Data Center Benchmarking Methodology
draft-ietf-bmwg-dcbench-methodology-03
Internet Engineering Task Force L. Avramov
Internet-Draft, Intended status: Informational Google
Expires July 3, 2017 J. Rapp
December 30, 2016 VMware
Data Center Benchmarking Methodology
draft-ietf-bmwg-dcbench-methodology-03
Abstract
The purpose of this informational document is to establish test and
evaluation methodology and measurement techniques for physical
network equipment in the data center.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
Avramov & Rapp Expires July 3, 2017 [Page 1]
Internet-Draft Data Center Benchmarking Methodology April 27, 2016
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Avramov & Rapp Expires July 3, 2017 [Page 2]
Internet-Draft Data Center Benchmarking Methodology April 27, 2016
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Requirements Language . . . . . . . . . . . . . . . . . . 5
1.2. Methodology format and repeatability recommendation . . . . 5
2. Line Rate Testing . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Reporting Format . . . . . . . . . . . . . . . . . . . . . . 6
3. Buffering Testing . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Reporting format . . . . . . . . . . . . . . . . . . . . . . 10
4 Microburst Testing . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Reporting Format . . . . . . . . . . . . . . . . . . . . . . 11
5. Head of Line Blocking . . . . . . . . . . . . . . . . . . . . . 12
5.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Reporting Format . . . . . . . . . . . . . . . . . . . . . . 13
6. Incast Stateful and Stateless Traffic . . . . . . . . . . . . . 14
6.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Reporting Format . . . . . . . . . . . . . . . . . . . . . . 15
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.1. Normative References . . . . . . . . . . . . . . . . . . . 16
7.2. Informative References . . . . . . . . . . . . . . . . . . 16
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 16
1. Introduction
Traffic patterns in the data center are not uniform and are
constantly changing. They are dictated by the nature and variety of
applications utilized in the data center. It can be largely east-west
traffic flows in one data center and north-south in another, while
some may combine both. Traffic patterns can be bursty in nature and
contain many-to-one, many-to-many, or one-to-many flows. Each flow
Show full document text