) as the enrollment protocol for device
   certificates employing HTTP over TLS for its message transfer.
   BRSKI-AE is a variant using alternative enrollment protocols with
   authenticated self-contained objects for device certificate
   enrollment.

   This specification carries over the main characteristics of BRSKI,
   namely:

   *  The pledge is assumed to have received its Initial Device
      IDentifier (IDevID, [IEEE_802.1AR-2018]) credentials during its
      production.  It uses them to authenticate itself to the
      Manufacturer Authorized Signing Authority (MASA, [RFC8995]), and
      to the registrar, which is the access point of the target domain,
      and to possibly further components of the domain where it will be
      operated.

   *  The pledge first obtains via the voucher [RFC8366] exchange a
      trust anchor for authenticating entities in the domain such as the
      domain registrar.

   *  The pledge then obtains its Locally significant Device IDentifier
      (IDevID, [IEEE_802.1AR-2018]).  To this end, the pledge generates
      a private key, called LDevID secret, and requests via the domain
      registrar from the PKI of its new domain a domain-specific device
      certificate, called LDevID certificate.  On success it receives
      the LDevID certificate along with its certificate chain.

   The goals of BRSKI-AE are to provide an enhancement of BRSKI for
   LDevID certificate enrollment using, alternatively to EST, a protocol
   that

   *  supports end-to-end authentication over multiple hops

von Oheimb, et al.      Expires 2 September 2024                [Page 3]
Internet-Draft                  BRSKI-AE                      March 2024

   *  enables secure message exchange over any kind of transfer,
      including asynchronous delivery.

   Note: The BRSKI voucher exchange of the pledge with the registrar and
   MASA uses authenticated self-contained objects, so the voucher
   exchange already has these properties.

   The well-known URI approach of BRSKI and EST messages is extended
   with an additional path element indicating the enrollment protocol
   being used.

   Based on the definition of the overall approach and specific
   endpoints, this specification enables the registrar to offer multiple
   enrollment protocols, from which pledges and their developers can
   then pick the most suitable one.

   Note: BRSKI (RFC 8995) specifies how to use HTTP over TLS, but
   further variants are known, such as Constrained BRSKI
   [I-D.ietf-anima-constrained-voucher] using CoAP over DTLS.  In the
   sequel, 'HTTP' and 'TLS' are just references to the most common case,
   where variants such as using CoAP and/or DTLS are meant to be
   subsumed - the differences are not relevant here.

   This specification is sufficient together with its references to
   support BRSKI with the Certificate Management Protocol (CMP,
   [RFC9480]) profiled in the Lightweight CMP Profile (LCMPP,
   [RFC9483]).  Combining BRSKI with a protocol or profile other than
   LCMPP will require additional IANA registrations based on the rules
   specified in this document.  It may also require additional
   specifications for details of the protocol or profile (similar to
   [RFC9483]), which are outside the scope of this document.

1.1.  Supported Scenarios

   BRSKI-AE is intended to be used situations like the following.

   *  pledges and/or the target domain reusing an already established
      certificate enrollment protocol different from EST, such as CMP.

   *  scenarios indirectly excluding the use of EST for certificate
      enrollment, such as:

      -  the registration Authority (RA) not being co-located with the
         registrar while requiring end-to-end authentication of
         requesters, which EST does not support over multiple hops

von Oheimb, et al.      Expires 2 September 2024                [Page 4]
Internet-Draft                  BRSKI-AE                      March 2024

      -  the RA or certification authority (CA) operator requiring
         auditable proof of origin for Certificate Signing Requests
         (CSRs), which is not possible with the transient source
         authentication provided by TLS.

      -  certificate requests for types of keys that do not support
         signing, such as Key Encapsulation Mechanism (KEM) and key
         agreement keys, which is not supported by EST because it uses
         CSR in PKCS #10 [RFC2986] format expecting proof-of-possession
         via a self-signature

      -  pledge implementations using security libraries not providing
         EST support or a TLS library that does not support providing
         the so-called tls-unique value [RFC5929] needed by EST for
         strong binding of the source authentication

   *  no full RA functionality being available on-site in the target
      domain, while connectivity to an off-site RA may be intermittent
      or entirely offline.

   *  authoritative actions of a local RA at the registrar being not
      sufficient for fully and reliably authorizing pledge certification
      requests, which may be due to missing data access or due to an
      insufficient level of security, for instance regarding the local
      storage of private keys

1.2.  List of Application Examples

   Bootstrapping can be handled in various ways, depending on the
   application domains.  The informative Appendix A provides
   illustrative examples from various industrial control system
   environments and operational setups.  They motivate the support of
   alternative enrollment protocols, based on the following examples of
   operational environments:

   *  rolling stock

   *  building automation

   *  electrical substation automation

   *  electric vehicle charging infrastructures

   *  infrastructure isolation policy

   *  sites with insufficient level of operational security

von Oheimb, et al.      Expires 2 September 2024                [Page 5]
Internet-Draft                  BRSKI-AE                      March 2024

2.  Terminology and abbreviations

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This document relies on the terminology defined in [RFC8995],
   [RFC5280], and [IEEE_802.1AR-2018].  The following terms are
   described partly in addition.

   asynchronous communication:  time-wise interrupted delivery of
      messages, here between a pledge and the registrar or an RA

   authenticated self-contained object:  data structure that is
      cryptographically bound to the identity of its originator by an
      attached digital signature on the actual object, using a private
      key of the originator such as the IDevID secret.

   backend:  placement of a domain component separately from the domain
      registrar; may be on-site or off-site

   BRSKI:  Bootstrapping Remote Secure Key Infrastructure [RFC8995]

   BRSKI-AE:  BRSKI with *A*lternative *E*nrollment, a variation of
      BRSKI [RFC8995] in which BRSKI-EST, the enrollment protocol
      between pledge and the registrar, is replaced by enrollment
      protocols that support end-to-end authentication of the pledge to
      the RA, such as Lightweight CMP (see LCMPP).

   CMP:  Certificate Management Protocol [RFC9480]

   CSR:  Certificate Signing Request

   EST:  Enrollment over Secure Transport [RFC7030]

   IDevID:  Initial Device IDentifier of a pledge, provided by the
      manufacturer and comprising a private key and the related X.509
      certificate with its chain

   LDevID:  Locally significant Device IDentifier of a pledge, provided
      by its target domain and comprising a private key and the related
      X.509 certificate with its chain

   local RA (LRA):  a subordinate RA that is close to entities being

von Oheimb, et al.      Expires 2 September 2024                [Page 6]
Internet-Draft                  BRSKI-AE                      March 2024

      enrolled and separate from a subsequent RA.  In BRSKI-AE it is
      needed if a backend RA is used, and in this case the LRA is co-
      located with the registrar.

   LCMPP:  Lightweight CMP Profile [RFC9483]

   MASA:  Manufacturer Authorized Signing Authority

   on-site:  locality of a component or service or functionality at the
      site of the registrar

   off-site:  locality of component or service or functionality, such as
      RA or CA, not at the site of the registrar.  This may be a central
      site or a cloud service, to which connection may be intermittent.

   pledge:  device that is to be bootstrapped into a target domain.  It
      requests an LDevID using IDevID credentials installed by its
      manufacturer.

   RA:  Registration Authority, the PKI component to which a CA
      typically delegates certificate management functions such as
      authenticating pledges and performing authorization checks on
      certification requests

   registrar:  short for domain registrar

   site:  the locality where an entity, such as a pledge, registrar, or
      PKI component is deployed.  The target domain may have multiple
      sites.

   synchronous communication:  time-wise uninterrupted delivery of
      messages, here between a pledge and a registrar or PKI component

   target domain:  the domain that a pledge is going to be bootstrapped
      into

3.  Basic Requirements and Mapping to Solutions

   Based on the intended target scenarios described in Section 1.1 and
   the application examples described in Appendix A, the following
   requirements are derived to support authenticated self-contained
   objects as containers carrying certification requests.

   At least the following properties are required for a certification
   request:

von Oheimb, et al.      Expires 2 September 2024                [Page 7]
Internet-Draft                  BRSKI-AE                      March 2024

   *  Proof of possession: demonstrates access to the private key
      corresponding to the public key contained in a certification
      request.  This is typically achieved by a self-signature using the
      corresponding private key but can also be achieved indirectly, see
      [RFC4210], Section 4.3.

   *  Proof of identity, also called proof of origin: provides data
      origin authentication of the certification request.  Typically
      this is achieved by a signature using the pledge IDevID secret
      over some data, which needs to include a sufficiently strong
      identifier of the pledge, such as the device serial number
      typically included in the subject of the IDevID certificate.

   The rest of this section gives an non-exhaustive list of solution
   examples, based on existing technology described in IETF documents:

3.1.  Solution Options for Proof of Possession

   Certificate signing request (CSR) objects: CSRs are data structures
   protecting only the integrity of the contained data and providing
   proof of possession for a (locally generated) private key.  Important
   types of CSR data structures are:

   *  PKCS #10 [RFC2986].  This very common form of CSR is self-signed
      to protect its integrity and to prove possession of the private
      key that corresponds to the public key included in the request.

   *  Certificate Request Message Format (CRMF, [RFC4211]).  This less
      common but more general CSR format supports several ways of
      integrity protection and proof of possession- Typically a self-
      signature is used generated over (part of) the structure with the
      private key corresponding to the included public key.  CRMF also
      supports further proof-of-possession methods for types of keys
      that do not have signing capability.  For details see [RFC4211],
      Section 4.

   Note: The integrity protection of CSRs includes the public key
   because it is part of the data signed by the corresponding private
   key.  Yet this signature does not provide data origin authentication,
   i.e., proof of identity of the requester because the key pair
   involved is fresh.

3.2.  Solution Options for Proof of Identity

   Binding a certificate signing request (CSR) to an existing
   authenticated credential (the BRSKI context, the IDevID certificate)
   enables proof of origin, which in turn supports an authorization
   decision on the CSR.

von Oheimb, et al.      Expires 2 September 2024                [Page 8]
Internet-Draft                  BRSKI-AE                      March 2024

   The binding of data origin authentication to the CSR is typically
   delegated to the protocol used for certificate management.  This
   binding may be achieved through security options in an underlying
   transport protocol such as TLS if the authorization of the
   certification request is (sufficiently) done at the next
   communication hop.  Depending on the key type, the binding can also
   be done in a stronger, transport-independent way by wrapping the CSR
   with a signature.

   This requirement is addressed by existing enrollment protocols in
   various ways, such as:

   *  EST [RFC7030], also its variant EST-coaps [RFC9148], utilizes PKCS
      #10 to encode Certificate Signing Requests (CSRs).  While such a
      CSR was not designed to include a proof of origin, there is a
      limited, indirect way of binding it to the source authentication
      of the underlying TLS session.  This is achieved by including in
      the CSR the tls-unique value [RFC5929] resulting from the TLS
      handshake.  As this is optionally supported by the EST
      "/simpleenroll" endpoint used in BRSKI and the TLS handshake
      employed in BRSKI includes certificate-based client authentication
      of the pledge with its IDevID credentials, the proof of pledge
      identity being an authenticated TLS client can be bound to the
      CSR.

      Yet this binding is only valid in the context of the TLS session
      established with the registrar acting as the EST server and
      typically also as an RA.  So even such a cryptographic binding of
      the authenticated pledge identity to the CSR is not visible nor
      verifiable to authorization points outside the registrar, such as
      a (second) RA in the backend.  What the registrar must do is to
      authenticate and pre-authorize the pledge and to indicate this to
      the (second) RA by signing the forwarded certificate request with
      its private key and a related certificate that has the id-kp-cmcRA
      extended key usage attribute.

      [RFC7030], Section 2.5 sketches wrapping PKCS #10-formatted CSRs
      with a Full PKI Request message sent to the "/fullcmc" endpoint.
      This would allow for source authentication at message level, such
      that the registrar could forward it to external RAs in a
      meaningful way.  This approach is so far not sufficiently
      described and likely has not been implemented.

von Oheimb, et al.      Expires 2 September 2024                [Page 9]
Internet-Draft                  BRSKI-AE                      March 2024

   *  SCEP [RFC8894] supports using a shared secret (passphrase) or an
      existing certificate to protect CSRs based on SCEP Secure Message
      Objects using CMS wrapping ([RFC5652]).  Note that the wrapping
      using an existing IDevID in SCEP is referred to as 'renewal'.
      This way SCEP does not rely on the security of the underlying
      message transfer.

   *  CMP [RFC4210] [RFC9480] supports using a shared secret
      (passphrase) or an existing certificate, which may be an IDevID
      credential, to authenticate certification requests via the
      PKIProtection structure in a PKIMessage.  The certification
      request is typically encoded utilizing CRMF, while PKCS #10 is
      supported as an alternative.  Thus, CMP does not rely on the
      security of the underlying message transfer.

   *  CMC [RFC5272] also supports utilizing a shared secret (passphrase)
      or an existing certificate to protect certification requests,
      which can be either in CRMF or PKCS #10 structure.  The proof of
      identity can be provided as part of a FullCMCRequest, based on CMS
      [RFC5652] and signed with an existing IDevID secret.  Thus also
      CMC does not rely on the security of the underlying message
      transfer.

   To sum up, EST does not meet the requirements for authenticated self-
   contained objects, but SCEP, CMP, and CMC do.  This document
   primarily focuses on CMP as it has more industrial relevance than CMC
   and SCEP has issues not detailed here.

4.  Adaptations to BRSKI

   To enable using alternative certificate enrollment protocols
   supporting end-to-end authentication, asynchronous enrollment, and
   more general system architectures, BRSKI-AE provides some
   generalizations on BRSKI [RFC8995].  This way, authenticated self-
   contained objects such as those described in Section 3 above can be
   used for certificate enrollment, and RA functionality can be
   distributed freely in the target domain.

   The enhancements needed are kept to a minimum in order to ensure
   reuse of already defined architecture elements and interactions.  In
   general, the communication follows the BRSKI model and utilizes the
   existing BRSKI architecture elements.  In particular, the pledge
   initiates communication with the domain registrar and interacts with
   the MASA as usual for voucher request and response processing.

von Oheimb, et al.      Expires 2 September 2024               [Page 10]
Internet-Draft                  BRSKI-AE                      March 2024

4.1.  Architecture

   The key element of BRSKI-AE is that the authorization of a
   certification request MUST be performed based on an authenticated
   self-contained object.  The certification request is bound in a self-
   contained way to a proof of origin based on the IDevID credentials.
   Consequently, the certification request may be transferred using any
   mechanism or protocol.  Authentication and authorization of the
   certification request can be done by the domain registrar and/or by
   backend domain components.  As mentioned in Section 1.1, these
   components may be offline or off-site.  The registrar and other on-
   site domain components may have no or only temporary (intermittent)
   connectivity to them.

   This leads to generalizations in the placement and enhancements of
   the logical elements as shown in Figure 1.

von Oheimb, et al.      Expires 2 September 2024               [Page 11]
Internet-Draft                  BRSKI-AE                      March 2024

                                            +------------------------+
      +--------------Drop-Ship--------------| Vendor Service         |
      |                                     +------------------------+
      |                                     | M anufacturer|         |
      |                                     | A uthorized  |Ownership|
      |                                     | S igning     |Tracker  |
      |                                     | A uthority   |         |
      |                                     +--------------+---------+
      |                                                      ^
      |                                                      |
      V                                                      |
   +--------+     .........................................  |
   |        |     .                                       .  | BRSKI-
   |        |     .  +-------+          +--------------+  .  | MASA
   | Pledge |     .  | Join  |          | Domain       |<----+
   |        |<------>| Proxy |<-------->| Registrar w/ |  .
   |        |     .  |.......|          | LRA or RA    |  .
   | IDevID |     .  +-------+          +--------------+  .
   |        |   BRSKI-AE over TLS                ^        .
   +--------+   using, e.g., [LCMPP]             |        .
                  .                              |        .
                  ...............................|.........
               on-site (local) domain components |
                                                 | e.g., [LCMPP]
                                                 |
    .............................................|..................
    . Public-Key Infrastructure                  v                 .
    . +---------+     +------------------------------------------+ .
    . |         |<----+   Registration Authority                 | .
    . |    CA   +---->|   RA (unless part of Domain Registrar)   | .
    . +---------+     +------------------------------------------+ .
    ................................................................
            backend (central or off-site) domain components

        Figure 1: Architecture Overview Using Backend PKI Components

   The architecture overview in Figure 1 has the same logical elements
   as BRSKI, but with more flexible placement of the authentication and
   authorization checks on certification requests.  Depending on the
   application scenario, the registrar MAY still do all of these checks
   (as is the case in BRSKI), or part of them.

   The following list describes the on-site components in the target
   domain of the pledge shown in Figure 1.

   *  Join Proxy: same requirements as in BRSKI, see [RFC8995],
      Section 4

von Oheimb, et al.      Expires 2 September 2024               [Page 12]
Internet-Draft                  BRSKI-AE                      March 2024

   *  Domain Registrar including LRA or RA functionality: in BRSKI-AE,
      the domain registrar has mostly the same functionality as in
      BRSKI, namely to act as the gatekeeper of the domain for
      onboarding new devices and to facilitate the communication of
      pledges with their MASA and the domain PKI.  Yet there are some
      generalizations and specific requirements:

      1.  The registrar MUST support at least one certificate enrollment
          protocol with authenticated self-contained objects for
          certification requests.  To this end, the URI scheme for
          addressing endpoints at the registrar is generalized (see
          Section 4.3).

      2.  Rather than having full RA functionality, the registrar MAY
          act as a local registration authority (LRA) and delegate part
          of its involvement in certificate enrollment to a backend RA,
          called RA.  In such scenarios the registrar optionally checks
          certification requests it receives from pledges and forwards
          them to the RA.  The RA performs the remaining parts of the
          enrollment request validation and authorization.  Note that to
          this end the RA may need information regarding the
          authorization of pledges from the registrar or from other
          sources.  On the way back, the registrar forwards responses by
          the PKI to the pledge on the same channel.

          Note: In order to support end-to-end authentication of the
          pledge across the registrar to the RA, the certification
          request structure signed by the pledge needs to be retained by
          the registrar, and the registrar cannot use for its
          communication with the PKI a enrollment protocol different to
          the one used by the pledge.

      3.  The use of a certificate enrollment protocol with
          authenticated self-contained objects gives freedom how to
          transfer enrollment messages between pledge and RA.
          Regardless how this transfer is protected and how messages are
          routed, also in case that the RA is not part of the registrar
          it MUST be guaranteed, like in BRSKI, that the RA accepts
          certification requests for LDevIDs only with the consent of
          the registrar.  See Section 7 for details how this can be
          achieved.

   Despite of the above generalizations to the enrollment phase, the
   final step of BRSKI, namely the enrollment status telemetry, is kept
   as it is.

   The following list describes the components provided by the vendor or
   manufacturer outside the target domain.

von Oheimb, et al.      Expires 2 September 2024               [Page 13]
Internet-Draft                  BRSKI-AE                      March 2024

   *  MASA: functionality as described in BRSKI [RFC8995].  The voucher
      exchange with the MASA via the domain registrar is performed as
      described in BRSKI.

      Note: From the definition of the interaction with the MASA in
      [RFC8995], Section 5 follows that it may be synchronous (using
      voucher request with nonces) or asynchronous (using nonceless
      voucher requests).

   *  Ownership tracker: as defined in BRSKI.

   The following list describes backend target domain components, which
   may be located on-site or off-site in the target domain.

   *  RA: performs centralized certificate management functions as a
      public-key infrastructure for the domain operator.  As far as not
      already done by the domain registrar, it performs the final
      validation and authorization of certification requests.
      Otherwise, the RA co-located with the domain registrar directly
      connects to the CA.

   *  CA, also called domain CA: generates domain-specific certificates
      according to certification requests that have been authenticated
      and authorized by the registrar and/or and an extra RA.

   Based on the diagram in BRSKI [RFC8995], Section 2.1 and the
   architectural changes, the original protocol flow is divided into
   several phases showing commonalities and differences to the original
   approach as follows.

   *  Discovery phase: mostly as in BRSKI step (1).  For details see
      Section 4.2.1.

   *  Identification phase: same as in BRSKI step (2).

   *  Voucher exchange phase: same as in BRSKI steps (3) and (4).

   *  Voucher status telemetry: same as in BRSKI directly after step
      (4).

   *  Certificate enrollment phase: the use of EST in step (5) is
      changed to employing a certificate enrollment protocol that uses
      an authenticated self-contained object for requesting the LDevID
      certificate.

      For transporting the certificate enrollment request and response
      messages, the (D)TLS channel established between pledge and
      registrar is RECOMMENDED to use.  To this end, the enrollment

von Oheimb, et al.      Expires 2 September 2024               [Page 14]
Internet-Draft                  BRSKI-AE                      March 2024

      protocol, the pledge, and the registrar need to support the usage
      of the existing channel for certificate enrollment.  Due to this
      recommended architecture, typically the pledge does not need to
      establish additional connections for certificate enrollment and
      the registrar retains full control over the certificate enrollment
      traffic.

   *  Enrollment status telemetry: the final exchange of BRSKI step (5).

4.2.  Message Exchange

   The behavior of a pledge described in BRSKI [RFC8995], Section 2.1 is
   kept, with one major exception.  After finishing the Imprint step
   (4), the Enroll step (5) MUST be performed with an enrollment
   protocol utilizing authenticated self-contained objects, as explained
   in Section 3.  Section 5 discusses selected suitable enrollment
   protocols and options applicable.

   An abstract overview of the BRSKI-AE protocol can be found at
   [BRSKI-AE-overview].

4.2.1.  Pledge - Registrar Discovery

   Discovery as specified in BRSKI [RFC8995], Section 4 does not support
   discovery of registrars with enhanced feature sets.  A pledge cannot
   find out in this way whether discovered registrars support the
   certificate enrollment protocol it expects, such as CMP.

   As a more general solution, the BRSKI discovery mechanism can be
   extended to provide up-front information on the capabilities of
   registrars.  Future work such as [I-D.eckert-anima-brski-discovery]
   may provide this.

   In the absence of such a generally applicable solution, BRSKI-AE
   deployments may use their particular way of doing discovery.
   Section 5.1 defines a minimalist approach that MAY be used for CMP.

4.2.2.  Pledge - Registrar - MASA Voucher Exchange

   The voucher exchange is performed as specified in [RFC8995].

4.2.3.  Pledge - Registrar - MASA Voucher Status Telemetry

   The voucher status telemetry is performed as specified in [RFC8995],
   Section 5.7.

von Oheimb, et al.      Expires 2 September 2024               [Page 15]
Internet-Draft                  BRSKI-AE                      March 2024

4.2.4.  Pledge - Registrar - RA/CA Certificate Enrollment

   This replaces the EST integration for PKI bootstrapping described in
   [RFC8995], Section 5.9 (while [RFC8995], Section 5.9.4 remains as the
   final phase, see below).

   The certificate enrollment phase may involve transmission of several
   messages.  Details can depend on the application scenario, the
   employed enrollment protocol, and other factors.

   The only message exchange REQUIRED is for the actual certificate
   request and response.  Further message exchanges MAY be performed as
   needed.

   Note: The message exchanges marked OPTIONAL in the below Figure 2
   cover all those supported by the use of EST in BRSKI.  The last
   OPTIONAL one, namely certificate confirmation, is not supported by
   EST, but by CMP and other enrollment protocols.

von Oheimb, et al.      Expires 2 September 2024               [Page 16]
Internet-Draft                  BRSKI-AE                      March 2024

   +--------+                        +------------+       +------------+
   | Pledge |                        | Domain     |       | Operator   |
   |        |                        | Registrar  |       | RA/CA      |
   |        |                        |  (JRC)     |       | (PKI)      |
   +--------+                        +------------+       +------------+
    |                                         |                       |
    |  [OPTIONAL request of CA certificates]  |                       |
    |--------- CA Certs Request (1) --------->|                       |
    |                                         | [OPTIONAL forwarding] |
    |                                         |---CA Certs Request -->|
    |                                         |<--CA Certs Response---|
    |<-------- CA Certs Response (2) ---------|                       |
    |                                         |                       |
    |  [OPTIONAL request of attributes        |                       |
    |   to include in Certificate Request]    |                       |
    |--------- Attribute Request (3) -------->|                       |
    |                                         | [OPTIONAL forwarding] |
    |                                         |--- Attribute Req. --->|
    |                                         |<-- Attribute Resp. ---|
    |<-------- Attribute Response (4) --------|                       |
    |                                         |                       |
    |  [REQUIRED certificate request]         |                       |
    |--------- Certificate Request (5) ------>|                       |
    |                                         | [OPTIONAL forwarding] |
    |                                         |--- Certificate Req.-->|
    |                                         |<--Certificate Resp.---|
    |<-------- Certificate Response (6) ------|                       |
    |                                         |                       |
    |  [OPTIONAL certificate confirmation]    |                       |
    |--------- Certificate Confirm (7) ------>|                       |
    |                                         | [OPTIONAL forwarding] |
    |                                         |---Certificate Conf.-->|
    |                                         |<---- PKI Confirm -----|
    |<-------- PKI/Registrar Confirm (8) -----|                       |

                      Figure 2: Certificate Enrollment

   Note: Connections between the registrar and the PKI components of the
   operator (RA, CA, etc.) may be intermittent or off-line.  Messages
   should be sent as soon as sufficient transfer capacity is available.

   The label [OPTIONAL forwarding] in Figure 2 means that on receiving
   from a pledge a request message of the given type, the registrar MAY
   answer the request directly itself.  In this case, it MUST
   authenticate its responses with the same credentials as used for
   authenticating itself at TLS level for the voucher exchange.
   Otherwise the registrar MUST forward the request to the RA and
   forward any resulting response back to the pledge.

von Oheimb, et al.      Expires 2 September 2024               [Page 17]
Internet-Draft                  BRSKI-AE                      March 2024

   Note: The decision whether to forward a request or to answer it
   directly can depend on various static and dynamic factors.  They
   include the application scenario, the capabilities of the registrar
   and of the local RA possibly co-located with the registrar, the
   enrollment protocol being used, and the specific contents of the
   request.

   Note: There are several options how the registrar could be able to
   directly answer requests for CA certificates or for certificate
   request attributes.  It could cache responses obtained from the
   domain PKI and later use their contents for responding to requests
   asking for the same data.  The contents could also be explicit
   provisioned at the registrar.

   Note: Certificate requests typically need to be handled by the
   backend PKI, but the registrar can answer them directly with an error
   response in case it determines that such a request should be
   rejected, for instance because is not properly authenticated or not
   authorized.
   Also certificate confirmation messages will usually be forwarded to
   the backend PKI, but if the registrar knows that they are not needed
   or wanted there it can acknowledge such messages directly.

   The following list provides an abstract description of the flow
   depicted in Figure 2.

   *  CA Certs Request (1): The pledge optionally requests the latest
      relevant CA certificates.  This ensures that the pledge has the
      complete set of current CA certificates beyond the pinned-domain-
      cert (which is contained in the voucher and may be just the domain
      registrar certificate).

   *  CA Certs Response (2): This MUST contain any intermediate CA
      certificates that the pledge may need to validate certificates and
      MAY contain the LDevID trust anchor.

   *  Attribute Request (3): Typically, the automated bootstrapping
      occurs without local administrative configuration of the pledge.
      Nevertheless, there are cases in which the pledge may also include
      additional attributes specific to the target domain into the
      certification request.  To get these attributes in advance, the
      attribute request may be used.

      For example, [RFC8994], Section 6.11.7.2 specifies how the
      attribute request is used to signal to the pledge the acp-node-
      name field required for enrollment into an ACP domain.

von Oheimb, et al.      Expires 2 September 2024               [Page 18]
Internet-Draft                  BRSKI-AE                      March 2024

   *  Attribute Response (4): This MUST contain the attributes to be
      included in the subsequent certification request.

   *  Certificate Request (5): This MUST contain the authenticated self-
      contained object ensuring both proof of possession of the
      corresponding private key and proof of identity of the requester.

   *  Certificate Response (6): This MUST contain on success the
      requested certificate and MAY include further information, like
      certificates of intermediate CAs and any additional trust anchors.

   *  Certificate Confirm (7): An optional confirmation sent after the
      requested certificate has been received and validated.  If sent,
      it MUST contain a positive or negative confirmation by the pledge
      to the PKI whether the certificate was successfully enrolled and
      fits its needs.

   *  PKI/Registrar Confirm (8): An acknowledgment by the PKI that MUST
      be sent on reception of the Cert Confirm.

   The generic messages described above may be implemented using any
   certificate enrollment protocol that supports authenticated self-
   contained objects for the certificate request as described in
   Section 3.  Examples are available in Section 5.

   Note that the optional certificate confirmation by the pledge to the
   PKI described above is independent of the mandatory enrollment status
   telemetry done between the pledge and the registrar in the final
   phase of BRSKI-AE, described next.

4.2.5.  Pledge - Registrar Enrollment Status Telemetry

   The enrollment status telemetry is performed as specified in
   [RFC8995], Section 5.9.4.

   In BRSKI this is described as part of the certificate enrollment
   step, but due to the generalization on the enrollment protocol
   described in this document its regarded as a separate phase here.

4.3.  Enhancements to the Endpoint Addressing Scheme of BRSKI

   BRSKI-AE provides generalizations to the addressing scheme defined in
   BRSKI [RFC8995], Section 5 to accommodate alternative enrollment
   protocols that use authenticated self-contained objects for
   certification requests.  As this is supported by various existing
   enrollment protocols, they can be employed without modifications to
   existing RAs/CAs supporting the respective enrollment protocol (see
   also Section 5).

von Oheimb, et al.      Expires 2 September 2024               [Page 19]
Internet-Draft                  BRSKI-AE                      March 2024

   The addressing scheme in BRSKI for certification requests and the
   related CA certificates and CSR attributes retrieval functions uses
   the definition from EST [RFC7030], here on the example of simple
   enrollment: "/.well-known/est/simpleenroll".  This approach is
   generalized to the following notation: "/.well-known/<enrollment-
   protocol>/<request>" in which <enrollment-protocol> refers to a
   certificate enrollment protocol.  Note that enrollment is considered
   here a message sequence that contains at least a certification
   request and a certification response.  The following conventions are
   used to provide maximal compatibility with BRSKI:

   *  <enrollment-protocol>: MUST reference the protocol being used.
      Existing values include 'est' [RFC7030] as in BRSKI and 'cmp' as
      in [RFC9483] and Section 5.1 below.  Values for other existing
      protocols such as CMC and SCEP, or for newly defined protocols are
      outside the scope of this document.  For use of the <enrollment-
      protocol> and <request> URI components, they would need to be
      specified in a suitable RFC and placed into the Well-Known URIs
      registry, as for EST in [RFC7030].

   *  <request>: if present, this path component MUST describe,
      depending on the enrollment protocol being used, the operation
      requested.  Enrollment protocols are expected to define their
      request endpoints, as done by existing protocols (see also
      Section 5).

   Well-known URIs for various endpoints on the domain registrar are
   already defined as part of the base BRSKI specification or indirectly
   by EST.  In addition, alternative enrollment endpoints MAY be
   supported at the registrar.

   A pledge SHOULD use the endpoints defined for the enrollment
   protocol(s) that it is capable of and is willing to use.  It will
   recognize whether its preferred protocol or the request that it tries
   to perform is understood and supported by the domain registrar by
   sending a request to its preferred enrollment endpoint according to
   the above addressing scheme and evaluating the HTTP status code in
   the response.  If the pledge uses endpoints that are not
   standardized, it risks that the registrar does not recognize and
   accept them even if supporting the intended protocol and operation.

   The following list of endpoints provides an illustrative example for
   a domain registrar supporting several options for EST as well as for
   CMP to be used in BRSKI-AE.  The listing contains the supported
   endpoints to which the pledge may connect for bootstrapping.  This
   includes the voucher handling as well as the enrollment endpoints.
   The CMP-related enrollment endpoints are defined as well-known URIs
   in CMP Updates [RFC9480] and the Lightweight CMP Profile [RFC9483].

von Oheimb, et al.      Expires 2 September 2024               [Page 20]
Internet-Draft                  BRSKI-AE                      March 2024

     /.well-known/brski/voucherrequest
     /.well-known/brski/voucher_status
     /.well-known/brski/enrollstatus
     /.well-known/est/cacerts
     /.well-known/est/csrattrs
     /.well-known/est/fullcmc
     /.well-known/cmp/getcacerts
     /.well-known/cmp/getcertreqtemplate
     /.well-known/cmp/initialization
     /.well-known/cmp/pkcs10

5.  Instantiation to Existing Enrollment Protocols

   This section maps the generic requirements to support proof of
   possession and proof of identity to selected existing certificate
   enrollment protocols and specifies further aspects of using such
   enrollment protocols in BRSKI-AE.

5.1.  BRSKI-CMP: Instantiation to CMP

   Instead of referring to CMP as specified in [RFC4210] and [RFC9480],
   this document refers to the Lightweight CMP Profile (LCMPP) [RFC9483]
   because the subset of CMP defined there is sufficient for the
   functionality needed here.

   When using CMP, adherence to the LCMPP [RFC9483] is REQUIRED.  In
   particular, the following specific requirements apply (cf.
   Figure 2).

   *  CA Certs Request (1) and Response (2):
      Requesting CA certificates over CMP is OPTIONAL.
      If supported, it SHALL be implemented as specified in [RFC9483],
      Section 4.3.1.

   *  Attribute Request (3) and Response (4):
      Requesting certificate request attributes over CMP is OPTIONAL.
      If supported, it SHALL be implemented as specified in [RFC9483],
      Section 4.3.3.

      Alternatively, the registrar MAY modify the contents of requested
      certificate contents as specified in [RFC9483], Section 5.2.3.2.

   *  Certificate Request (5) and Response (6):
      Certificates SHALL be requested and provided as specified in the
      LCMPP [RFC9483], Section 4.1.1 (based on CRMF) or [RFC9483],
      Section 4.1.4 (based on PKCS #10).

von Oheimb, et al.      Expires 2 September 2024               [Page 21]
Internet-Draft                  BRSKI-AE                      March 2024

      Proof of possession SHALL be provided in a way suitable for the
      key type.  Proof of identity SHALL be provided by signature-based
      protection of the certification request message as outlined in
      [RFC9483], Section 3.2 using the IDevID secret.

      Note: When the registrar forwards a certification request by the
      pledge to a backend RA, the registrar is recommended to wrap the
      original certification request in a nested message signed with its
      own credentials as described in [RFC9483], Section 5.2.2.1.  This
      explicitly conveys the consent by the registrar to the RA while
      retaining the certification request with its proof of origin
      provided by the pledge signature.

      In case additional trust anchors (besides the pinned-domain-cert)
      need to be conveyed to the pledge, this SHOULD be done in the
      caPubs field of the certificate response message rather than in a
      CA Certs Response.

   *  Certificate Confirm (7) and PKI/Registrar Confirm (8):
      Explicit confirmation of new certificates to the RA/CA MAY be used
      as specified in [RFC9483], Section 4.1.1.

      Note: Independently of certificate confirmation within CMP,
      enrollment status telemetry with the registrar will be performed
      as described in BRSKI [RFC8995], Section 5.9.4.

   *  If delayed delivery of responses (for instance, to support
      asynchronous enrollment) within CMP is needed, it SHALL be
      performed as specified in Section 4.4 and Section 5.1.2 of
      [RFC9483].

   Note: The way in which messages are exchanged between the registrar
   and backend PKI components (i.e., RA or CA) is out of scope of this
   document.  Due to the general independence of CMP of message
   transfer, it can be freely chosen according to the needs of the
   application scenario (e.g., using HTTP), while security
   considerations apply, see Section 7, and guidance can be found in
   [RFC9483], Section 6.

   BRSKI-AE with CMP can also be combined with Constrained BRSKI
   [I-D.ietf-anima-constrained-voucher], using CoAP for enrollment
   message transport as described by CoAP Transport for CMP [RFC9482].
   In this scenario, of course the EST-specific parts of
   [I-D.ietf-anima-constrained-voucher] do not apply.

   For BRSKI-AE scenarios where a general solution (cf.  Section 4.2.1)
   for discovering registrars with CMP support is not available, the
   following minimalist approach MAY be used.  Perform discovery as

von Oheimb, et al.      Expires 2 September 2024               [Page 22]
Internet-Draft                  BRSKI-AE                      March 2024

   defined in BRSKI [RFC8995], Appendix B but using the service name
   "brski-registrar-cmp" (defined in Section 6) instead of "brski-
   registrar" (defined in [RFC8995], Section 8.6).  Note that this
   approach does not support join proxies.

5.2.  Support of Other Enrollment Protocols

   Further instantiations of BRSKI-AE can be done.  They are left for
   future work.

   In particular, CMC [RFC5272] (using its in-band source authentication
   options) and SCEP [RFC8894] (using its 'renewal' option) could be
   used.

   The fullCMC variant of EST sketched in [RFC7030], Section 2.5 might
   also be used here.  For EST-fullCMC further specification is
   necessary.

6.  IANA Considerations

   This document requires one IANA action: register in the Service Name
   and Transport Protocol Port Number Registry
   (https://www.iana.org/assignments/service-names-port-numbers/service-
   names-port-numbers.xhtml) the following service name.

   *Service Name:* brski-registrar-cmp
   *Transport Protocol(s):* tcp
   *Assignee:* IESG iesg@ietf.org (mailto:iesg@ietf.org)
   *Contact:* IESG iesg@ietf.org (mailto:iesg@ietf.org)
   *Description:* Bootstrapping Remote Secure Key Infrastructure
   registrar with CMP capabilities according to the Lightweight CMP
   Profile (LCMPP, [RFC9483])
   *Reference:* [THISRFC]

   Note: We chose here the suffix "cmp" rather than some other
   abbreviation like "lcmpp" mainly because this document defines the
   normative CMP instantiation of BRSKI-AE, which implies adherence to
   LCMPP being necessary and sufficient.

7.  Security Considerations

   The security considerations laid out in BRSKI [RFC8995] apply for the
   discovery and voucher exchange as well as for the status exchange
   information.

   In particular, even if the registrar delegates part or all of its RA
   role during certificate enrollment to a separate system, it still
   must be made sure that the registrar takes part in the decision on

von Oheimb, et al.      Expires 2 September 2024               [Page 23]
Internet-Draft                  BRSKI-AE                      March 2024

   accepting or declining a request to join the domain, as required in
   [RFC8995], Section 5.3.  As this pertains also to obtaining a valid
   domain-specific certificate, it must be made sure that a pledge
   cannot circumvent the registrar in the decision whether it is granted
   an LDevID certificate by the CA.  There are various ways how to
   fulfill this, including:

   *  implicit consent

   *  the registrar signals its consent to the RA out-of-band before or
      during the enrollment phase, for instance by entering the pledge
      identity in a database.

   *  the registrar provides its consent using an extra message that is
      transferred on the same channel as the enrollment messages,
      possibly in a TLS tunnel.

   *  the registrar explicitly states its consent by signing, in
      addition to the pledge, the authenticated self-contained
      certificate enrollment request message.

   Note: If EST was used, the registrar could give implicit consent on a
   certification request by forwarding the request to a PKI entity using
   a connection authenticated with a certificate containing an id-kp-
   cmcRA extension.

   When CMP is used, the security considerations laid out in the LCMPP
   [RFC9483] apply.

   Note that CMP messages are not encrypted.  This may give
   eavesdroppers insight on which devices are bootstrapped into the
   domain, and this in turn might also be used to selectively block the
   enrollment of certain devices.  To prevent this, the underlying
   message transport channel can be encrypted, for instance by employing
   TLS.  On the link between the pledge and the registrar this is easily
   achieved by reusing the existing TLS channel between them.

8.  Acknowledgments

   We thank Eliot Lear for his contributions as a co-author at an
   earlier draft stage.

   We thank Brian E.  Carpenter, Michael Richardson, and Giorgio
   Romanenghi for their input and discussion on use cases and call
   flows.

von Oheimb, et al.      Expires 2 September 2024               [Page 24]
Internet-Draft                  BRSKI-AE                      March 2024

   Moreover, we thank Toerless Eckert (document shepherd), Barry Leiba
   (SECdir review), Michael Richardson (ANIMA design team member), as
   well as Rajeev Ranjan, Rufus Buschart, Andreas Reiter, and Szofia
   Fazekas-Zisch (Siemens colleagues) for their reviews with suggestions
   for improvements.

9.  References

9.1.  Normative References

   [IEEE_802.1AR-2018]
              IEEE, "IEEE Standard for Local and Metropolitan Area
              Networks - Secure Device Identity", IEEE 802.1AR-2018,
              DOI 10.1109/IEEESTD.2018.8423794, August 2018,
              <https://ieeexplore.ieee.org/document/8423794>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/rfc/rfc2119>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/rfc/rfc5280>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

   [RFC8995]  Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
              and K. Watsen, "Bootstrapping Remote Secure Key
              Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,
              May 2021, <https://www.rfc-editor.org/rfc/rfc8995>.

   [RFC9483]  Brockhaus, H., von Oheimb, D., and S. Fries, "Lightweight
              Certificate Management Protocol (CMP) Profile", RFC 9483,
              DOI 10.17487/RFC9483, November 2023,
              <https://www.rfc-editor.org/rfc/rfc9483>.

9.2.  Informative References

von Oheimb, et al.      Expires 2 September 2024               [Page 25]
Internet-Draft                  BRSKI-AE                      March 2024

   [BRSKI-AE-overview]
              S. Fries and D. von Oheimb, "BRSKI-AE Protocol Overview",
              March 2023,
              <https://datatracker.ietf.org/meeting/116/materials/
              slides-116-anima-update-on-brski-ae-alternative-
              enrollment-protocols-in-brski-00>.  Graphics on slide 4 of
              the BRSKI-AE draft 04 status update at IETF 116.

   [I-D.eckert-anima-brski-discovery]
              Eckert, T. T., von Oheimb, D., and E. Dijk, "Discovery for
              BRSKI variations", Work in Progress, Internet-Draft,
              draft-eckert-anima-brski-discovery-01, 23 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-eckert-anima-
              brski-discovery-01>.

   [I-D.ietf-anima-constrained-voucher]
              Richardson, M., Van der Stok, P., Kampanakis, P., and E.
              Dijk, "Constrained Bootstrapping Remote Secure Key
              Infrastructure (cBRSKI)", Work in Progress, Internet-
              Draft, draft-ietf-anima-constrained-voucher-23, 10 January
              2024, <https://datatracker.ietf.org/doc/html/draft-ietf-
              anima-constrained-voucher-23>.

   [IEC-62351-9]
              International Electrotechnical Commission, "IEC 62351 -
              Power systems management and associated information
              exchange - Data and communications security - Part 9:
              Cyber security key management for power system equipment",
              IEC 62351-9, May 2017.

   [ISO-IEC-15118-2]
              International Standardization Organization / International
              Electrotechnical Commission, "ISO/IEC 15118-2 Road
              vehicles - Vehicle-to-Grid Communication Interface - Part
              2: Network and application protocol requirements", ISO/
              IEC 15118-2, April 2014.

   [NERC-CIP-005-5]
              North American Reliability Council, "Cyber Security -
              Electronic Security Perimeter", CIP 005-5, December 2013.

   [OCPP]     Open Charge Alliance, "Open Charge Point Protocol 2.0.1
              (Draft)", December 2019.

   [RFC2986]  Nystrom, M. and B. Kaliski, "PKCS #10: Certification
              Request Syntax Specification Version 1.7", RFC 2986,
              DOI 10.17487/RFC2986, November 2000,
              <https://www.rfc-editor.org/rfc/rfc2986>.

von Oheimb, et al.      Expires 2 September 2024               [Page 26]
Internet-Draft                  BRSKI-AE                      March 2024

   [RFC4210]  Adams, C., Farrell, S., Kause, T., and T. Mononen,
              "Internet X.509 Public Key Infrastructure Certificate
              Management Protocol (CMP)", RFC 4210,
              DOI 10.17487/RFC4210, September 2005,
              <https://www.rfc-editor.org/rfc/rfc4210>.

   [RFC4211]  Schaad, J., "Internet X.509 Public Key Infrastructure
              Certificate Request Message Format (CRMF)", RFC 4211,
              DOI 10.17487/RFC4211, September 2005,
              <https://www.rfc-editor.org/rfc/rfc4211>.

   [RFC5272]  Schaad, J. and M. Myers, "Certificate Management over CMS
              (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
              <https://www.rfc-editor.org/rfc/rfc5272>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/rfc/rfc5652>.

   [RFC5929]  Altman, J., Williams, N., and L. Zhu, "Channel Bindings
              for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
              <https://www.rfc-editor.org/rfc/rfc5929>.

   [RFC7030]  Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
              "Enrollment over Secure Transport", RFC 7030,
              DOI 10.17487/RFC7030, October 2013,
              <https://www.rfc-editor.org/rfc/rfc7030>.

   [RFC8366]  Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
              "A Voucher Artifact for Bootstrapping Protocols",
              RFC 8366, DOI 10.17487/RFC8366, May 2018,
              <https://www.rfc-editor.org/rfc/rfc8366>.

   [RFC8894]  Gutmann, P., "Simple Certificate Enrolment Protocol",
              RFC 8894, DOI 10.17487/RFC8894, September 2020,
              <https://www.rfc-editor.org/rfc/rfc8894>.

   [RFC8994]  Eckert, T., Ed., Behringer, M., Ed., and S. Bjarnason, "An
              Autonomic Control Plane (ACP)", RFC 8994,
              DOI 10.17487/RFC8994, May 2021,
              <https://www.rfc-editor.org/rfc/rfc8994>.

   [RFC9148]  van der Stok, P., Kampanakis, P., Richardson, M., and S.
              Raza, "EST-coaps: Enrollment over Secure Transport with
              the Secure Constrained Application Protocol", RFC 9148,
              DOI 10.17487/RFC9148, April 2022,
              <https://www.rfc-editor.org/rfc/rfc9148>.

von Oheimb, et al.      Expires 2 September 2024               [Page 27]
Internet-Draft                  BRSKI-AE                      March 2024

   [RFC9480]  Brockhaus, H., von Oheimb, D., and J. Gray, "Certificate
              Management Protocol (CMP) Updates", RFC 9480,
              DOI 10.17487/RFC9480, November 2023,
              <https://www.rfc-editor.org/rfc/rfc9480>.

   [RFC9482]  Sahni, M., Ed. and S. Tripathi, Ed., "Constrained
              Application Protocol (CoAP) Transfer for the Certificate
              Management Protocol", RFC 9482, DOI 10.17487/RFC9482,
              November 2023, <https://www.rfc-editor.org/rfc/rfc9482>.

   [UNISIG-Subset-137]
              UNISIG, "Subset-137; ERTMS/ETCS On-line Key Management
              FFFIS; V1.0.0", December 2015,
              <https://www.era.europa.eu/sites/default/files/filesystem/
              ertms/ccs_tsi_annex_a_-_mandatory_specifications/
              set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index083_-
              _subset-137_v100.pdf>.
              http://www.kmc-subset137.eu/index.php/download/

Appendix A.  Application Examples

   This informative annex provides some detail to the application
   examples listed in Section 1.2.

A.1.  Rolling Stock

   Rolling stock or railroad cars contain a variety of sensors,
   actuators, and controllers, which communicate within the railroad car
   but also exchange information between railroad cars forming a train,
   with track-side equipment, and/or possibly with backend systems.
   These devices are typically unaware of backend system connectivity.
   Enrolling certificates may be done during maintenance cycles of the
   railroad car, but can already be prepared during operation.  Such
   asynchronous enrollment will include generating certification
   requests, which are collected and later forwarded for processing
   whenever the railroad car gets connectivity with the backend PKI of
   the operator.  The authorization of the certification request is then
   done based on the operator's asset/inventory information in the
   backend.

   UNISIG has included a CMP profile for enrollment of TLS client and
   server X.509 certificates of on-board and track-side components in
   the Subset-137 specifying the ETRAM/ETCS online key management for
   train control systems [UNISIG-Subset-137].

von Oheimb, et al.      Expires 2 September 2024               [Page 28]
Internet-Draft                  BRSKI-AE                      March 2024

A.2.  Building Automation

   In building automation scenarios, a detached building or the basement
   of a building may be equipped with sensors, actuators, and
   controllers that are connected with each other in a local network but
   with only limited or no connectivity to a central building management
   system.  This problem may occur during installation time but also
   during operation.  In such a situation a service technician collects
   the necessary data and transfers it between the local network and the
   central building management system, e.g., using a laptop or a mobile
   phone.  This data may comprise parameters and settings required in
   the operational phase of the sensors/actuators, like a component
   certificate issued by the operator to authenticate against other
   components and services.

   The collected data may be provided by a domain registrar already
   existing in the local network.  In this case connectivity to the
   backend PKI may be facilitated by the service technician's laptop.
   Alternatively, the data can also be collected from the pledges
   directly and provided to a domain registrar deployed in a different
   network as preparation for the operational phase.  In this case,
   connectivity to the domain registrar may also be facilitated by the
   service technician's laptop.

A.3.  Substation Automation

   In electrical substation automation scenarios, a control center
   typically hosts PKI services to issue certificates for Intelligent
   Electronic Devices operated in a substation.  Communication between
   the substation and control center is performed through a
   proxy/gateway/DMZ, which terminates protocol flows.  Note that
   [NERC-CIP-005-5] requires inspection of protocols at the boundary of
   a security perimeter (the substation in this case).  In addition,
   security management in substation automation assumes central support
   of several enrollment protocols in order to support the various
   capabilities of IEDs from different vendors.  The IEC standard
   IEC62351-9 [IEC-62351-9] specifies for the infrastructure side
   mandatory support of two enrollment protocols: SCEP [RFC8894] and EST
   [RFC7030], while an Intelligent Electronic Device may support only
   one of them.

von Oheimb, et al.      Expires 2 September 2024               [Page 29]
Internet-Draft                  BRSKI-AE                      March 2024

A.4.  Electric Vehicle Charging Infrastructure

   For electric vehicle charging infrastructure, protocols have been
   defined for the interaction between the electric vehicle and the
   charging point (e.g., ISO 15118-2 [ISO-IEC-15118-2]) as well as
   between the charging point and the charging point operator (e.g.
   OCPP [OCPP]).  Depending on the authentication model, unilateral or
   mutual authentication is required.  In both cases the charging point
   uses an X.509 certificate to authenticate itself in TLS channels
   between the electric vehicle and the charging point.  The management
   of this certificate depends, among others, on the selected backend
   connectivity protocol.  In the case of OCPP, this protocol is meant
   to be the only communication protocol between the charging point and
   the backend, carrying all information to control the charging
   operations and maintain the charging point itself.  This means that
   the certificate management needs to be handled in-band of OCPP.  This
   requires the ability to encapsulate the certificate management
   messages in a transport-independent way.  Authenticated self-
   containment will support this by allowing the transport without a
   separate enrollment protocol, binding the messages to the identity of
   the communicating endpoints.

A.5.  Infrastructure Isolation Policy

   This refers to any case in which network infrastructure is normally
   isolated from the Internet as a matter of policy, most likely for
   security reasons.  In such a case, limited access to external PKI
   services will be allowed in carefully controlled short periods of
   time, for example when a batch of new devices is deployed, and
   forbidden or prevented at other times.

A.6.  Sites with Insufficient Level of Operational Security

   The RA performing (at least part of) the authorization of a
   certification request is a critical PKI component and therefore
   requires higher operational security than components utilizing the
   issued certificates for their security features.  CAs may also demand
   higher security in the registration procedures from RAs, which domain
   registrars with co-located RAs may not be able to fulfill.
   Especially the CA/Browser forum currently increases the security
   requirements in the certificate issuance procedures for publicly
   trusted certificates, i.e., those placed in trust stores of browsers,
   which may be used to connect with devices in the domain.  In case the
   on-site components of the target domain cannot be operated securely
   enough for the needs of an RA, this service should be transferred to
   an off-site backend component that has a sufficient level of
   security.

von Oheimb, et al.      Expires 2 September 2024               [Page 30]
Internet-Draft                  BRSKI-AE                      March 2024

Appendix B.  History of Changes TBD RFC Editor: please delete

   List of reviewers:

   *  Toerless Eckert (document shepherd)

   *  Barry Leiba (SECdir)

   *  Michael Richardson (ANIMA design team)

   *  Rajeev Ranjan, Rufus Buschart, Szofia Fazekas-Zisch, etc.
      (Siemens)

   *  YANGDOCTORS Early review of 2021-08-15
      (https://datatracker.ietf.org/doc/review-ietf-anima-brski-async-
      enroll-03-yangdoctors-early-rahman-2021-08-15/) referred to the
      PRM aspect of draft-ietf-anima-brski-async-enroll-03
      (https://datatracker.ietf.org/doc/draft-ietf-anima-brski-async-
      enroll/03/).  This has been carved out of the draft to a different
      one and thus is no more applicable here.

   IETF draft ae-09 -> ae-10:

   *  Add reference to RFC 8633 at first occurrence of 'voucher' (fixes
      #37)

   *  Update reference of CoAP Transfer for CMP from I-D to RFC 9482

   *  Move RFC 4210 and RFC 9480 references from normative to
      informative

   *  Fix p10 vs. pkcs10 entry in list of example endpoints in
      Section 4.3

   *  Minor fix in Figure 1 and few text tweaks due to Siemens-internal
      review

   *  Extend the list of reviewers and acknowledgments by two Siemens
      colleagues

   IETF draft ae-08 -> ae-09:

   *  In response to review by Toerless,

      -  tweak abstract to make meaning of 'alternative enrollment' more
         clear

von Oheimb, et al.      Expires 2 September 2024               [Page 31]
Internet-Draft                  BRSKI-AE                      March 2024

      -  expand on first use not "well-known" abbreviations, such as
         'EST',
         adding also a references on their first use

      -  add summary and reason for choosing CMP at end of Section 3.2

      -  remove paragraph on optimistic discovery in controlled
         environments

      -  mention role of reviewers also in acknowledgments section

   *  A couple of grammar and spelling fixes

   IETF draft ae-07 -> ae-08:

   *  Update references to service names in Section 5.1

   IETF draft ae-06 -> ae-07:

   *  Update subsections on discovery according to discussion in the
      design team

   *  In Section 5.1, replace 'mandatory' by 'REQUIRED' regarding
      adherence to LCMPP,
      in response to SECDIR Last Call Review of ae-06 by Barry Leiba

   IETF draft ae-05 -> ae-06:

   *  Extend section on discovery according to discussion in the design
      team

   *  Make explicit that MASA voucher status telemetry is as in BRSKI

   *  Add note that on delegation, RA may need info on pledge
      authorization

   IETF draft ae-04 -> ae-05:

   *  Remove entries from the terminology section that should be clear
      from BRSKI

   *  Tweak use of the terms IDevID and LDevID and replace PKI RA/CA by
      RA/CA

   *  Add the abbreviation 'LCMPP' for Lightweight CMP Profile to the
      terminology section

von Oheimb, et al.      Expires 2 September 2024               [Page 32]
Internet-Draft                  BRSKI-AE                      March 2024

   *  State clearly in Section 5.1 that LCMPP is mandatory when using
      CMP

   *  Change URL of BRSKI-AE-overview graphics to slide on IETF 116
      meeting material

   IETF draft ae-03 -> ae-04:

   *  In response to SECDIR Early Review of ae-03 by Barry Leiba,

      -  replace 'end-to-end security' by the more clear 'end-to-end
         authentication'

      -  restrict the meaning of the abbreviation 'AE' to 'Alternative
         Enrollment'

      -  replace 'MAY' by 'may' in requirement on delegated registrar
         actions

      -  re-phrase requirement on certificate request exchange, avoiding
         MANDATORY

      -  mention that further protocol names need be put in Well-Known
         URIs registry

      -  explain consequence of using non-standard endpoints, not
         following SHOULD

      -  remove requirement that 'caPubs' field in CMP responses SHOULD
         NOT be used

      -  add paragraph in security considerations on additional use of
         TLS for CMP

   *  In response to further internal reviews and suggestions for
      generalization,

      -  significantly cut down the introduction because the original
         motivations and most explanations are no more needed and would
         just make it lengthy to read

      -  sort out asynchronous vs. offline transfer, off-site vs.
         backend components

      -  improve description of CSRs and proof of possession vs. proof
         of origin

von Oheimb, et al.      Expires 2 September 2024               [Page 33]
Internet-Draft                  BRSKI-AE                      March 2024

      -  clarify that the channel between pledge and registrar is not
         restricted to TLS, but in connection with constrained BRSKI may
         also be DTLS.  Also move the references to Constrained BRSKI
         and CoAPS to better contexts.

      -  clarify that the registrar must not be circumvented in the
         decision to grant and LDevID, and give hints and
         recommendations how to make sure this

      -  clarify that the cert enrollment phase may involve additional
         messages and that BRSKI-AE replaces [RFC8995], Section 5.9
         (except Section 5.9.4)

      -  the certificate enrollment protocol needs to support transport
         over (D)TLS only as far as its messages are transported between
         pledge and registrar.

      -  the certificate enrollment protocol chosen between pledge and
         registrar needs to be used also for the upstream enrollment
         exchange with the PKI only if end-to-end authentication shall
         be achieved across the registrar to the PKI.

      -  add that with CMP, further trust anchors SHOULD be transported
         via caPubs

      -  remove the former Appendix A: "Using EST for Certificate
         Enrollment", moving relevant points to the list of scenarios in
         Section 1.1: "Supported Scenarios",

      -  streamline the item on EST in Section 3.2: "Solution Options
         for Proof of Identity",

      -  various minor editorial improvements like making the wording
         more consistent

   IETF draft ae-02 -> ae-03:

   *  In response to review by Toerless Eckert,

      -  many editorial improvements and clarifications as suggested,
         such as the comparison to plain BRSKI, the description of
         offline vs. synchronous message transfer and enrollment, and
         better differentiation of RA flavors.

      -  clarify that for transporting certificate enrollment messages
         between pledge and registrar, the TLS channel established
         between these two (via the join proxy) is used and the
         enrollment protocol MUST support this.

von Oheimb, et al.      Expires 2 September 2024               [Page 34]
Internet-Draft                  BRSKI-AE                      March 2024

      -  clarify that the enrollment protocol chosen between pledge and
         registrar MUST also be used for the upstream enrollment
         exchange with the PKI.

      -  extend the description and requirements on how during the
         certificate enrollment phase the registrar MAY handle requests
         by the pledge itself and otherwise MUST forward them to the PKI
         and forward responses to the pledge.

   *  Change "The registrar MAY offer different enrollment protocols" to
      "The registrar MUST support at least one certificate enrollment
      protocol ..."

   *  In response to review by Michael Richardson,

      -  slightly improve the structuring of the Message Exchange
         Section 4.2 and add some detail on the request/response
         exchanges for the enrollment phase

      -  merge the 'Enhancements to the Addressing Scheme' Section 4.3
         with the subsequent one: 'Domain Registrar Support of
         Alternative Enrollment Protocols'

      -  add reference to SZTP (RFC 8572)

      -  extend venue information

      -  convert output of ASCII-art figures to SVG format

      -  various small other text improvements as suggested/provided

   *  Remove the tentative informative instantiation to EST-fullCMC

   *  Move Eliot Lear from co-author to contributor, add him to the
      acknowledgments

   *  Add explanations for terms such as 'target domain' and 'caPubs'

   *  Fix minor editorial issues and update some external references

   IETF draft ae-01 -> ae-02:

   *  Architecture: clarify registrar role including RA/LRA/enrollment
      proxy

   *  CMP: add reference to CoAP Transport for CMPV2 and Constrained
      BRSKI

von Oheimb, et al.      Expires 2 September 2024               [Page 35]
Internet-Draft                  BRSKI-AE                      March 2024

   *  Include venue information

   From IETF draft 05 -> IETF draft ae-01:

   *  Renamed the repo and files from anima-brski-async-enroll to anima-
      brski-ae

   *  Added graphics for abstract protocol overview as suggested by
      Toerless Eckert

   *  Balanced (sub-)sections and their headers

   *  Added details on CMP instance, now called BRSKI-CMP

   From IETF draft 04 -> IETF draft 05:

   *  David von Oheimb became the editor.

   *  Streamline wording, consolidate terminology, improve grammar, etc.

   *  Shift the emphasis towards supporting alternative enrollment
      protocols.

   *  Update the title accordingly - preliminary change to be approved.

   *  Move comments on EST and detailed application examples to
      informative annex.

   *  Move the remaining text of section 3 as two new sub-sections of
      section 1.

   From IETF draft 03 -> IETF draft 04:

   *  Moved UC2-related parts defining the pledge in responder mode to a
      separate document.  This required changes and adaptations in
      several sections.  Main changes concerned the removal of the
      subsection for UC2 as well as the removal of the YANG model
      related text as it is not applicable in UC1.

   *  Updated references to the Lightweight CMP Profile (LCMPP).

   *  Added David von Oheimb as co-author.

   From IETF draft 02 -> IETF draft 03:

   *  Housekeeping, deleted open issue regarding YANG voucher-request in
      UC2 as voucher-request was enhanced with additional leaf.

von Oheimb, et al.      Expires 2 September 2024               [Page 36]
Internet-Draft                  BRSKI-AE                      March 2024

   *  Included open issues in YANG model in UC2 regarding assertion
      value agent-proximity and CSR encapsulation using SZTP sub
      module).

   From IETF draft 01 -> IETF draft 02:

   *  Defined call flow and objects for interactions in UC2.  Object
      format based on draft for JOSE signed voucher artifacts and
      aligned the remaining objects with this approach in UC2 .

   *  Terminology change: issue #2 pledge-agent -> registrar-agent to
      better underline agent relation.

   *  Terminology change: issue #3 PULL/PUSH -> pledge-initiator-mode
      and pledge-responder-mode to better address the pledge operation.

   *  Communication approach between pledge and registrar-agent changed
      by removing TLS-PSK (former section TLS establishment) and
      associated references to other drafts in favor of relying on
      higher layer exchange of signed data objects.  These data objects
      are included also in the pledge-voucher-request and lead to an
      extension of the YANG module for the voucher-request (issue #12).

   *  Details on trust relationship between registrar-agent and
      registrar (issue #4, #5, #9) included in UC2.

   *  Recommendation regarding short-lived certificates for registrar-
      agent authentication towards registrar (issue #7) in the security
      considerations.

   *  Introduction of reference to agent signing certificate using SKID
      in agent signed data (issue #11).

   *  Enhanced objects in exchanges between pledge and registrar-agent
      to allow the registrar to verify agent-proximity to the pledge
      (issue #1) in UC2.

   *  Details on trust relationship between registrar-agent and pledge
      (issue #5) included in UC2.

   *  Split of use case 2 call flow into sub sections in UC2.

   From IETF draft 00 -> IETF draft 01:

   *  Update of scope in Section 1.1 to include in which the pledge acts
      as a server.  This is one main motivation for use case 2.

von Oheimb, et al.      Expires 2 September 2024               [Page 37]
Internet-Draft                  BRSKI-AE                      March 2024

   *  Rework of use case 2 to consider the transport between the pledge
      and the pledge-agent.  Addressed is the TLS channel establishment
      between the pledge-agent and the pledge as well as the endpoint
      definition on the pledge.

   *  First description of exchanged object types (needs more work)

   *  Clarification in discovery options for enrollment endpoints at the
      domain registrar based on well-known endpoints in Section 4.3 do
      not result in additional /.well-known URIs.  Update of the
      illustrative example.  Note that the change to /brski for the
      voucher-related endpoints has been taken over in the BRSKI main
      document.

   *  Updated references.

   *  Included Thomas Werner as additional author for the document.

   From individual version 03 -> IETF draft 00:

   *  Inclusion of discovery options of enrollment endpoints at the
      domain registrar based on well-known endpoints in Section 4.3 as
      replacement of section 5.1.3 in the individual draft.  This is
      intended to support both use cases in the document.  An
      illustrative example is provided.

   *  Missing details provided for the description and call flow in
      pledge-agent use case UC2, e.g. to accommodate distribution of CA
      certificates.

   *  Updated CMP example in Section 5 to use Lightweight CMP instead of
      CMP, as the draft already provides the necessary /.well-known
      endpoints.

   *  Requirements discussion moved to separate section in Section 3.
      Shortened description of proof-of-identity binding and mapping to
      existing protocols.

   *  Removal of copied call flows for voucher exchange and registrar
      discovery flow from [RFC8995] in Section 4 to avoid doubling or
      text or inconsistencies.

   *  Reworked abstract and introduction to be more crisp regarding the
      targeted solution.  Several structural changes in the document to
      have a better distinction between requirements, use case
      description, and solution description as separate sections.
      History moved to appendix.

von Oheimb, et al.      Expires 2 September 2024               [Page 38]
Internet-Draft                  BRSKI-AE                      March 2024

   From individual version 02 -> 03:

   *  Update of terminology from self-contained to authenticated self-
      contained object to be consistent in the wording and to underline
      the protection of the object with an existing credential.  Note
      that the naming of this object may be discussed.  An alternative
      name may be attestation object.

   *  Simplification of the architecture approach for the initial use
      case having an off-site PKI.

   *  Introduction of a new use case utilizing authenticated self-
      contain objects to onboard a pledge using a commissioning tool
      containing a pledge-agent.  This requires additional changes in
      the BRSKI call flow sequence and led to changes in the
      introduction, the application example,and also in the related
      BRSKI-AE call flow.

   *  Update of provided examples of the addressing approach used in
      BRSKI to allow for support of multiple enrollment protocols in
      Section 4.3.

   From individual version 01 -> 02:

   *  Update of introduction text to clearly relate to the usage of
      IDevID and LDevID.

   *  Definition of the addressing approach used in BRSKI to allow for
      support of multiple enrollment protocols in Section 4.3.  This
      section also contains a first discussion of an optional discovery
      mechanism to address situations in which the registrar supports
      more than one enrollment approach.  Discovery should avoid that
      the pledge performs a trial and error of enrollment protocols.

   *  Update of description of architecture elements and changes to
      BRSKI in Section 4.1.

   *  Enhanced consideration of existing enrollment protocols in the
      context of mapping the requirements to existing solutions in
      Section 3 and in Section 5.

   From individual version 00 -> 01:

   *  Update of examples, specifically for building automation as well
      as two new application use cases in Appendix A.

von Oheimb, et al.      Expires 2 September 2024               [Page 39]
Internet-Draft                  BRSKI-AE                      March 2024

   *  Deletion of asynchronous interaction with MASA to not complicate
      the use case.  Note that the voucher exchange can already be
      handled in an asynchronous manner and is therefore not considered
      further.  This resulted in removal of the alternative path the
      MASA in Figure 1 and the associated description in Section 4.1.

   *  Enhancement of description of architecture elements and changes to
      BRSKI in Section 4.1.

   *  Consideration of existing enrollment protocols in the context of
      mapping the requirements to existing solutions in Section 3.

   *  New section starting Section 5 with the mapping to existing
      enrollment protocols by collecting boundary conditions.

Contributors

   Eliot Lear
   Cisco Systems
   Richtistrasse 7
   CH-8304 Wallisellen
   Switzerland
   Phone: +41 44 878 9200
   Email: lear@cisco.com

Authors' Addresses

   David von Oheimb (editor)
   Siemens AG
   Otto-Hahn-Ring 6
   81739 Munich
   Germany
   Email: david.von.oheimb@siemens.com
   URI:   https://www.siemens.com/

   Steffen Fries
   Siemens AG
   Otto-Hahn-Ring 6
   81739 Munich
   Germany
   Email: steffen.fries@siemens.com
   URI:   https://www.siemens.com/

von Oheimb, et al.      Expires 2 September 2024               [Page 40]
Internet-Draft                  BRSKI-AE                      March 2024

   Hendrik Brockhaus
   Siemens AG
   Otto-Hahn-Ring 6
   81739 Munich
   Germany
   Email: hendrik.brockhaus@siemens.com
   URI:   https://www.siemens.com/

von Oheimb, et al.      Expires 2 September 2024               [Page 41]