Skip to main content

Multi-homing Deployment Considerations for Distributed-Denial-of-Service Open Threat Signaling (DOTS)
draft-ietf-dots-multihoming-12

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 9284.
Authors Mohamed Boucadair , Tirumaleswar Reddy.K , Wei Pan
Last updated 2022-04-21
Replaces draft-boucadair-dots-multihoming
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Associated WG milestone
Dec 2021
DOTS Multihoming draft to WGLC
Document shepherd Valery Smyslov
Shepherd write-up Show Last changed 2022-01-28
IESG IESG state Became RFC 9284 (Informational)
Consensus boilerplate Yes
Telechat date (None)
Has enough positions to pass.
Responsible AD Roman Danyliw
Send notices to valery@smyslov.net
IANA IANA review state IANA OK - No Actions Needed
draft-ietf-dots-multihoming-12
Network Working Group                                       M. Boucadair
Internet-Draft                                                    Orange
Intended status: Informational                                T. Reddy.K
Expires: 23 October 2022                                          Akamai
                                                                  W. Pan
                                                     Huawei Technologies
                                                           21 April 2022

Multi-homing Deployment Considerations for Distributed-Denial-of-Service
                      Open Threat Signaling (DOTS)
                     draft-ietf-dots-multihoming-12

Abstract

   This document discusses multi-homing considerations for Distributed-
   Denial-of-Service Open Threat Signaling (DOTS).  The goal is to
   provide some guidance for DOTS clients and client-domain DOTS
   gateways when multihomed.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 23 October 2022.

Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Boucadair, et al.        Expires 23 October 2022                [Page 1]
Internet-Draft              DOTS Multihoming                  April 2022

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Requirements Language . . . . . . . . . . . . . . . . . . . .   4
   3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Multi-Homing Scenarios  . . . . . . . . . . . . . . . . . . .   5
     4.1.  Multi-Homed Residential Single CPE  . . . . . . . . . . .   5
     4.2.  Multi-Homed Enterprise: Single CPE, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .   6
     4.3.  Multi-homed Enterprise: Multiple CPEs, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .   7
     4.4.  Multi-homed Enterprise with the Same ISP  . . . . . . . .   7
   5.  DOTS Multi-homing Deployment Considerations . . . . . . . . .   8
     5.1.  Residential CPE . . . . . . . . . . . . . . . . . . . . .   8
     5.2.  Multi-Homed Enterprise: Single CPE, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .  10
     5.3.  Multi-Homed Enterprise: Multiple CPEs, Multiple Upstream
           ISPs  . . . . . . . . . . . . . . . . . . . . . . . . . .  12
     5.4.  Multi-Homed Enterprise: Single ISP  . . . . . . . . . . .  13
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  15
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  15
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   In many deployments, it may not be possible for a network to
   determine the cause of a distributed Denial-of-Service (DoS) attack
   [RFC4732].  Rather, the network may just realize that some resources
   appear to be under attack.  To help with such situations, the IETF
   has specified the DDoS Open Threat Signaling (DOTS) architecture
   [RFC8811], where a DOTS client can inform an upstream DOTS server
   that its network is under a potential attack and that appropriate
   mitigation actions are required.  The DOTS protocols can be used to
   coordinate real-time mitigation efforts which can evolve as the
   attacks mutate, thereby reducing the impact of an attack and leading

Boucadair, et al.        Expires 23 October 2022                [Page 2]
Internet-Draft              DOTS Multihoming                  April 2022

   to more efficient responsive actions.  [RFC8903] identifies a set of
   scenarios for DOTS; most of these scenarios involve a Customer
   Premises Equipment (CPE).

   The high-level base DOTS architecture is illustrated in Figure 1
   ([RFC8811]):

                 +-----------+            +-------------+
                 | Mitigator | ~~~~~~~~~~ | DOTS Server |
                 +-----------+            +-------------+
                                                 |
                                                 |
                                                 |
                 +---------------+        +-------------+
                 | Attack Target | ~~~~~~ | DOTS Client |
                 +---------------+        +-------------+

                     Figure 1: Basic DOTS Architecture

   [RFC8811] specifies that the DOTS client may be provided with a list
   of DOTS servers; each of these servers is associated with one or more
   IP addresses.  These addresses may or may not be of the same address
   family.  The DOTS client establishes one or more DOTS sessions by
   connecting to the provided DOTS server(s) addresses (e.g., by using
   [RFC8973]).

   DOTS may be deployed within networks that are connected to one single
   upstream provider.  DOTS can also be enabled within networks that are
   multi-homed.  The reader may refer to [RFC3582] for an overview of
   multi-homing goals and motivations.  This document discusses DOTS
   multi-homing considerations.  Specifically, the document aims to:

   1.  Complete the base DOTS architecture with multi-homing specifics.
       Those specifics need to be taken into account because:

       *  Sending a DOTS mitigation request to an arbitrary DOTS server
          will not necessarily help in mitigating a DDoS attack.

       *  Randomly replicating all DOTS mitigation requests among all
          available DOTS servers is suboptimal.

       *  Sequentially contacting DOTS servers may increase the delay
          before a mitigation plan is enforced.

   2.  Identify DOTS deployment schemes in a multi-homing context, where
       DOTS services can be offered by all or a subset of upstream
       providers.

Boucadair, et al.        Expires 23 October 2022                [Page 3]
Internet-Draft              DOTS Multihoming                  April 2022

   3.  Provide guidelines and recommendations for placing DOTS requests
       in multi-homed networks, e.g.,:

       *  Select the appropriate DOTS server(s).

       *  Identify cases where anycast is not recommended for DOTS.

   This document adopts the following methodology:

   *  Identify and extract viable deployment candidates from [RFC8903].

   *  Augment the description with multi-homing technicalities, e.g.,

      -  One vs. multiple upstream network providers

      -  One vs. multiple interconnect routers

      -  Provider-Independent (PI) vs. Provider-Aggregatable (PA) IP
         addresses

   *  Describe the recommended behavior of DOTS clients and client-
      domain DOTS gateways for each case.

   Multi-homed DOTS agents are assumed to make use of the protocols
   defined in [RFC9132] and [RFC8783].  This document does not require
   any specific extension to the base DOTS protocols for deploying DOTS
   in a multi-homed context.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Terminology

   This document makes use of the terms defined in [RFC8811], [RFC8612],
   and [RFC4116].  In particular:

   Provider-Aggregatable (PA) addresses:  are globally-unique addresses
      assigned by a transit provider to a customer.  The addresses are
      considered "aggregatable" because the set of routes corresponding
      to the PA addresses are usually covered by an aggregate route set
      corresponding to the address space operated by the transit
      provider, from which the assignment was made (Section 2 of
      [RFC4116]).

Boucadair, et al.        Expires 23 October 2022                [Page 4]
Internet-Draft              DOTS Multihoming                  April 2022

   Provider-Independent (PI) addresses:  are globally-unique addresses
      which are not assigned by a transit provider, but are provided by
      some other organisation, usually a Regional Internet Registry
      (RIR) (Section 2 of [RFC4116]).

   IP indifferently refers to IPv4 or IPv6.

4.  Multi-Homing Scenarios

   This section describes some multi-homing scenarios that are relevant
   to DOTS.  In the following subsections, only the connections of
   border routers are shown; internal network topologies are not
   elaborated.

   A multihomed network may enable DOTS for all or a subset of its
   upstream interconnection links.  In such a case, DOTS servers can be
   explicitly configured or dynamically discovered by a DOTS client
   using means such as those discussed in [RFC8973].  These DOTS servers
   can be owned by the upstream provider, managed by a third-party
   (e.g., mitigation service provider), or a combination thereof.

   If a DOTS server is explicitly configured, it is assumed that an
   interface is also provided to bind the DOTS service to an
   interconnection link.  If no interface is provided, this means that
   the DOTS server can be reached via any active interface.

   This section distinguishes between residential CPEs vs. enterprise
   CPEs because PI addresses may be used for enterprises while this is
   not the current practice for residential CPEs.

   In the following subsections, all or a subset of interconnection
   links are associated with DOTS servers.

4.1.  Multi-Homed Residential Single CPE

   The scenario shown in Figure 2 is characterized as follows:

   *  The home network is connected to the Internet using one single
      CPE.

   *  The CPE is connected to multiple provisioning domains (i.e., both
      fixed and mobile networks).  Provisioning domain (PvD) is
      explained in [RFC7556].

Boucadair, et al.        Expires 23 October 2022                [Page 5]
Internet-Draft              DOTS Multihoming                  April 2022

      In a typical deployment scenario, these provisioning domains are
      owned by the same provider (see Section 1 of [RFC8803]).  Such a
      deployment is meant to seamlessly use both fixed and cellular
      networks for bonding, faster hand-overs, or better resiliency
      purposes.

   *  Each of these provisioning domains assigns IP addresses/prefixes
      to the CPE and provides additional configuration information such
      as a list of DNS servers, DNS suffixes associated with the
      network, default gateway address, and DOTS server's name
      [RFC8973].  These addresses/prefixes are assumed to be Provider-
      Aggregatable (PA).

   *  Because of ingress filtering, packets forwarded by the CPE towards
      a given provisioning domain must be sent with a source IP address
      that was assigned by that domain [RFC8043].

                  +-------+            +-------+
                  |Fixed  |            |Mobile |
                  |Network|            |Network|
                  +---+---+            +---+---+
                      |                    |     Service Providers
          ............|....................|.......................
                      +---------++---------+     Home Network
                                ||
                             +--++-+
                             | CPE |
                             +-----+
                                   ... (Internal Network)

               Figure 2: Typical Multi-homed Residential CPE

4.2.  Multi-Homed Enterprise: Single CPE, Multiple Upstream ISPs

   The scenario shown in Figure 3 is characterized as follows:

   *  The enterprise network is connected to the Internet using a single
      router.

   *  That router is connected to multiple provisioning domains (i.e.,
      managed by distinct administrative entities).

   Unlike the previous scenario, two sub-cases can be considered for an
   enterprise network with regards to assigned addresses:

   1.  PI addresses/prefixes: The enterprise is the owner of the IP
       addresses/prefixes; the same address/prefix is then used when
       establishing communications over any of the provisioning domains.

Boucadair, et al.        Expires 23 October 2022                [Page 6]
Internet-Draft              DOTS Multihoming                  April 2022

   2.  PA addresses/prefixes: Each of the provisioning domains assigns
       IP addresses/prefixes to the enterprise network.  These
       addresses/prefixes are used when communicating over the
       provisioning domain that assigned them.

                  +------+              +------+
                  | ISP1 |              | ISP2 |
                  +---+--+              +--+---+
                      |                    |     Service Providers
          ............|....................|.......................
                      +---------++---------+     Enterprise Network
                                ||
                             +--++-+
                             | CPE |
                             +-----+
                                   ... (Internal Network)

     Figure 3: Multi-homed Enterprise Network (Single CPE connected to
                             Multiple Networks)

4.3.  Multi-homed Enterprise: Multiple CPEs, Multiple Upstream ISPs

   This scenario is similar to the one described in Section 4.2; the
   main difference is that dedicated routers (CPE1 and CPE2) are used to
   connect to each provisioning domain.

                            +------+    +------+
                            | ISP1 |    | ISP2 |
                            +---+--+    +--+---+
                                |          |     Service Providers
          ......................|..........|.......................
                                |          |     Enterprise Network
                            +---+--+    +--+---+
                            | CPE1 |    | CPE2 |
                            +------+    +------+

                                  ... (Internal Network)

     Figure 4: Multi-homed Enterprise Network (Multiple CPEs, Multiple
                                   ISPs)

4.4.  Multi-homed Enterprise with the Same ISP

   This scenario is a variant of Sections 4.2 and 4.3 in which multi-
   homing is supported by the same ISP (i.e., same provisioning domain).

Boucadair, et al.        Expires 23 October 2022                [Page 7]
Internet-Draft              DOTS Multihoming                  April 2022

5.  DOTS Multi-homing Deployment Considerations

   Table 1 provides some sample, non-exhaustive, deployment schemes to
   illustrate how DOTS agents may be deployed for each of the scenarios
   introduced in Section 4.

    +=========================+=======================+===============+
    |         Scenario        |      DOTS client      | Client-domain |
    |                         |                       |  DOTS gateway |
    +=========================+=======================+===============+
    |     Residential CPE     |          CPE          |      N/A      |
    +-------------------------+-----------------------+---------------+
    |   Single CPE, Multiple  | Internal hosts or CPE |      CPE      |
    |   provisioning domains  |                       |               |
    +-------------------------+-----------------------+---------------+
    | Multiple CPEs, Multiple | Internal hosts or all |   CPEs (CPE1  |
    |   provisioning domains  |  CPEs (CPE1 and CPE2) |   and CPE2)   |
    +-------------------------+-----------------------+---------------+
    | Multi-homed enterprise, | Internal hosts or all |   CPEs (CPE1  |
    |   Single provisioning   |  CPEs (CPE1 and CPE2) |   and CPE2)   |
    |          domain         |                       |               |
    +-------------------------+-----------------------+---------------+

                      Table 1: Sample Deployment Cases

   These deployment schemes are further discussed in the following
   subsections.

5.1.  Residential CPE

   Figure 5 depicts DOTS sessions that need to be established between a
   DOTS client (C) and two DOTS servers (S1, S2) within the context of
   the scenario described in Section 4.1.  As listed in Table 1, the
   DOTS client is hosted by the residential CPE.

Boucadair, et al.        Expires 23 October 2022                [Page 8]
Internet-Draft              DOTS Multihoming                  April 2022

                                            +--+
                                  ----------|S1|
                                /           +--+
                               /    DOTS Server Domain #1
                              /
                        +---+/
                        | C |
                        +---+\
                         CPE  \
                               \
                                \           +--+
                                  ----------|S2|
                                            +--+
                                    DOTS Server Domain #2

        Figure 5: DOTS Associations for a Multihomed Residential CPE

   The DOTS client MUST resolve the DOTS server's name provided by each
   provisioning domain using either the DNS servers learned from the
   respective provisioning domain or from the DNS servers associated
   with the interface(s) for which a DOTS server was explicitly
   configured (Section 4).  IPv6-capable DOTS clients MUST use the
   source address selection algorithm defined in [RFC6724] to select the
   candidate source addresses to contact each of these DOTS servers.
   DOTS sessions MUST be established and MUST be maintained with each of
   the DOTS servers because the mitigation scope of each of these
   servers is restricted.  The DOTS client MUST use the security
   credentials (a certificate, typically) provided by a provisioning
   domain to authenticate itself to the DOTS server(s) provided by the
   same provisioning domain.  How such security credentials are provided
   to the DOTS client is out of the scope of this document.  The reader
   may refer to Section 7.1 of [RFC9132] for more details about DOTS
   authentication methods.

   When conveying a mitigation request to protect the attack target(s),
   the DOTS client MUST select an available DOTS server whose network
   has assigned the IP prefixes from which target prefixes/addresses are
   derived.  This implies that if no appropriate DOTS server is found,
   the DOTS client MUST NOT send the mitigation request to any other
   available DOTS server.

   For example, a mitigation request to protect target resources bound
   to a PA IP address/prefix cannot be satisfied by a provisioning
   domain other than the one that owns those addresses/prefixes.
   Consequently, if a CPE detects a DDoS attack that spreads over all
   its network attachments, it MUST contact all DOTS servers for
   mitigation purposes.

Boucadair, et al.        Expires 23 October 2022                [Page 9]
Internet-Draft              DOTS Multihoming                  April 2022

   The DOTS client MUST be able to associate a DOTS server with each
   provisioning domain it serves.  For example, if the DOTS client is
   provisioned with S1 using DHCP when attaching to a first network and
   with S2 using Protocol Configuration Option (PCO) [TS.24008] when
   attaching to a second network, the DOTS client must record the
   interface from which a DOTS server was provisioned.  DOTS signaling
   session to a given DOTS server must be established using the
   interface from which the DOTS server was provisioned.  If a DOTS
   server is explicitly configured, DOTS signaling with that server must
   be established via the interfaces that are indicated in the explicit
   configuration or via any active interface if no interface is
   configured.

5.2.  Multi-Homed Enterprise: Single CPE, Multiple Upstream ISPs

   Figure 6 illustrates the DOTS sessions that can be established with a
   client-domain DOTS gateway (hosted within the CPE as per Table 1),
   which is enabled within the context of the scenario described in
   Section 4.2.  This deployment is characterized as follows:

   *  One of more DOTS clients are enabled in hosts located in the
      internal network.

   *  A client-domain DOTS gateway is enabled to aggregate and then
      relay the requests towards upstream DOTS servers.

                                               +--+
              ....................   ----------|S1|
              .    +---+         . /           +--+
              .    | C1|----+    ./     DOTS Server Domain #1
              .    +---+    |    .
              .             |   /.
              .+---+      +-+-+/ .
              .| C3|------| G |  .
              .+---+      +-+-+\ .
              .            CPE  \.
              .     +---+    |   .
              .     | C2|----+   .\
              .     +---+        . \          +--+
              '..................'  ----------|S2|
                                              +--+
               DOTS Client Domain     DOTS Server Domain #2

       Figure 6: Multiple DOTS Clients, Single DOTS Gateway, Multiple
                                DOTS Servers

Boucadair, et al.        Expires 23 October 2022               [Page 10]
Internet-Draft              DOTS Multihoming                  April 2022

   When PA addresses/prefixes are in use, the same considerations
   discussed in Section 5.1 need to be followed by the client-domain
   DOTS gateway to contact its DOTS server(s).  The client-domain DOTS
   gateways can be reachable from DOTS clients by using an unicast
   address or an anycast address (Section 3.2.4 of [RFC8811]).

   Nevertheless, when PI addresses/prefixes are assigned and absent any
   policy, the client-domain DOTS gateway MUST send mitigation requests
   to all its DOTS servers.  Otherwise, the attack traffic may still be
   delivered via the ISP which hasn't received the mitigation request.

   An alternate deployment model is depicted in Figure 7.  This
   deployment assumes that:

   *  One or more DOTS clients are enabled in hosts located in the
      internal network.  These DOTS clients may use [RFC8973] to
      discover their DOTS server(s).

   *  These DOTS clients communicate directly with upstream DOTS
      servers.

                                ..........
                                .  +--+  .
                          +--------|C1|--------+
                          |     .  +--+  .     |
                          |     .        .     |
                         +--+   .  +--+  .   +--+
                         |S2|------|C3|------|S1|
                         +--+   .  +--+  .   +--+
                          |     .        .     |
                          |     .  +--+  .     |
                          +--------|C2|--------+
                                .  +--+  .
                                '........'
                               DOTS Client
                                 Domain

           Figure 7: Multiple DOTS Clients, Multiple DOTS Servers

   If PI addresses/prefixes are in use, the DOTS client MUST send a
   mitigation request to all the DOTS servers.  The use of anycast
   addresses to reach these DOTS servers is NOT RECOMMENDED.  If a well-
   known anycast address is used to reach multiple DOTS servers, the CPE
   may not be able to select the appropriate provisioning domain to
   which the mitigation request should be forwarded.  As a consequence,
   the request may not be forwarded to the appropriate DOTS server.

Boucadair, et al.        Expires 23 October 2022               [Page 11]
Internet-Draft              DOTS Multihoming                  April 2022

   If PA addresses/prefixes are used, the same considerations discussed
   in Section 5.1 need to be followed by the DOTS clients.  Because DOTS
   clients are not embedded in the CPE and multiple addresses/prefixes
   may not be assigned to the DOTS client (typically in an IPv4
   context), some issues may arise in how to steer traffic towards the
   appropriate DOTS server by using the appropriate source IP address.
   These complications discussed in [RFC4116] are not specific to DOTS.

   Another deployment approach is to enable many DOTS clients; each of
   them is responsible for handling communications with a specific DOTS
   server (see Figure 8).

                                ..........
                                .  +--+  .
                          +--------|C1|  .
                          |     .  +--+  .
                         +--+   .  +--+  .   +--+
                         |S2|   .  |C2|------|S1|
                         +--+   .  +--+  .   +--+
                                '........'
                               DOTS Client
                                 Domain

                    Figure 8: Single Homed DOTS Clients

   For both deployments depicted in Figures 7 and 8, each DOTS client
   SHOULD be provided with policies (e.g., a prefix filter that is used
   to filter DDoS detection alarms) that will trigger DOTS
   communications with the DOTS servers.  Such policies will help the
   DOTS client to select the appropriate destination DOTS server.  The
   CPE MUST select the appropriate source IP address when forwarding
   DOTS messages received from an internal DOTS client.

5.3.  Multi-Homed Enterprise: Multiple CPEs, Multiple Upstream ISPs

   The deployments depicted in Figures 7 and 8 also apply to the
   scenario described in Section 4.3.  One specific problem for this
   scenario is to select the appropriate exit router when contacting a
   given DOTS server.

   An alternative deployment scheme is shown in Figure 9:

   *  DOTS clients are enabled in hosts located in the internal network.

   *  A client-domain DOTS gateway is enabled in each CPE (CPE1 and CPE2
      per Table 1).

Boucadair, et al.        Expires 23 October 2022               [Page 12]
Internet-Draft              DOTS Multihoming                  April 2022

   *  Each of these client-domain DOTS gateways communicates with the
      DOTS server of the provisioning domain.

                     .................................
                     .                 +---+         .
                     .    +------------| C1|----+    .
                     .    |            +---+    |    .
                     .    |                     |    .
              +--+   .  +-+-+      +---+      +-+-+  .   +--+
              |S2|------|G2 |------| C3|------|G1 |------|S1|
              +--+   .  +-+-+      +---+      +-+-+  .   +--+
                     .  CPE2                   CPE1  .
                     .    |            +---+    |    .
                     .    +------------| C2|----+    .
                     .                 +---+         .
                     '...............................'
                            DOTS Client Domain

     Figure 9: Multiple DOTS Clients, Multiple DOTS Gateways, Multiple
                                DOTS Servers

   When PI addresses/prefixes are used, DOTS clients MUST contact all
   the client-domain DOTS gateways to send a DOTS message.  Client-
   domain DOTS gateways will then relay the request to the DOTS servers
   as a function of local policy.  Note that anycast addresses cannot be
   used to establish DOTS sessions between DOTS clients and client-
   domain DOTS gateways because only one DOTS gateway will receive the
   mitigation request.

   When PA addresses/prefixes are used, but no filter rules are provided
   to DOTS clients, the latter MUST contact all client-domain DOTS
   gateways simultaneously to send a DOTS message.  Upon receipt of a
   request by a client-domain DOTS gateway, it MUST check whether the
   request is to be forwarded upstream (if the target IP prefix is
   managed by the upstream server) or rejected.

   When PA addresses/prefixes are used, but specific filter rules are
   provided to DOTS clients using some means that are out of scope of
   this document, the clients MUST select the appropriate client-domain
   DOTS gateway to reach.  The use of anycast addresses is NOT
   RECOMMENDED to reach client-domain DOTS gateways.

5.4.  Multi-Homed Enterprise: Single ISP

   The key difference of the scenario described in Section 4.4 compared
   to the other scenarios is that multi-homing is provided by the same
   ISP.  Concretely, that ISP can decide to provision the enterprise
   network with:

Boucadair, et al.        Expires 23 October 2022               [Page 13]
Internet-Draft              DOTS Multihoming                  April 2022

   *  The same DOTS server for all network attachments.

   *  Distinct DOTS servers for each network attachment.  These DOTS
      servers need to coordinate when a mitigation action is received
      from the enterprise network.

   In both cases, DOTS agents enabled within the enterprise network MAY
   decide to select one or all network attachments to send DOTS
   mitigation requests.

6.  Security Considerations

   A set of security threats related to multihoming are discussed in
   [RFC4218].

   DOTS-related security considerations are discussed in Section 4 of
   [RFC8811].

   DOTS clients should control the information that they share with peer
   DOTS servers.  In particular, if a DOTS client maintains DOTS
   sessions with specific DOTS servers per interconnection link, the
   DOTS client SHOULD NOT leak information specific to a given link to
   DOTS servers on different interconnection links that are not
   authorized to mitigate attacks for that given link.  Whether this
   constraint is relaxed is deployment-specific and must be subject to
   explicit consent from the DOTS client domain administrator.  How to
   seek for such consent is implementation- and deployment-specific.

7.  IANA Considerations

   This document does not require any action from IANA.

8.  Acknowledgements

   Thanks to Roland Dobbins, Nik Teague, Jon Shallow, Dan Wing, and
   Christian Jacquenet for sharing their comments on the mailing list.

   Thanks to Kirill Kasavchenko for the comments.

   Thanks to Kathleen Moriarty for the secdir review, Joel Jaeggli for
   the opsdir review, and Mirja Kuhlewind for the tsvart review.

   Many thanks to Roman Danyliw for the careful AD review.

   Thanks to Lars Eggert, Robert Wilton, Paul Wouters, Erik Kline, and
   Eric Vyncke for the IESG review.

9.  References

Boucadair, et al.        Expires 23 October 2022               [Page 14]
Internet-Draft              DOTS Multihoming                  April 2022

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC6724]  Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
              "Default Address Selection for Internet Protocol Version 6
              (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
              <https://www.rfc-editor.org/info/rfc6724>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8811]  Mortensen, A., Ed., Reddy.K, T., Ed., Andreasen, F.,
              Teague, N., and R. Compton, "DDoS Open Threat Signaling
              (DOTS) Architecture", RFC 8811, DOI 10.17487/RFC8811,
              August 2020, <https://www.rfc-editor.org/info/rfc8811>.

9.2.  Informative References

   [RFC3582]  Abley, J., Black, B., and V. Gill, "Goals for IPv6 Site-
              Multihoming Architectures", RFC 3582,
              DOI 10.17487/RFC3582, August 2003,
              <https://www.rfc-editor.org/info/rfc3582>.

   [RFC4116]  Abley, J., Lindqvist, K., Davies, E., Black, B., and V.
              Gill, "IPv4 Multihoming Practices and Limitations",
              RFC 4116, DOI 10.17487/RFC4116, July 2005,
              <https://www.rfc-editor.org/info/rfc4116>.

   [RFC4218]  Nordmark, E. and T. Li, "Threats Relating to IPv6
              Multihoming Solutions", RFC 4218, DOI 10.17487/RFC4218,
              October 2005, <https://www.rfc-editor.org/info/rfc4218>.

   [RFC4732]  Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
              Denial-of-Service Considerations", RFC 4732,
              DOI 10.17487/RFC4732, December 2006,
              <https://www.rfc-editor.org/info/rfc4732>.

   [RFC7556]  Anipko, D., Ed., "Multiple Provisioning Domain
              Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
              <https://www.rfc-editor.org/info/rfc7556>.

Boucadair, et al.        Expires 23 October 2022               [Page 15]
Internet-Draft              DOTS Multihoming                  April 2022

   [RFC8043]  Sarikaya, B. and M. Boucadair, "Source-Address-Dependent
              Routing and Source Address Selection for IPv6 Hosts:
              Overview of the Problem Space", RFC 8043,
              DOI 10.17487/RFC8043, January 2017,
              <https://www.rfc-editor.org/info/rfc8043>.

   [RFC8612]  Mortensen, A., Reddy, T., and R. Moskowitz, "DDoS Open
              Threat Signaling (DOTS) Requirements", RFC 8612,
              DOI 10.17487/RFC8612, May 2019,
              <https://www.rfc-editor.org/info/rfc8612>.

   [RFC8783]  Boucadair, M., Ed. and T. Reddy.K, Ed., "Distributed
              Denial-of-Service Open Threat Signaling (DOTS) Data
              Channel Specification", RFC 8783, DOI 10.17487/RFC8783,
              May 2020, <https://www.rfc-editor.org/info/rfc8783>.

   [RFC8803]  Bonaventure, O., Ed., Boucadair, M., Ed., Gundavelli, S.,
              Seo, S., and B. Hesmans, "0-RTT TCP Convert Protocol",
              RFC 8803, DOI 10.17487/RFC8803, July 2020,
              <https://www.rfc-editor.org/info/rfc8803>.

   [RFC8903]  Dobbins, R., Migault, D., Moskowitz, R., Teague, N., Xia,
              L., and K. Nishizuka, "Use Cases for DDoS Open Threat
              Signaling", RFC 8903, DOI 10.17487/RFC8903, May 2021,
              <https://www.rfc-editor.org/info/rfc8903>.

   [RFC8973]  Boucadair, M. and T. Reddy.K, "DDoS Open Threat Signaling
              (DOTS) Agent Discovery", RFC 8973, DOI 10.17487/RFC8973,
              January 2021, <https://www.rfc-editor.org/info/rfc8973>.

   [RFC9132]  Boucadair, M., Ed., Shallow, J., and T. Reddy.K,
              "Distributed Denial-of-Service Open Threat Signaling
              (DOTS) Signal Channel Specification", RFC 9132,
              DOI 10.17487/RFC9132, September 2021,
              <https://www.rfc-editor.org/info/rfc9132>.

   [TS.24008] 3GPP, "Mobile radio interface Layer 3 specification; Core
              network protocols; Stage 3 (Release 16)", December 2019,
              <http://www.3gpp.org/DynaReport/24008.htm>.

Authors' Addresses

   Mohamed Boucadair
   Orange
   35000 Rennes
   France
   Email: mohamed.boucadair@orange.com

Boucadair, et al.        Expires 23 October 2022               [Page 16]
Internet-Draft              DOTS Multihoming                  April 2022

   Tirumaleswar Reddy.K
   Akamai
   Embassy Golf Link Business Park
   Bangalore 560071
   Karnataka
   India
   Email: kondtir@gmail.com

   Wei Pan
   Huawei Technologies
   Email: william.panwei@huawei.com

Boucadair, et al.        Expires 23 October 2022               [Page 17]