Concise Encoding of Signed Merkle Tree Proofs
draft-ietf-cose-merkle-tree-proofs-02
The information below is for an old version of the document.
Document | Type |
This is an older version of an Internet-Draft whose latest revision state is "Active".
|
|
---|---|---|---|
Authors | Orie Steele , Henk Birkholz , Antoine Delignat-Lavaud , Cedric Fournet | ||
Last updated | 2023-11-17 (Latest revision 2023-10-20) | ||
Replaces | draft-steele-cose-merkle-tree-proofs | ||
RFC stream | Internet Engineering Task Force (IETF) | ||
Formats | |||
Additional resources | Mailing list discussion | ||
Stream | WG state | WG Document | |
Document shepherd | (None) | ||
IESG | IESG state | I-D Exists | |
Consensus boilerplate | Unknown | ||
Telechat date | (None) | ||
Responsible AD | (None) | ||
Send notices to | (None) |
draft-ietf-cose-merkle-tree-proofs-02
COSE O. Steele Internet-Draft Transmute Intended status: Standards Track H. Birkholz Expires: 20 May 2024 Fraunhofer SIT A. Delignat-Lavaud C. Fournet Microsoft 17 November 2023 Concise Encoding of Signed Merkle Tree Proofs draft-ietf-cose-merkle-tree-proofs-02 Abstract This specification describes verifiable data structures and associated proof types for use with COSE. The extensibility of the approach is demonstrated by providing CBOR encodings for RFC9162. Discussion Venues This note is to be removed before publishing as an RFC. Discussion of this document takes place on the CBOR Object Signing and Encryption Working Group mailing list (cose@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/cose/. Source for this draft and an issue tracker can be found at https://github.com/cose-wg/draft-ietf-cose-merkle-tree-proofs. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 20 May 2024. Steele, et al. Expires 20 May 2024 [Page 1] Internet-Draft CoMETRE November 2023 Copyright Notice Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Requirements Notation . . . . . . . . . . . . . . . . . . 3 2. CBOR Tags . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 4. Verifiable Data Structures in CBOR . . . . . . . . . . . . . 4 4.1. COSE Verifiable Data Structures . . . . . . . . . . . . . 5 4.2. COSE Verifiable Data Structure Parameters . . . . . . . . 6 4.2.1. Registration Requirements . . . . . . . . . . . . . . 7 5. RFC9162_SHA256 . . . . . . . . . . . . . . . . . . . . . . . 7 5.1. Verifiable Data Structure . . . . . . . . . . . . . . . . 8 5.2. Inclusion Proof . . . . . . . . . . . . . . . . . . . . . 8 5.2.1. Inclusion Proof Signature . . . . . . . . . . . . . . 8 5.3. Consistency Proof . . . . . . . . . . . . . . . . . . . . 10 5.3.1. Consistency Proof Signature . . . . . . . . . . . . . 10 6. Privacy Considerations . . . . . . . . . . . . . . . . . . . 12 7. Security Considerations . . . . . . . . . . . . . . . . . . . 12 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 12 9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 9.1. Additions to Existing Registries . . . . . . . . . . . . 12 9.1.1. New Entries to the COSE Header Parameters Registry . 12 9.1.2. COSE Verifiable Data Structures . . . . . . . . . . . 13 9.1.3. COSE Verifiable Data Structure Parameters . . . . . . 13 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 14 10.1. Normative References . . . . . . . . . . . . . . . . . . 14 10.2. Informative References . . . . . . . . . . . . . . . . . 15 Appendix A. Implementation Status . . . . . . . . . . . . . . . 15 A.1. Implementer . . . . . . . . . . . . . . . . . . . . . . . 16 A.2. Implementation Name . . . . . . . . . . . . . . . . . . . 16 A.3. Implementation URL . . . . . . . . . . . . . . . . . . . 16 A.4. Maturity . . . . . . . . . . . . . . . . . . . . . . . . 16 A.5. Coverage and Version Compatibility . . . . . . . . . . . 16 A.6. License . . . . . . . . . . . . . . . . . . . . . . . . . 16 Steele, et al. Expires 20 May 2024 [Page 2] Internet-Draft CoMETRE November 2023 A.7. Implementation Dependencies . . . . . . . . . . . . . . . 16 A.8. Contact . . . . . . . . . . . . . . . . . . . . . . . . . 17 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17 1. Introduction Merkle trees are one of many verifiable data structures that enable tamper evident secure information storage, through their ability to protect the integrity of batches of documents or collections of statements. Merkle trees can be constructed from simple operations such as concatenation and digest via a cryptographic hash function, however, more advanced constructions enable proofs of different properties of the underlying verifiable data structure. Verifiable data structure proofs can be used to prove a document is in a database (proof of inclusion), that a database is append only (proof of consistency), that a smaller set of statements are contained in a large set of statements (proof of disclosure, a special case of proof of inclusion), or proof that certain data is not yet present in a database (proofs of non inclusion). Differences in the representation of verifiable data structures, and verifiable data structure proof types, can increase the burden for implementers, and create interoperability challenges for transparency services. This document describes how to convey verifiable data structures, and associated proof types in COSE envelopes. 1.1. Requirements Notation The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 2. CBOR Tags This section will be removed before the document is completed, its purpose is to track the TBD code points references throughout the draft. -111 is TBD_1: A requested cose header parameter representing the verifiable data structure used. Steele, et al. Expires 20 May 2024 [Page 3] Internet-Draft CoMETRE November 2023 -222 is TBD_2: A requested cose header parameter representing the verifiable data structure parameters map (proofs map) The other codepoints are assigned from the registries established in this draft, they are therefore not marked TBD. 3. Terminology Verifiable Data Structure: A data structure which supports one or more Proof Types. Proof Type: A verifiable process, that proves properties of one or more Verifiable Data Structures. Proof Value: An encoding of a Proof Type in CBOR. Proof Signature: A COSE Sign1 encoding of a specific Proof Type for a specific Verifiable Data Structure. 4. Verifiable Data Structures in CBOR This section describes representations of verifiable data structure proofs structures in CBOR. Different verifiable data structures support the same proof types, but the representations of the proofs varies greatly. For example, construction of a merkle tree leaf, or an inclusion proof from a leaf to a merkle root, might have several different representations, depending on the verifiable data structure used. Some differences in representations are necessary to support efficient verification of different kinds of proofs and for compatibility with specific implementations. Some proof types benefit from standard envelope formats for signing and encryption, whilst others require no further cryptographic intervention at all. In order to improve interoperability we define two extension points for enabling verifiable data structures with COSE, and we provide concrete examples for the structures and proofs defined in [RFC9162]. Steele, et al. Expires 20 May 2024 [Page 4] Internet-Draft CoMETRE November 2023 4.1. COSE Verifiable Data Structures Similar to COSE Key Types (https://www.iana.org/assignments/cose/ cose.xhtml#key-type), different verifiable data structures support different algorithms. As EC2 keys (1: 2) support both digital signature and key agreement algorithms, RFC9162_SHA256 (TBD_1 : 1) supports both inclusion and consistency proofs. This document establishes a registry of verifiable data structure algorithms, with the following initial contents: * Name: The name of the verifiable data structure * Value: The identifier for the verifiable data structure * Description: The identifier for the verifiable data structure * Reference: Where the verifiable data structure is defined +================+=======+===========================+===========+ | Name | Value | Description | Reference | +================+=======+===========================+===========+ | N/A | 0 | N/A | N/A | +----------------+-------+---------------------------+-----------+ | RFC9162_SHA256 | 1 | SHA256 Binary Merkle Tree | [RFC9162] | +----------------+-------+---------------------------+-----------+ Table 1: COSE Verifiable Data Structures When desigining new verifiable data structures, please request the next available positive integer as your requested assignment, for example: +================+================+===============+===============+ | Name | Value | Description | Reference | +================+================+===============+===============+ | N/A | 0 | N/A | N/A | +----------------+----------------+---------------+---------------+ | RFC9162_SHA256 | 1 | SHA256 Binary | [RFC9162] | | | | Merkle Tree | | +----------------+----------------+---------------+---------------+ | Your name | TBD (requested | tbd | Your | | | assignment 2) | | specification | +----------------+----------------+---------------+---------------+ Table 2 Steele, et al. Expires 20 May 2024 [Page 5] Internet-Draft CoMETRE November 2023 4.2. COSE Verifiable Data Structure Parameters Similar to COSE Key Type Parameters (https://www.iana.org/assignments/cose/cose.xhtml#key-type- parameters), As EC2 keys (1: 2) keys require and give meanding to specific parameters, such as -1 (crv), -2 (x), -3 (y), -4 (d), RFC9162_SHA256 (TBD_1 : 1) supports both (-1) inclusion and (-2) consistency proofs. This document establishes a registry of verifiable data structure algorithms, with the following initial contents: +============+=============+=====+=======+=============+===========+ | Verifiable | Name |Label| CBOR | Description | Reference | | Data | | | Type | | | | Structure | | | | | | +============+=============+=====+=======+=============+===========+ | 1 | inclusion |-1 | array | Proof of | Section | | | proofs | | (of | inclusion | 5.2 | | | | | bstr) | | | +------------+-------------+-----+-------+-------------+-----------+ | 1 | consistency |-2 | array | Proof of | Section | | | proofs | | (of | append only | 5.3 | | | | | bstr) | property | | +------------+-------------+-----+-------+-------------+-----------+ Table 3: COSE Verifiable Data Structure Parameters Proof types are specific to their associated "verifiable data structure", for example, different Merkle trees might support different representations of "inclusion proof" or "consistency proof". Implementers should not expect interoperability accross "verifiable data structures", but they should expect conceptually similar properties across the different registered proof type. For example, 2 different merkle tree based verifiable data structures might both support proofs of inclusion. Protocols requiring proof of inclusion ought to be able to preserve their functionality, while switching from one verifiable data structure to another, so long as both structures support the same proof types. When desigining new verifiable data structure parameters (or proof types), please start with -1, and count down for each proof type supported by your verifiable data structure: Steele, et al. Expires 20 May 2024 [Page 6] Internet-Draft CoMETRE November 2023 +==========+===========+=====+=====+===========+==================+ |Verifiable|Name |Label|CBOR |Description|Reference | |Data | | |Type | | | |Structure | | | | | | +==========+===========+=====+=====+===========+==================+ |1 |inclusion |-1 |array|Proof of |Section 5.2 | | |proofs | |(of |inclusion | | | | | |bstr)| | | +----------+-----------+-----+-----+-----------+------------------+ |1 |consistency|-2 |array|Proof of |Section 5.3 | | |proofs | |(of |append only| | | | | |bstr)|property | | +----------+-----------+-----+-----+-----------+------------------+ |TBD |new proof |-1 |tbd |tbd |Your_Specification| |(requested|type | | | | | |assignment| | | | | | |2) | | | | | | +----------+-----------+-----+-----+-----------+------------------+ |TBD |new proof |-2 |tbd |tbd |Your_Specification| |(requested|type | | | | | |assignment| | | | | | |2) | | | | | | +----------+-----------+-----+-----+-----------+------------------+ |TBD |new proof |-3 |tbd |tbd |Your_Specification| |(requested|type | | | | | |assignment| | | | | | |2) | | | | | | +----------+-----------+-----+-----+-----------+------------------+ Table 4 4.2.1. Registration Requirements Each specification MUST define how to encode the verifiable data structure and its parameters (also called proof types) in CBOR. Each specification MUST define how to produce and consume the supported proof types. See Section 5 as an example. 5. RFC9162_SHA256 This section defines how the data structures described in [RFC9162] are mapped to the terminology defined in this document, using cbor and cose. Steele, et al. Expires 20 May 2024 [Page 7] Internet-Draft CoMETRE November 2023 5.1. Verifiable Data Structure The integer identifier for this Verifiable Data Structure is 1. The string identifier for this Verifiable Data Structure is "RFC9162_SHA256". See Table 1. See [RFC9162], 2.1.1. Definition of the Merkle Tree, for a complete description of this verifiable data structure. 5.2. Inclusion Proof See [RFC9162], 2.1.3.1. Generating an Inclusion Proof, for a complete description of this verifiable data structure proof type. The cbor representation of an inclusion proof for RFC9162_SHA256 is: inclusion-proof = [ tree-size: int leaf-index: int inclusion-path: [ + bstr ] ] 5.2.1. Inclusion Proof Signature In a signed inclusion proof, the previous merkle tree root, maps to tree-size-1, and is a detached payload. Other specifications refer to signed inclusion proofs as "receipts", profiles of proof signatures are encouraged to make additional protected header parameters mandatory. TODO: reference to scitt receipts. The protected header for an RFC9162_SHA256 inclusion proof signature is: * alg (label: 1): REQUIRED. Signature algorithm identifier. Value type: int / tstr. * verifiable-data-structure (label: -111): REQUIRED. verifiable data structure algorithm identifier. Value type: int / tstr. The unprotected header for an RFC9162_SHA256 inclusion proof signature is: Steele, et al. Expires 20 May 2024 [Page 8] Internet-Draft CoMETRE November 2023 inclusion-proofs = [ + bstr ] verifiable-proofs = { &(inclusion-proof: -1) => inclusion-proofs } unprotected-header-map = { &(verifiable-data-proof: -222) => verifiable-proofs * cose-label => cose-value } * inclusion-proof (label: -1): REQUIRED. The payload of an RFC9162_SHA256 inclusion proof signature is the previous Merkle tree hash as defined in [RFC9162]. The payload MUST be detached. Detaching the payload forces verifiers to recompute the root from the inclusion proof signature, this protects against implementation errors where the signature is verified but the root does not match the inclusion proof. 18( / COSE Sign 1 / [ h'a4012604...6d706c65', / Protected / { / Unprotected / -222: { / Proofs / -1: [ / Inclusion proofs (1) / h'83080783...32568964', / Inclusion proof 1 / ] }, }, h'', / Detached payload / h'2e34df43...8d74d55e' / Signature / ] ) { / Protected / 1: -7, / Algorithm / 4: h'4930714e...7163316b', / Key identifier / -111: 1, / Verifiable Data Structure / } Steele, et al. Expires 20 May 2024 [Page 9] Internet-Draft CoMETRE November 2023 [ / Inclusion proof 1 / 8, / Tree size / 7, / Leaf index / [ / Inclusion hashes (3) / h'2a8d7dfc...15d10b22' / Intermediate hash 1 / h'75f177fd...2e73a8ab' / Intermediate hash 2 / h'0bdaaed3...32568964' / Intermediate hash 3 / ] ] 5.3. Consistency Proof See [RFC9162], 2.1.4.1. Generating a Consistency Proof, for a complete description of this verifiable data structure proof type. The cbor representation of a consistency proof for RFC9162_SHA256 is: consistency-proof = [ tree-size-1: int ; size of tree, at previous root tree-size-2: int ; size of tree, at latest root consistency-path: [ + bstr ] ; path from previous to latest root. ] Editors note: tree-size-1, could be ommited, if an inclusion-proof is always present, since the inclusion proof contains, tree-size-1. 5.3.1. Consistency Proof Signature In a signed consistency proof, the latest merkle tree root, maps to tree-size-2, and is an attached payload. The protected header for an RFC9162_SHA256 consistency proof signature is: * alg (label: 1): REQUIRED. Signature algorithm identifier. Value type: int / tstr. * verifiable-data-structure (label: TBD_1): REQUIRED. verifiable data structure algorithm identifier. Value type: int / tstr. The unprotected header for an RFC9162_SHA256 consistency proof signature is: Steele, et al. Expires 20 May 2024 [Page 10] Internet-Draft CoMETRE November 2023 consistency-proofs = [ + bstr ] verifiable-proofs = { &(consistency-proof: -2) => consistency-proofs } unprotected-header-map = { &(verifiable-data-proof: -222) => verifiable-proofs * cose-label => cose-value } * consistency-proof (label: -2): REQUIRED. The payload of an RFC9162_SHA256 consistency proof signature is: The latest Merkle tree hash as defined in [RFC9162]. The payload MUST be attached. 18( / COSE Sign 1 / [ h'a3012604...392b6601', / Protected / { / Unprotected / -222: { / Proofs / -2: [ / Consistency proofs (1) / h'83040682...2e73a8ab', / Consistency proof 1 / ] }, }, h'430b6fd7...f74c7fc4', / Payload / h'd97befea...f30631cb' / Signature / ] ) { / Protected / 1: -7, / Algorithm / 4: h'68747470...6d706c65', / Key identifier / -111: 1, / Verifiable Data Structure / } [ / Consistency proof 1 / 4, / Tree size 1 / 6, / Tree size 2 / [ / Consistency hashes (2) / h'0bdaaed3...32568964' / Intermediate hash 1 / h'75f177fd...2e73a8ab' / Intermediate hash 2 / ] ] Steele, et al. Expires 20 May 2024 [Page 11] Internet-Draft CoMETRE November 2023 6. Privacy Considerations See the privacy considerations section of: * [RFC9162] * [RFC9053] 7. Security Considerations See the security considerations section of: * [RFC9162] * [RFC9053] 8. Acknowledgements We would like to thank Maik Riechert, Jon Geater, Mike Jones, Mike Prorock, Ilari Liusvaara, for their contributions (some of which substantial) to this draft and to the initial set of implementations. 9. IANA Considerations 9.1. Additions to Existing Registries 9.1.1. New Entries to the COSE Header Parameters Registry This document requests IANA to add new values to the 'COSE Algorithms' and to the 'COSE Header Algorithm Parameters' registries in the 'Standards Action With Expert Review category. 9.1.1.1. COSE Header Algorithm Parameters * Name: verifiable-data-structure * Label: TBD_1 * Value type: int / tstr * Value registry: https://www.iana.org/assignments/cose/ cose.xhtml#header-parameters * Description: Algorithm name for verifiable data structure, used to produce verifiable data structure proofs. * Name: verifiable-data-structure-parameters Steele, et al. Expires 20 May 2024 [Page 12] Internet-Draft CoMETRE November 2023 * Label: TBD_2 * Value type: int / tstr * Value registry: https://www.iana.org/assignments/cose/ cose.xhtml#header-parameters * Description: Location for verifiable data structure proofs in COSE Header Parameters. 9.1.2. COSE Verifiable Data Structures IANA will be asked to establish a registry of verifiable data structure identifiers, named "COSE Verifiable Data Structures" to be administered under a Specification Required policy [RFC8126]. Template: * Name: The name of the verifiable data structure * Value: The identifier for the verifiable data structure * Description: The identifier for the verifiable data structure * Reference: Where the verifiable data structure is defined Initial contents: Provided in Table 1 9.1.3. COSE Verifiable Data Structure Parameters IANA will be asked to establish a registry of verifiable data structure parameters, named "COSE Verifiable Data Structure Parameters" to be administered under a Specification Required policy [RFC8126]. Template: * Verifiable Data Structure: The identifier for the verifiable data structure * Name: The name of the proof type * Label: The integer of the proof type * CBOR Type: The cbor data type of the proof * Description: The description of the proof type Steele, et al. Expires 20 May 2024 [Page 13] Internet-Draft CoMETRE November 2023 * Reference: Where the proof type is defined Initial contents: Provided in Table 3 10. References 10.1. Normative References [BCP205] Sheffer, Y. and A. Farrel, "Improving Awareness of Running Code: The Implementation Status Section", BCP 205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://www.rfc-editor.org/rfc/rfc7942>. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/rfc/rfc2119>. [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI 10.17487/RFC6234, May 2011, <https://www.rfc-editor.org/rfc/rfc6234>. [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013, <https://www.rfc-editor.org/rfc/rfc6962>. [RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, August 2013, <https://www.rfc-editor.org/rfc/rfc6979>. [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October 2013, <https://www.rfc-editor.org/rfc/rfc7049>. [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, January 2017, <https://www.rfc-editor.org/rfc/rfc8032>. [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://www.rfc-editor.org/rfc/rfc8126>. Steele, et al. Expires 20 May 2024 [Page 14] Internet-Draft CoMETRE November 2023 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/rfc/rfc8174>. [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/RFC8949, December 2020, <https://www.rfc-editor.org/rfc/rfc8949>. [RFC9053] Schaad, J., "CBOR Object Signing and Encryption (COSE): Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053, August 2022, <https://www.rfc-editor.org/rfc/rfc9053>. [RFC9162] Laurie, B., Messeri, E., and R. Stradling, "Certificate Transparency Version 2.0", RFC 9162, DOI 10.17487/RFC9162, December 2021, <https://www.rfc-editor.org/rfc/rfc9162>. 10.2. Informative References [I-D.ietf-cose-countersign] Schaad, J., "CBOR Object Signing and Encryption (COSE): Countersignatures", Work in Progress, Internet-Draft, draft-ietf-cose-countersign-10, 20 September 2022, <https://datatracker.ietf.org/doc/html/draft-ietf-cose- countersign-10>. [I-D.ietf-scitt-architecture] Birkholz, H., Delignat-Lavaud, A., Fournet, C., Deshpande, Y., and S. Lasker, "An Architecture for Trustworthy and Transparent Digital Supply Chains", Work in Progress, Internet-Draft, draft-ietf-scitt-architecture-04, 23 October 2023, <https://datatracker.ietf.org/doc/html/ draft-ietf-scitt-architecture-04>. Appendix A. Implementation Status Note to RFC Editor: Please remove this section as well as references to [BCP205] before AUTH48. This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [BCP205]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not Steele, et al. Expires 20 May 2024 [Page 15] Internet-Draft CoMETRE November 2023 be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist. According to [BCP205], "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit". A.1. Implementer An open-source implementation was initiated and is maintained by the Transmute Industries Inc. - Transmute. A.2. Implementation Name An application demonstrating the concepts is available at https://scitt.xyz (https://scitt.xyz). A.3. Implementation URL An open-source implementation is available at: * https://github.com/transmute-industries/cose A.4. Maturity The code's level of maturity is considered to be "prototype". A.5. Coverage and Version Compatibility The current version ('main') implements the verifiable data structure algorithm, inclusion proof and consistency proof concepts of this draft. A.6. License The project and all corresponding code and data maintained on GitHub are provided under the Apache License, version 2. A.7. Implementation Dependencies The implementation builds on concepts described in SCITT [I-D.ietf-scitt-architecture] (https://scitt.io/). Steele, et al. Expires 20 May 2024 [Page 16] Internet-Draft CoMETRE November 2023 The implementation uses the Concise Binary Object Representation [RFC7049] (https://cbor.io/). The implementation uses the CBOR Object Signing and Encryption [RFC9053], maintained at: - https://github.com/erdtman/cose-js The implementation uses an implementation of [RFC9162], maintained at: * https://github.com/transmute-industries/rfc9162/tree/main/src/ CoMETRE A.8. Contact Orie Steele (orie@transmute.industries) Authors' Addresses Orie Steele Transmute United States Email: orie@transmute.industries Henk Birkholz Fraunhofer SIT Rheinstrasse 75 64295 Darmstadt Germany Email: henk.birkholz@sit.fraunhofer.de Antoine Delignat-Lavaud Microsoft United Kingdom Email: antdl@microsoft.com Cedric Fournet Microsoft United Kingdom Email: fournet@microsoft.com Steele, et al. Expires 20 May 2024 [Page 17]