Skip to main content

Specification for DNS over TLS

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7858.
Authors Zi Hu , Liang Zhu , John Heidemann , Allison Mankin , Duane Wessels , Paul E. Hoffman
Last updated 2016-03-17 (Latest revision 2016-03-15)
Replaces draft-ietf-dprive-start-tls-for-dns
RFC stream Internet Engineering Task Force (IETF)
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Tim Wicinski
Shepherd write-up Show Last changed 2016-01-24
IESG IESG state Became RFC 7858 (Proposed Standard)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Terry Manderson
Send notices to
IANA IANA review state IANA OK - Actions Needed
Network Working Group                                              Z. Hu
Internet-Draft                                                    L. Zhu
Intended status: Standards Track                            J. Heidemann
Expires: September 16, 2016                     USC/Information Sciences
                                                               A. Mankin

                                                              D. Wessels
                                                           Verisign Labs
                                                              P. Hoffman
                                                          March 15, 2016

                     Specification for DNS over TLS


   This document describes the use of TLS to provide privacy for DNS.
   Encryption provided by TLS eliminates opportunities for eavesdropping
   and on-path tampering with DNS queries in the network, such as
   discussed in RFC 7626.  In addition, this document specifies two
   usage profiles for DNS-over-TLS and provides advice on performance
   considerations to minimize overhead from using TCP and TLS with DNS.

   This document focuses on securing stub-to-recursive traffic, as per
   the charter of the DPRIVE working group.  It does not prevent future
   applications of the protocol to recursive-to-authoritative traffic.

   Note: this document was formerly named
   draft-ietf-dprive-start-tls-for-dns.  Its name has been changed to
   better describe the mechanism now used.  Please refer to working
   group archives under the former name for history and previous
   discussion.  [RFC Editor: please remove this paragraph prior to

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at

   Internet-Drafts are draft documents valid for a maximum of six months

Hu, et al.             Expires September 16, 2016               [Page 1]
Internet-Draft                DNS over TLS                    March 2016

   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 16, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   ( in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Hu, et al.             Expires September 16, 2016               [Page 2]
Internet-Draft                DNS over TLS                    March 2016

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
   2.  Reserved Words . . . . . . . . . . . . . . . . . . . . . . . .  5
   3.  Establishing and Managing DNS-over-TLS Sessions  . . . . . . .  5
     3.1.  Session Initiation . . . . . . . . . . . . . . . . . . . .  5
     3.2.  TLS Handshake and Authentication . . . . . . . . . . . . .  6
     3.3.  Transmitting and Receiving Messages  . . . . . . . . . . .  6
     3.4.  Connection Reuse, Close and Reestablishment  . . . . . . .  7
   4.  Usage Profiles . . . . . . . . . . . . . . . . . . . . . . . .  8
     4.1.  Opportunistic Privacy Profile  . . . . . . . . . . . . . .  8
     4.2.  Out-of-band Key-pinned Privacy Profile . . . . . . . . . .  8
   5.  Performance Considerations . . . . . . . . . . . . . . . . . . 10
   6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 11
   7.  Design Evolution . . . . . . . . . . . . . . . . . . . . . . . 11
   8.  Implementation Status  . . . . . . . . . . . . . . . . . . . . 12
     8.1.  Unbound  . . . . . . . . . . . . . . . . . . . . . . . . . 13
     8.2.  ldns . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
     8.3.  digit  . . . . . . . . . . . . . . . . . . . . . . . . . . 13
     8.4.  getdns . . . . . . . . . . . . . . . . . . . . . . . . . . 13
   9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 13
   10. Contributing Authors . . . . . . . . . . . . . . . . . . . . . 14
   11. Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 15
   12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
     12.1. Normative References . . . . . . . . . . . . . . . . . . . 15
     12.2. Informative References . . . . . . . . . . . . . . . . . . 17
   Appendix A.  Out-of-band Key-pinned Privacy Profile Example  . . . 19
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 20

Hu, et al.             Expires September 16, 2016               [Page 3]
Internet-Draft                DNS over TLS                    March 2016

1.  Introduction

   Today, nearly all DNS queries [RFC1034], [RFC1035] are sent
   unencrypted, which makes them vulnerable to eavesdropping by an
   attacker that has access to the network channel, reducing the privacy
   of the querier.  Recent news reports have elevated these concerns,
   and recent IETF work has specified privacy considerations for DNS

   Prior work has addressed some aspects of DNS security, but until
   recently there has been little work on privacy between a DNS client
   and server.  DNS Security Extensions (DNSSEC), [RFC4033] provide
   _response integrity_ by defining mechanisms to cryptographically sign
   zones, allowing end-users (or their first-hop resolver) to verify
   replies are correct.  By intention, DNSSEC does not protect request
   and response privacy.  Traditionally, either privacy was not
   considered a requirement for DNS traffic, or it was assumed that
   network traffic was sufficiently private, however these perceptions
   are evolving due to recent events [RFC7258].

   Other work that has offered the potential to encrypt between DNS
   clients and servers includes DNSCurve [dempsky-dnscurve], DNSCrypt
   [dnscrypt-website], ConfidentialDNS [I-D.confidentialdns] and IPSECA
   [I-D.ipseca].  In addition to the present draft, the DPRIVE working
   group has also adopted a DNS-over-DTLS [draft-ietf-dprive-dnsodtls]

   This document describes using DNS-over-TLS on a well-known port and
   also offers advice on performance considerations to minimize
   overheads from using TCP and TLS with DNS.

   Initiation of DNS-over-TLS is very straightforward.  By establishing
   a connection over a well-known port, clients and servers expect and
   agree to negotiate a TLS session to secure the channel.  Deployment
   will be gradual.  Not all servers will support DNS-over-TLS and the
   well-known port might be blocked by some firewalls.  Clients will be
   expected to keep track of servers that support TLS and those that
   don't.  Clients and servers will adhere to the TLS implementation
   recommendations and security considerations of [BCP195].

   The protocol described here works for queries and responses between
   stub clients and recursive servers.  It might work equally between
   recursive clients and authoritative servers, but this application of
   the protocol is out of scope for the DNS PRIVate Exchange (DPRIVE)
   Working Group per its current charter.

   This document describes two profiles in Section 4 providing different
   levels of assurance of privacy: an opportunistic privacy profile and

Hu, et al.             Expires September 16, 2016               [Page 4]
Internet-Draft                DNS over TLS                    March 2016

   an out-of-band key-pinned privacy profile.  It is expected that a
   future document based on [dgr-dprive-dtls-and-tls-profiles] will
   further describe additional privacy profiles for DNS over both TLS
   and DTLS.

   An earlier version of this document described a technique for
   upgrading a DNS-over-TCP connection to a DNS-over-TLS session with,
   essentially, "STARTTLS for DNS".  To simplify the protocol, this
   document now only uses a well-known port to specify TLS use, omitting
   the upgrade approach.  The upgrade approach no longer appears in this
   document, which now focuses exclusively on the use of a well-known
   port for DNS-over-TLS.

2.  Reserved Words

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Establishing and Managing DNS-over-TLS Sessions

3.1.  Session Initiation

   A DNS server that supports DNS-over-TLS MUST by default listen for
   and accept TCP connections on port 853.  By mutual agreement with its
   clients, the server MAY, instead, use a port other than 853 for DNS-
   over-TLS.  In order to use a port other than 853, both clients and
   servers would need a configuration option in their software.

   DNS clients desiring privacy from DNS-over-TLS from a particular
   server MUST by default establish a TCP connection to port 853 on the
   server.  By mutual agreement with its server, the client MAY,
   instead, use a port other than port 853 for DNS-over-TLS.  Such an
   other port MUST NOT be port 53, but MAY be from the "first-come,
   first-served" port range.  This recommendation against use of port 53
   for DNS-over-TLS is to avoid complication in selecting use or non-use
   of TLS, and to reduce risk of downgrade attacks.  The first data
   exchange on this TCP connection MUST be the client and server
   initiating a TLS handshake using the procedure described in

   DNS clients and servers MUST NOT use port 853 to transport clear text
   DNS messages.  DNS clients MUST NOT send and DNS servers MUST NOT
   respond to clear text DNS messages on any port used for DNS-over-TLS
   (including, for example, after a failed TLS handshake).  There are
   significant security issues in mixing protected and unprotected data

Hu, et al.             Expires September 16, 2016               [Page 5]
Internet-Draft                DNS over TLS                    March 2016

   and for this reason TCP connections on a port designated by a given
   server for DNS-over-TLS are reserved purely for encrypted

   DNS clients SHOULD remember server IP addresses that don't support
   DNS-over-TLS, including timeouts, connection refusals, and TLS
   handshake failures, and not request DNS-over-TLS from them for a
   reasonable period (such as one hour per server).  DNS clients
   following an out-of-band key-pinned privacy profile (Section 4.2) MAY
   be more aggressive about retrying DNS-over-TLS connection failures.

3.2.  TLS Handshake and Authentication

   Once the DNS client succeeds in connecting via TCP on the well-known
   port for DNS-over-TLS, it proceeds with the TLS handshake [RFC5246],
   following the best practices specified in [BCP195].

   The client will then authenticate the server, if required.  This
   document does not propose new ideas for authentication.  Depending on
   the privacy profile in use Section 4, the DNS client may choose not
   to require authentication of the server, or it may make use of a
   trusted Subject Public Key Info (SPKI) Fingerprint pinset.

   After TLS negotiation completes, the connection will be encrypted and
   is now protected from eavesdropping.

3.3.  Transmitting and Receiving Messages

   All messages (requests and responses) in the established TLS session
   MUST use the two-octet length field described in Section 4.2.2 of
   [RFC1035].  For reasons of efficiency, DNS clients and servers SHOULD
   pass the two-octet length field, and the message described by that
   length field, to the TCP layer at the same time (e.g., in a single
   "write" system call) to make it more likely that all the data will be
   transmitted in a single TCP segment ([RFC7766], Section 8).

   In order to minimize latency, clients SHOULD pipeline multiple
   queries over a TLS session.  When a DNS client sends multiple queries
   to a server, it should not wait for an outstanding reply before
   sending the next query ([RFC7766], Section

   Since pipelined responses can arrive out of order, clients MUST match
   responses to outstanding queries on the same TLS connection using the
   Message ID.  If the response contains a question section, the client
   MUST match the QNAME, QCLASS, and QTYPE fields.  Failure by clients
   to properly match responses to outstanding queries can have serious
   consequences for interoperability ([RFC7766], Section 7).

Hu, et al.             Expires September 16, 2016               [Page 6]
Internet-Draft                DNS over TLS                    March 2016

3.4.  Connection Reuse, Close and Reestablishment

   For DNS clients that use library functions such as "getaddrinfo()"
   and "gethostbyname()", current implementations are known to open and
   close TCP connections each DNS call.  To avoid excess TCP
   connections, each with a single query, clients SHOULD reuse a single
   TCP connection to the recursive resolver.  Alternatively they may
   prefer to use UDP to a DNS-over-TLS enabled caching resolver on the
   same machine that then uses a system-wide TCP connection to the
   recursive resolver.

   In order to amortize TCP and TLS connection setup costs, clients and
   servers SHOULD NOT immediately close a connection after each
   response.  Instead, clients and servers SHOULD reuse existing
   connections for subsequent queries as long as they have sufficient
   resources.  In some cases, this means that clients and servers may
   need to keep idle connections open for some amount of time.

   Proper management of established and idle connections is important to
   the healthy operation of a DNS server.  An implementor of DNS-over-
   TLS SHOULD follow best practices for DNS-over-TCP, as described in
   [RFC7766].  Failure to do so may lead to resource exhaustion and

   Whereas client and server implementations from the [RFC1035] era are
   known to have poor TCP connection management, this document
   stipulates that successful negotiation of TLS indicates the
   willingness of both parties to keep idle DNS connections open,
   independent of timeouts or other recommendations for DNS-over-TCP
   without TLS.  In other words, software implementing this protocol is
   assumed to support idle, persistent connections and be prepared to
   manage multiple, potentially long-lived TCP connections.

   This document does not make specific recommendations for timeout
   values on idle connections.  Clients and servers should reuse and/or
   close connections depending on the level of available resources.
   Timeouts may be longer during periods of low activity and shorter
   during periods of high activity.  Current work in this area may also
   assist DNS-over-TLS clients and servers in selecting useful timeout
   values [I-D.edns-tcp-keepalive] [tdns].

   Clients and servers that keep idle connections open MUST be robust to
   termination of idle connection by either party.  As with current DNS-
   over-TCP, DNS servers MAY close the connection at any time (perhaps
   due to resource constraints).  As with current DNS-over-TCP, clients
   MUST handle abrupt closes and be prepared to reestablish connections
   and/or retry queries.

Hu, et al.             Expires September 16, 2016               [Page 7]
Internet-Draft                DNS over TLS                    March 2016

   When reestablishing a DNS-over-TCP connection that was terminated, as
   discussed in [RFC7766], TCP Fast Open [RFC7413] is of benefit.
   Underlining the requirement for sending only encrypted DNS data on a
   DNS-over-TLS port (Section 3.2), when using TCP Fast Open the client
   and server MUST immediately initiate or resume a TLS handshake (clear
   text DNS MUST NOT be exchanged).  DNS servers SHOULD enable fast TLS
   session resumption [RFC5077] and this SHOULD be used when
   reestablishing connections.

   When closing a connection, DNS servers SHOULD use the TLS close-
   notify request to shift TCP TIME-WAIT state to the clients.
   Additional requirements and guidance for optimizing DNS-over-TCP are
   provided by [RFC7766].

4.  Usage Profiles

   This protocol provides flexibility to accommodate several different
   use cases.  This document defines two usage profiles: (1)
   opportunistic privacy, and (2) out-of-band key-pinned authentication
   that can be used to obtain stronger privacy guarantees if the client
   has a trusted relationship with a DNS server supporting TLS.
   Additional methods of authentication will be defined in a forthcoming
   draft [dgr-dprive-dtls-and-tls-profiles].

4.1.  Opportunistic Privacy Profile

   For opportunistic privacy, analogous to SMTP opportunistic security
   [RFC7435], one does not require privacy, but one desires privacy when

   With opportunistic privacy, a client might learn of a TLS-enabled
   recursive DNS resolver from an untrusted source (such as DHCP's DNS
   server option [RFC3646] to discover the IP address followed by
   attemting the DNS-over-TLS on port 853, or with a future DHCP option
   that specifics DNS port).  With such an discovered DNS server, the
   client might or might not validate the resolver.  These choices
   maximize availability and performance, but they leave the client
   vulnerable to on-path attacks that remove privacy.

   Opportunistic privacy can be used by any current client, but it only
   provides privacy when there are no on-path active attackers.

4.2.  Out-of-band Key-pinned Privacy Profile

   The out-of-band key-pinned privacy profile can be used in
   environments where an established trust relationship already exists
   between DNS clients and servers (e.g., stub-to-recursive in

Hu, et al.             Expires September 16, 2016               [Page 8]
Internet-Draft                DNS over TLS                    March 2016

   enterprise networks, actively-maintained contractual service
   relationships, or a client using a public DNS resolver).  The result
   of this profile is that the client has strong guarantees about the
   privacy of its DNS data by connecting only to servers it can
   authenticate.  Operators of a DNS-over-TLS service in this profile
   are expected to provide pins that are specific to the service being
   pinned (i.e., public keys belonging directly to the end-entity or to
   a service-specific private CA) and not to public key(s) of a generic
   public CA.

   In this profile, clients authenticate servers by matching a set of
   Subject Public Key Info (SPKI) Fingerprints in an analogous manner to
   that described in [RFC7469].  With this out-of-band key-pinned
   privacy profile, client administrators SHOULD deploy a backup pin
   along with the primary pin, for the reasons explained in [RFC7469].
   A backup pin is especially helpful in the event of a key rollover, so
   that a server operator does not have to coordinate key transitions
   with all its clients simultaneously.  After a change of keys on the
   server, an updated pinset SHOULD be distributed to all clients in
   some secure way in preparation for future key rollover.  The
   mechanism for out-of-band pinset update is out of scope for this

   Such a client will only use DNS servers for which an SPKI Fingerprint
   pinset has been provided.  The possession of trusted pre-deployed
   pinset allows the client to detect and prevent person-in-the-middle
   and downgrade attacks.

   However, a configured DNS server may be temporarily unavailable when
   configuring a network.  For example, for clients on networks that
   require authentication through web-based login, such authentication
   may rely on DNS interception and spoofing.  Techniques such as those
   used by DNSSEC-trigger [dnssec-trigger] MAY be used during network
   configuration, with the intent to transition to the designated DNS
   provider after authentication.  The user MUST be alerted whenever
   possible that the DNS is not private during such bootstrap.

   Upon successful TLS connection and handshake, the client computes the
   SPKI Fingerprints for the public keys found in the validated server's
   certificate chain (or in the raw public key, if the server provides
   that instead).  If a computed fingerprint exactly matches one of the
   configured pins the client continues with the connection as normal.
   Otherwise, the client MUST treat the SPKI validation failure as a
   non-recoverable error.  Appendix A provides a detailed example of how
   this authentication could be performed in practice.

   Implementations of this privacy profile MUST support the calculation
   of a fingerprint as the SHA-256 [RFC6234] hash of the DER-encoded

Hu, et al.             Expires September 16, 2016               [Page 9]
Internet-Draft                DNS over TLS                    March 2016

   ASN.1 representation of the Subject Public Key Info (SPKI) of an
   X.509 certificate.  Implementations MUST support the representation
   of a SHA-256 fingerprint as a base 64 encoded character string
   [RFC4648].  Additional fingerprint types MAY also be supported.

5.  Performance Considerations

   DNS-over-TLS incurs additional latency at session startup.  It also
   requires additional state (memory) and increased processing (CPU).

   Latency:  Compared to UDP, DNS-over-TCP requires an additional round-
      trip-time (RTT) of latency to establish a TCP connection.  TCP
      Fast Open [RFC7413] can eliminate that RTT when information exists
      from prior connections.  The TLS handshake adds another two RTTs
      of latency.  Clients and servers should support connection
      keepalive (reuse) and out of order processing to amortize
      connection setup costs.  Fast TLS connection resumption [RFC5077]
      further reduces the setup delay and avoids the DNS server keeping
      per-client session state.

      TLS False Start [draft-ietf-tls-falsestart] can also lead to a
      latency reduction in certain situations.  Implementations
      supporting TLS false start need to be aware that it imposes
      additional constraints on how one uses TLS, over and above those
      stated in [BCP195].  It is unsafe to use false start if your
      implementation and deployment does not adhere to these specific
      requirements.  See [draft-ietf-tls-falsestart] for the details of
      these additional constraints.

   State:  The use of connection-oriented TCP requires keeping
      additional state at the server in both the kernel and application.
      The state requirements are of particular concern on servers with
      many clients, although memory-optimized TLS can add only modest
      state over TCP.  Smaller timeout values will reduce the number of
      concurrent connections, and servers can preemptively close
      connections when resource limits are exceeded.

   Processing:  Use of TLS encryption algorithms results in slightly
      higher CPU usage.  Servers can choose to refuse new DNS-over-TLS
      clients if processing limits are exceeded.

   Number of connections:  To minimize state on DNS servers and
      connection startup time, clients SHOULD minimize creation of new
      TCP connections.  Use of a local DNS request aggregator (a
      particular type of forwarder) allows a single active DNS-over-TLS
      connection from any given client computer to its server.
      Additional guidance can be found in [RFC7766].

Hu, et al.             Expires September 16, 2016              [Page 10]
Internet-Draft                DNS over TLS                    March 2016

   A full performance evaluation is outside the scope of this
   specification.  A more detailed analysis of the performance
   implications of DNS-over-TLS (and DNS-over-TCP) is discussed in
   [tdns] and [RFC7766].

6.  IANA Considerations

   IANA is requested to add the following value to the "Service Name and
   Transport Protocol Port Number Registry" registry in the System
   Range.  The registry for that range requires IETF Review or IESG
   Approval [RFC6335] and such a review was requested using the Early
   Allocation process [RFC7120] for the well-known TCP port in this

   We further recommend that IANA reserve the same port number over UDP
   for the proposed DNS-over-DTLS protocol [draft-ietf-dprive-dnsodtls].

   IANA responded to the early allocation request with the following
   TEMPORARY assignment:

    Service Name           domain-s
    Port Number            853
    Transport Protocol(s)  TCP/UDP
    Assignee               IETF DPRIVE Chairs
    Contact                Paul Hoffman
    Description            DNS query-response protocol run over TLS/DTLS
    Reference              This document

   The TEMPORARY assignment expires 2016-10-08.  IANA is requested to
   make the assigmnent permanent upon publication of this document as an

7.  Design Evolution

   [Note to RFC Editor: please do not remove this section as it may be
   useful to future Foo-over-TLS efforts]

   Earlier versions of this document proposed an upgrade-based approach
   to establishing a TLS session.  The client would signal its interest
   in TLS by setting a "TLS OK" bit in the EDNS0 flags field.  A server
   would signal its acceptance by responding with the TLS OK bit set.

   Since we assume the client doesn't want to reveal (leak) any
   information prior to securing the channel, we proposed the use of a
   "dummy query" that clients could send for this purpose.  The proposed
   query name was STARTTLS, query type TXT, and query class CH.

Hu, et al.             Expires September 16, 2016              [Page 11]
Internet-Draft                DNS over TLS                    March 2016

   The TLS OK signaling approach has both advantages and disadvantages.
   One important advantage is that clients and servers could negotiate
   TLS.  If the server is too busy, or doesn't want to provide TLS
   service to a particular client, it can respond negatively to the TLS
   probe.  An ancillary benefit is that servers could collect
   information on adoption of DNS-over-TLS (via the TLS OK bit in
   queries) before implementation and deployment.  Another anticipated
   advantage is the expectation that DNS-over-TLS would work over port
   53.  That is, no need to "waste" another port and deploy new firewall
   rules on middleboxes.

   However, at the same time, there was uncertainty whether or not
   middleboxes would pass the TLS OK bit, given that the EDNS0 flags
   field has been unchanged for many years.  Another disadvantage is
   that the TLS OK bit may make downgrade attacks easy and
   indistinguishable from broken middleboxes.  From a performance
   standpoint, the upgrade-based approach had the disadvantage of
   requiring 1xRTT additional latency for the dummy query.

   Following this proposal, DNS-over-DTLS was proposed separately.  DNS-
   over-DTLS claimed it could work over port 53, but only because a non-
   DTLS server interprets a DNS-over-DTLS query as a response.  That is,
   the non-DTLS server observes the QR flag set to 1.  While this
   technically works, it seems unfortunate and perhaps even undesirable.

   DNS over both TLS and DTLS can benefit from a single well-known port
   and avoid extra latency and mis-interpreted queries as responses.

8.  Implementation Status

   [Note to RFC Editor: please remove this section and reference to RFC
   6982 prior to publication.]

   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in RFC 6982.
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may

   According to RFC 6982, "this will allow reviewers and working groups

Hu, et al.             Expires September 16, 2016              [Page 12]
Internet-Draft                DNS over TLS                    March 2016

   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".

8.1.  Unbound

   The Unbound recursive name server software added support for DNS-
   over-TLS in version 1.4.14.  The unbound.conf configuration file has
   the following configuration directives: ssl-port, ssl-service-key,
   ssl-service-pem, ssl-upstream.  See

8.2.  ldns

   Sinodun Internet Technologies has implemented DNS-over-TLS in the
   ldns library from NLnetLabs.  This also gives DNS-over-TLS support to
   the drill DNS client program.  Patches available at https://

8.3.  digit

   The digit DNS client from USC/ISI supports DNS-over-TLS.  Source code
   available at

8.4.  getdns

   The getdns API implementation supports DNS-over-TLS.  Source code
   available at

9.  Security Considerations

   Use of DNS-over-TLS is designed to address the privacy risks that
   arise out of the ability to eavesdrop on DNS messages.  It does not
   address other security issues in DNS, and there are a number of
   residual risks that may affect its success at protecting privacy:

   1.  There are known attacks on TLS, such as person-in-the-middle and
       protocol downgrade.  These are general attacks on TLS and not
       specific to DNS-over-TLS; please refer to the TLS RFCs for
       discussion of these security issues.  Clients and servers MUST
       adhere to the TLS implementation recommendations and security
       considerations of [BCP195].  DNS clients keeping track of servers
       known to support TLS enables clients to detect downgrade attacks.
       For servers with no connection history and no apparent support

Hu, et al.             Expires September 16, 2016              [Page 13]
Internet-Draft                DNS over TLS                    March 2016

       for TLS, depending on their Privacy Profile and privacy
       requirements, clients may choose to (a) try another server when
       available, (b) continue without TLS, or (c) refuse to forward the

   2.  Middleboxes [RFC3234] are present in some networks and have been
       known to interfere with normal DNS resolution.  Use of a
       designated port for DNS-over-TLS should avoid such interference.
       In general, clients that attempt TLS and fail can either fall
       back on unencrypted DNS, or wait and retry later, depending on
       their Privacy Profile and privacy requirements.

   3.  Any DNS protocol interactions performed in the clear can be
       modified by a person-in-the-middle attacker.  For example,
       unencrypted queries and responses might take place over port 53
       between a client and server.  For this reason, clients MAY
       discard cached information about server capabilities advertised
       in clear text.

   4.  This document does not itself specify ideas to resist known
       traffic analysis or side channel leaks.  Even with encrypted
       messages, a well-positioned party may be able to glean certain
       details from an analysis of message timings and sizes.  Clients
       and servers may consider the use of a padding method to address
       privacy leakage due to message sizes [I-D.edns0-padding].  Since
       traffic analysis can be based on many kinds of patterns and many
       kinds of classifiers, simple padding schemes alone might not be
       sufficient to mitigate such an attack.  Padding will, however,
       form a part of more complex mitigations for traffic analysis
       attacks that are likely to be developed over time.  Implementers
       who can offer flexibility in terms of how padding can be used may
       be in a better position to enable such mitigations to be deployed
       in future.

   As noted earlier, DNSSEC and DNS-over-TLS are independent and fully
   compatible protocols, each solving different problems.  The use of
   one does not diminish the need nor the usefulness of the other.

10.  Contributing Authors

   The below individuals contributed significantly to the draft, and so
   we have listed additional authors in this section.

Hu, et al.             Expires September 16, 2016              [Page 14]
Internet-Draft                DNS over TLS                    March 2016

   Sara Dickinson
   Sinodun Internet Technologies
   Magdalen Centre
   Oxford Science Park
   Oxford  OX4 4GA
   United Kingdom

   Daniel Kahn Gillmor
   125 Broad Street, 18th Floor
   New York, NY  10004
   United States

11.  Acknowledgments

   The authors would like to thank Stephane Bortzmeyer, John Dickinson,
   Brian Haberman, Christian Huitema, Shumon Huque, Kim-Minh Kaplan,
   Simon Joseffson, Simon Kelley, Warren Kumari, John Levine, Ilari
   Liusvaara, Bill Manning, George Michaelson, Eric Osterweil, Jinmei
   Tatuya, Tim Wicinski, and Glen Wiley for reviewing this Internet-
   draft.  They also thank Nikita Somaiya for early work on this idea.

   Work by Zi Hu, Liang Zhu, and John Heidemann on this document is
   partially sponsored by the U.S. Dept. of Homeland Security (DHS)
   Science and Technology Directorate, HSARPA, Cyber Security Division,
   BAA 11-01-RIKA and Air Force Research Laboratory, Information
   Directorate under agreement number FA8750-12-2-0344, and contract
   number D08PC75599.

12.  References

12.1.  Normative References

   [BCP195]   Sheffer, Y., Holz, R., and P. Saint-Andre,
              "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525,
              May 2015.

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,

   [RFC1035]  Mockapetris, P., "Domain names - implementation and

Hu, et al.             Expires September 16, 2016              [Page 15]
Internet-Draft                DNS over TLS                    March 2016

              specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
              November 1987, <>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
              RFC2119, March 1997,

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

   [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
              "Transport Layer Security (TLS) Session Resumption without
              Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
              January 2008, <>.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/
              RFC5246, August 2008,

   [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
              DOI 10.17487/RFC6234, May 2011,

   [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
              Cheshire, "Internet Assigned Numbers Authority (IANA)
              Procedures for the Management of the Service Name and
              Transport Protocol Port Number Registry", BCP 165,
              RFC 6335, DOI 10.17487/RFC6335, August 2011,

   [RFC7120]  Cotton, M., "Early IANA Allocation of Standards Track Code
              Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120,
              January 2014, <>.

   [RFC7469]  Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
              Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469,
              April 2015, <>.

   [RFC7766]  Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., and
              D. Wessels, "DNS Transport over TCP - Implementation
              Requirements", RFC 7766, DOI 10.17487/RFC7766, March 2016,

Hu, et al.             Expires September 16, 2016              [Page 16]
Internet-Draft                DNS over TLS                    March 2016

12.2.  Informative References

              Wijngaards, W., "Confidential DNS",
              draft-wijngaards-dnsop-confidentialdns-03 (work in
              progress), March 2015, <

              Wouters, P., Abley, J., Dickinson, S., and R. Bellis, "The
              edns-tcp-keepalive EDNS0 Option",
              draft-ietf-dnsop-edns-tcp-keepalive-02 (work in progress),
              July 2015, <

              Mayrhofer, A., "The EDNS(0) Padding Option",
              draft-mayrhofer-edns0-padding-01 (work in progress),
              August 2015, <

              Osterweil, E., Wiley, G., Okubo, T., Lavu, R., and A.
              Mohaisen, "Opportunistic Encryption with DANE Semantics
              and IPsec: IPSECA", draft-osterweil-dane-ipsec-03 (work in
              progress), July 2015,

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/
              RFC2818, May 2000,

   [RFC3234]  Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
              Issues", RFC 3234, DOI 10.17487/RFC3234, February 2002,

   [RFC3646]  Droms, R., Ed., "DNS Configuration options for Dynamic
              Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
              DOI 10.17487/RFC3646, December 2003,

   [RFC4033]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "DNS Security Introduction and Requirements",
              RFC 4033, DOI 10.17487/RFC4033, March 2005,

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Hu, et al.             Expires September 16, 2016              [Page 17]
Internet-Draft                DNS over TLS                    March 2016

              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,

   [RFC6698]  Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
              of Named Entities (DANE) Transport Layer Security (TLS)
              Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698,
              August 2012, <>.

   [RFC7258]  Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
              Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258,
              May 2014, <>.

   [RFC7413]  Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
              Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,

   [RFC7435]  Dukhovni, V., "Opportunistic Security: Some Protection
              Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
              December 2014, <>.

   [RFC7626]  Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
              DOI 10.17487/RFC7626, August 2015,

              Dempsky, M., "DNSCurve", draft-dempsky-dnscurve-01 (work
              in progress), August 2010,

              Dickinson, S., Gillmor, D., and T. Reddy,
              "Authentication   and (D)TLS Profile for DNS-over-TLS and
              DNS-over-DTLS", draft-dgr-dprive-dtls-and-tls-profiles-00
              (work in progress), December 2015, <https://

              Denis, F., "DNSCrypt", December 2015,

              NLnet Labs, "Dnssec-Trigger", May 2014,


Hu, et al.             Expires September 16, 2016              [Page 18]
Internet-Draft                DNS over TLS                    March 2016

              Reddy, T., Wing, D., and P. Patil, "DNS over DTLS
              (DNSoD)", draft-ietf-dprive-dnsodtls-01 (work in
              progress), June 2015, <

              Moeller, B., Langley, A., and N. Modadugu, "Transport
              Layer Security (TLS) False Start",
              draft-ietf-tls-falsestart-01 (work in progress),
              November 2015,

   [tdns]     Zhu, L., Hu, Z., Heidemann, J., Wessels, D., Mankin, A.,
              and N. Somaiya, "T-DNS: Connection-Oriented DNS to Improve
              Privacy and Security", Technical report ISI-TR-688,
              February 2014, <Technical report, ISI-TR-688,

Appendix A.  Out-of-band Key-pinned Privacy Profile Example

   This section presents an example of how the out-of-band key-pinned
   privacy profile could work in practice based on a minimal pinset (two

   A DNS client system is configured with an out-of-band key-pinned
   privacy profile from a network service, using a pinset containing two
   pins.  Represented in HPKP [RFC7469] style, the pins are:

   o  pin-sha256="FHkyLhvI0n70E47cJlRTamTrnYVcsYdjUGbr79CfAVI="

   o  pin-sha256="dFSY3wdPU8L0u/8qECuz5wtlSgnorYV2f66L6GNQg6w="

   The client also configures the IP addresses of its expected DNS
   server, and

   The client connects to on TCP port 853 and begins the TLS
   handshake, negotiation TLS 1.2 with a diffie-hellman key exchange.
   The server sends a Certificate message with a list of three
   certificates (A, B, and C), and signs the ServerKeyExchange message
   correctly with the public key found certificate A.

   The client now takes the SHA-256 digest of the SPKI in cert A, and
   compares it against both pins in the pinset.  If either pin matches,
   the verification is successful; the client continues with the TLS
   connection and can make its first DNS query.

   If neither pin matches the SPKI of cert A, the client verifies that

Hu, et al.             Expires September 16, 2016              [Page 19]
Internet-Draft                DNS over TLS                    March 2016

   cert A is actually issued by cert B. If it is, it takes the SHA-256
   digest of the SPKI in cert B and compares it against both pins in the
   pinset.  If either pin matches, the verification is successful.
   Otherwise, it verifes that B was issued by C, and then compares the
   pins against the digest of C's SPKI.

   If none of the SPKIs in the cryptographically-valid chain of certs
   match any pin in the pinset, the client closes the connection with an
   error, and marks the IP address as failed.

Authors' Addresses

   Zi Hu
   USC/Information Sciences Institute
   4676 Admiralty Way, Suite 1133
   Marina del Rey, CA  90292
   United States

   Phone: +1 213 587 1057

   Liang Zhu
   USC/Information Sciences Institute
   4676 Admiralty Way, Suite 1133
   Marina del Rey, CA  90292
   United States

   Phone: +1 310 448 8323

   John Heidemann
   USC/Information Sciences Institute
   4676 Admiralty Way, Suite 1001
   Marina del Rey, CA  90292
   United States

   Phone: +1 310 822 1511

   Allison Mankin

   Phone: +1 301 728 7198

Hu, et al.             Expires September 16, 2016              [Page 20]
Internet-Draft                DNS over TLS                    March 2016

   Duane Wessels
   Verisign Labs
   12061 Bluemont Way
   Reston, VA  20190
   United States

   Phone: +1 703 948 3200

   Paul Hoffman


Hu, et al.             Expires September 16, 2016              [Page 21]