Interface to the Routing System Problem Statement
draft-ietf-i2rs-problem-statement-03

The information below is for an old version of the document
Document Type Active Internet-Draft (i2rs WG)
Last updated 2014-06-06
Replaces draft-atlas-i2rs-problem-statement
Stream IETF
Intended RFC status (None)
Formats pdf htmlized bibtex
Reviews
Stream WG state WG Document
Document shepherd None
IESG IESG state I-D Exists
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                      A. Atlas, Ed.
Internet-Draft                                          Juniper Networks
Intended status: Informational                            T. Nadeau, Ed.
Expires: December 8, 2014                                        Brocade
                                                                 D. Ward
                                                           Cisco Systems
                                                            June 6, 2014

           Interface to the Routing System Problem Statement
                  draft-ietf-i2rs-problem-statement-03

Abstract

   As modern networks grow in scale and complexity, the need for rapid
   and dynamic control increases.  With scale, the need to automate even
   the simplest operations is important, but even more critical is the
   ability to quickly interact with more complex operations such as
   policy-based controls.

   In order to enable network applications to have access to and control
   over information in the Internet's routing system, we need a publicly
   documented interface specification.  The interface needs to support
   real-time, asynchronous interactions using data models and encodings
   that are efficient and potentially different from those available
   today.  Furthermore, the interface must be tailored to support a
   variety of use cases.

   This document expands upon these statements of requirements to
   provide a detailed problem statement for an Interface to the Routing
   System (I2RS).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 8, 2014.

Atlas, et al.           Expires December 8, 2014                [Page 1]
Internet-Draft           I2RS Problem Statement                June 2014

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  I2RS Model and Problem Area for The IETF  . . . . . . . . . .   3
   3.  Standard Data-Models of Routing State for Installation  . . .   5
   4.  Learning Router Information . . . . . . . . . . . . . . . . .   6
   5.  Desired Aspects of a Protocol for I2RS  . . . . . . . . . . .   6
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   8
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   9.  Informative References  . . . . . . . . . . . . . . . . . . .   8
   Appendix A.  Existing Management Interfaces . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction

   As modern networks grow in scale and complexity, the need for rapid,
   flexible and dynamic control increases.  With scale, the need to
   automate even the simplest operation is important, but even more
   critical is the ability for network operators to quickly interact
   with these operations using mechanisms such as policy-based controls.

   With complexity comes the need for more sophisticated automated
   network applications and orchestration software that can process
   large quantities of data, run complex algorithms, and adjust the
   routing state as required in order to support the network
   applications, their computations and their policies.  Changes made to
   the routing state of a network by external applications must be
   verifiable by those applications to ensure that the correct state has
   been installed in the correct places.

   In the past, mechanisms to support the requirements outlined above
   have been developed piecemeal as proprietary solutions to specific

Atlas, et al.           Expires December 8, 2014                [Page 2]
Show full document text