Controller Based BGP Multicast Signaling
draft-ietf-bess-bgp-multicast-controller-02

The information below is for an old version of the document
Document Type Active Internet-Draft (bess WG)
Authors Zhaohui Zhang  , Robert Raszuk  , Dante Pacella  , Arkadiy Gulko 
Last updated 2020-07-02 (latest revision 2020-06-09)
Stream IETF
Intended RFC status (None)
Formats pdf htmlized (tools) htmlized bibtex
Stream WG state WG Document
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
BESS                                                            Z. Zhang
Internet-Draft                                          Juniper Networks
Intended status: Standards Track                               R. Raszuk
Expires: January 3, 2021                                    Bloomberg LP
                                                              D. Pacella
                                                                 Verizon
                                                                A. Gulko
                                                         Thomson Reuters
                                                            July 2, 2020

                Controller Based BGP Multicast Signaling
              draft-ietf-bess-bgp-multicast-controller-02

Abstract

   This document specifies a way that one or more centralized
   controllers can use BGP to set up a multicast distribution tree in a
   network.  In the case of labeled tree, the labels are assigned by the
   controllers either from the controllers' local label spaces, or from
   a common Segment Routing Global Block (SRGB), or from each routers
   Segment Routing Local Block (SRLB) that the controllers learn.  In
   case of labeled unidirectional tree and label allocation from the
   common SRGB or from the controllers' local spaces, a single common
   label can be used for all routers on the tree to send and receive
   traffic with.  Since the controllers calculate the trees, they can
   use sophisticated algorithms and constraints to achieve traffic
   engineering.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

Zhang, et al.            Expires January 3, 2021                [Page 1]
Internet-Draft            bgp-mcast-controller                 July 2020

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2021.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Introduction  . . . . . . . . . . . . . . . . . . . . . .   3
     1.2.  Resilience  . . . . . . . . . . . . . . . . . . . . . . .   4
     1.3.  Signaling . . . . . . . . . . . . . . . . . . . . . . . .   5
     1.4.  Label Allocation  . . . . . . . . . . . . . . . . . . . .   5
       1.4.1.  Using a Common per-tree Label for All Routers . . . .   6
       1.4.2.  Upstream-assignment from Controller's Local Label
               Space . . . . . . . . . . . . . . . . . . . . . . . .   7
     1.5.  Determining Root/Leaves . . . . . . . . . . . . . . . . .   8
       1.5.1.  PIM-SSM/Bidir or mLDP P2MP  . . . . . . . . . . . . .   8
       1.5.2.  PIM ASM . . . . . . . . . . . . . . . . . . . . . . .   9
     1.6.  Multiple Domains  . . . . . . . . . . . . . . . . . . . .   9
   2.  Specification . . . . . . . . . . . . . . . . . . . . . . . .  10
     2.1.  Enhancements to TEA . . . . . . . . . . . . . . . . . . .  10
       2.1.1.  Any-Encapsulation Tunnel  . . . . . . . . . . . . . .  10
       2.1.2.  Load-balancing Tunnel . . . . . . . . . . . . . . . .  11
       2.1.3.  RPF Sub-TLV . . . . . . . . . . . . . . . . . . . . .  11
     2.2.  Context Label Wide Community  . . . . . . . . . . . . . .  11
     2.3.  Procedures  . . . . . . . . . . . . . . . . . . . . . . .  12
   3.  Security Considerations . . . . . . . . . . . . . . . . . . .  12
Show full document text