Link-Layer Addresses Assignment Mechanism for DHCPv6
draft-ietf-dhc-mac-assign-01

Document Type Active Internet-Draft (dhc WG)
Last updated 2019-09-25 (latest revision 2019-09-20)
Replaces draft-bvtm-dhc-mac-assign
Stream IETF
Intended RFC status Proposed Standard
Formats plain text xml pdf htmlized bibtex
Stream WG state WG Document
Document shepherd Tomek Mrugalski
IESG IESG state I-D Exists
Consensus Boilerplate Yes
Telechat date
Responsible AD (None)
Send notices to Tomek Mrugalski <tomasz.mrugalski@gmail.com>
Dynamic Host Configuration (DHC)                                 B. Volz
Internet-Draft                                                     Cisco
Intended status: Standards Track                            T. Mrugalski
Expires: March 23, 2020                                              ISC
                                                           CJ. Bernardos
                                                                    UC3M
                                                      September 20, 2019

          Link-Layer Addresses Assignment Mechanism for DHCPv6
                      draft-ietf-dhc-mac-assign-01

Abstract

   In certain environments, e.g. large scale virtualization deployments,
   new devices are created in an automated manner.  Such devices
   typically have their link-layer (MAC) addresses randomized.  With
   sufficient scale, the likelihood of collision is not acceptable.
   Therefore an allocation mechanism is required.  This draft proposes
   an extension to DHCPv6 that allows a scalable approach to link-layer
   address assignments.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 23, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Volz, et al.             Expires March 23, 2020                 [Page 1]
Internet-Draft    DHCPv6 Link-Layer Address Assignment    September 2019

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Requirements  . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   4.  Deployment scenarios and mechanism overview . . . . . . . . .   4
     4.1.  Proxy client mode scenario  . . . . . . . . . . . . . . .   4
     4.2.  Direct client mode scenario . . . . . . . . . . . . . . .   4
     4.3.  Mechanism Overview  . . . . . . . . . . . . . . . . . . .   5
   5.  Design Assumptions  . . . . . . . . . . . . . . . . . . . . .   7
   6.  Information Encoding  . . . . . . . . . . . . . . . . . . . .   8
   7.  Requesting Addresses  . . . . . . . . . . . . . . . . . . . .   8
   8.  Renewing Addresses  . . . . . . . . . . . . . . . . . . . . .   9
   9.  Releasing Addresses . . . . . . . . . . . . . . . . . . . . .  10
   10. Option Definitions  . . . . . . . . . . . . . . . . . . . . .  10
     10.1.  Identity Association for Link-Layer Addresses Option . .  10
     10.2.  Link-Layer Addresses Option  . . . . . . . . . . . . . .  12
   11. Selecting Link Layer Addresses for Assignment to an IA_LL . .  14
   12. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
   13. Security Considerations . . . . . . . . . . . . . . . . . . .  15
   14. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  15
   15. References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
     15.1.  Normative References . . . . . . . . . . . . . . . . . .  15
     15.2.  Informative References . . . . . . . . . . . . . . . . .  16
   Appendix A.  IEEE 802c Summary  . . . . . . . . . . . . . . . . .  17
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18

1.  Introduction

   There are several new deployment types that deal with a large number
   of devices that need to be initialized.  One of them is a scenario
   where virtual machines (VMs) are created on a massive scale.
   Typically the new VM instances are assigned a random link-layer (MAC)
   address, but that does not scale well due to the birthday paradox.
   Another use case is IoT devices.  Typically there is no need to
   provide global uniqueness of MAC addresses for such devices.  On the
   other hand, the huge number of such devices would likely exhaust a
Show full document text