Skip to main content

Dissemination of Flow Specification Rules for L2 VPN
draft-ietf-idr-flowspec-l2vpn-00

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Active".
Authors Hao Weiguo , liangqiandeng , Stephane Litkowski , Shunwan Zhuang
Last updated 2015-03-07
Replaces draft-hao-idr-flowspec-evpn
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state I-D Exists
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-idr-flowspec-l2vpn-00
IDR                                                              W. Hao
                                                               Q. Liang
Internet Draft                                 Huawei Technologies Ltd.
Intended status: Standards Track                             Jim Uttaro
                                                                   AT&T
                                                           S. Litkowski
                                                Orange Business Service
                                                              S. Zhuang
                                               Huawei Technologies Ltd.
Expires: September 2015                                   March 7, 2015

            Dissemination of Flow Specification Rules for L2 VPN
                   draft-ietf-idr-flowspec-l2vpn-00.txt

Abstract

   This document defines BGP flow-spec extension for Ethernet traffic
   filtering in L2 VPN network. SAFI=134 in [RFC5575] is redefined for
   dissemination traffic filtering information in an L2VPN environment.
   A new subset of component types and extended community also are
   defined.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet-Drafts as
   reference material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

   This Internet-Draft will expire on September 7, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors. All rights reserved.

Hao & Liang,et,al     Expires September 7, 2015               [Page 1]
Internet-Draft             EVPN Flow Spec                   March 2015

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with
   respect to this document. Code Components extracted from this
   document must include Simplified BSD License text as described in
   Section 4.e of the Trust Legal Provisions and are provided without
   warranty as described in the Simplified BSD License.

Table of Contents

   1. Introduction ................................................ 2
   2. Layer 2 Flow Specification encoding in BGP................... 3
   3. Ethernet Flow Specification encoding in BGP.................. 4
   4. Ethernet Flow Specification Traffic Actions.................. 6
   5. Security Considerations...................................... 7
   6. IANA Considerations ......................................... 7
      6.1. Normative References.................................... 8
      6.2. Informative References.................................. 9
   7. Acknowledgments ............................................. 9

1. Introduction

   BGP Flow-spec is an extension to BGP that allows for the
   dissemination of traffic flow specification rules.  It leverages the
   BGP Control Plane to simplify the distribution of ACLs, new filter
   rules can be injected to all BGP peers simultaneously without
   changing router configuration. The typical application of BGP Flow-
   spec is to automate the distribution of traffic filter lists to
   routers for DDOS mitigation.

   RFC5575 defines a new BGP Network Layer Reachability Information
   (NLRI) format used to distribute traffic flow specification rules.
   NLRI (AFI=1, SAFI=133)is for IPv4 unicast filtering. NLRI (AFI=1,
   SAFI=134)is for BGP/MPLS VPN filtering. The Flow specification match
   part only includes L3/L4 information like source/destination prefix,
   protocol, ports, and etc, so traffic flows can only be selectively
   filtered based on L3/L4 information.

   Layer 2 Virtual Private Networks  L2VPNs have already been deployed
   in an increasing number of networks today. In L2VPN network, we also
   have requirement to deploy BGP Flow-spec to mitigate DDoS attack
   traffic. Within L2VPN network, both IP and non-IP Ethernet traffic

Hao & Liang,et,al       Expires July 7, 2015                  [Page 2]
Internet-Draft             EVPN Flow Spec                   March 2015

   maybe exist. For IP traffic filtering, the Flow specification rules
   defined in [RFC5575] which include match criteria and actions can
   still be used, flow specification rules received via new NLRI format
   apply only to traffic that belongs to the VPN instance(s) in which
   it is imported. For non-IP Ethernet traffic filtering, Layer 2
   related information like source/destination MAC and VLAN should be
   considered. But the flow specification match criteria defined in
   RFC5575 only include layer 3 and layer 4 IP information, layer 2
   Ethernet information haven't been included.

   There are different kinds of L2VPN networks like EVPN [EVPN], BGP
   VPLS [RFC4761], LDP VPLS [RFC4762] and border gateway protocol (BGP)
   auto discovery [RFC 6074]. Because the flow-spec feature relies on
   BGP protocol to distribute traffic filtering rules, so it can only
   be incrementally deployed in those L2VPN networks where BGP is used
   for auto discovery and/or signaling purposes such as BGP-based VPLS
   [4761], EVPN and LDP-based VPLS [4762] with BGP auto-discovery
   [6074].

   This draft proposes a new subset of component types and extended
   community to support L2VPN flow-spec application. SAFI=134 in
   [RFC5575] is redefined for dissemination traffic filtering
   information in an L2VPN environment.

2. Layer 2 Flow Specification encoding in BGP

   The [RFC5575] defines SAFI 133 and SAFI 134 for "dissemination of
   IPv4 flow specification rules" and "dissemination of VPNv4 flow
   specification rules" respectively. [draft-ietf-idr-flow-spec-v6-06]
   redefines the [RFC5575] SAFIs in order to make them applicable to
   both IPv4 and IPv6 applications. This document will further redefine
   the SAFI 134 in order to make them applicable to L2VPN applications.

   The following changes are defined:

   "SAFI 134 for dissemination of L3VPN flow specification rules" to
   now be defined as "SAFI 134 for dissemination of VPN flow
   specification rules"

   For SAFI 134 the indication to which address family it is referring
   to will be recognized by AFI value (AFI=1 for VPNv4, AFI=2 VPNv6 and
   AFI=25 for L2VPN). Such modification is fully backwards compatible
   with existing implementation and production deployments.

Hao & Liang,et,al       Expires July 7, 2015                  [Page 3]
Internet-Draft             EVPN Flow Spec                   March 2015

3. Ethernet Flow Specification encoding in BGP

   The NLRI format for this address family consists of a fixed-length
   Route Distinguisher field (8 bytes) followed by a flow specification,
   following the encoding defined in this document.  The NLRI length
   field shall include both the 8 bytes of the Route Distinguisher as
   well as the subsequent flow specification.

   Flow specification rules received via this NLRI apply only to
   traffic that belongs to the VPN instance(s) in which it is imported.
   Flow rules are accepted by default, when received from remote PE
   routers.

   Besides the component types defined in [RFC5575] and [draft-ietf-
   idr-flow-spec-v6-06], this document proposes the following
   additional component types for L2VPN Ethernet traffic filtering:

   Type 14 - Source MAC

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation(op), value} pairs used to match source
   MAC. Values are encoded as 6-byte quantities. The operation field is
   encoded as ''Numeric operator'' defined in [RFC5575].

   Type 15 - Destination MAC

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match destination
   MAC. Values are encoded as 6-byte quantities.

   Type 16 - Ethernet Type

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match two-octet
   field. Values are encoded as 2-byte quantities.

   Ethernet II framing defines the two-octet EtherType field in an
   Ethernet frame, preceded by destination and source MAC addresses,
   that identifies an upper layer protocol encapsulating the frame data.

   Type 17 - DSAP(Destination Service Access Point) in LLC

   Encoding: <type (1 octet), [op, value]+>

Hao & Liang,et,al       Expires July 7, 2015                  [Page 4]
Internet-Draft             EVPN Flow Spec                   March 2015

   Defines a list of {operation, value} pairs used to match 1-octet
   DSAP in the 802.2 LLC(Logical Link Control Header). Values are
   encoded as 1-byte quantities.

   Type 18 - SSAP(Source Service Access Point) in LLC

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match 1-octet
   SSAP in the 802.2 LLC. Values are encoded as 1-byte quantities.

   Type 19 - Control field in LLC

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match 1-octet
   control field in the 802.2 LLC. Values are encoded as 1-byte
   quantities.

   Type 20 - SNAP

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match 5-octet
   SNAP(Sub-Network Access Protocol) field. Values are encoded as 5-
   byte quantities.

   Type 21 - VLAN ID

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match VLAN ID.
   Values are encoded as 1- or 2-byte quantities.

   In virtual local-area network (VLAN) stacking case, the VLAN ID is
   outer VLAN ID.

   Type 22 - VLAN COS

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match 3-bit VLAN
   COS fields [802.1p]. Values are encoded using a single byte, where
   the five most significant bits are zero and the three least
   significant bits contain the VLAN COS value.

Hao & Liang,et,al       Expires July 7, 2015                  [Page 5]
Internet-Draft             EVPN Flow Spec                   March 2015

   In virtual local-area network (VLAN) stacking case, the VLAN COS is
   outer VLAN COS.

   Type 23 - Inner VLAN ID

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match inner VLAN
   ID using for virtual local-area network (VLAN) stacking or Q in Q
   case. Values are encoded as 1- or 2-byte quantities.

   In single VLAN case, the component type MUST not be used.

   Type 24 - Inner VLAN COS

   Encoding: <type (1 octet), [op, value]+>

   Defines a list of {operation, value} pairs used to match 3-bit inner
   VLAN COS fields [802.1p] using for virtual local-area network (VLAN)
   stacking or Q in Q case. Values are encoded using a single byte,
   where the five most significant bits are zero and the three least
   significant bits contain the VLAN COS value.

   In single VLAN case, the component type MUST not be used.

4. Ethernet Flow Specification Traffic Actions

   +--------+--------------------+--------------------------+
   |  type  | extended community |        encoding          |
   +--------+--------------------+--------------------------+
   | 0x8006 | traffic-rate       | 2-byte as#, 4-byte float |
   | 0x8007 | traffic-action     | bitmask                  |
   | 0x8008 | redirect           | 6-byte Route Target      |
   | 0x8009 | traffic-marking    | DSCP value               |
   +--------+--------------------+--------------------------+
   Besides to support the above extended communities per RFC5575, this
   document also proposes the following BGP extended communities
   specifications for Ethernet flow to extend [RFC5575]:

Hao & Liang,et,al       Expires July 7, 2015                  [Page 6]
Internet-Draft             EVPN Flow Spec                   March 2015

   +--------+--------------------+--------------------------+
   | type   | extended community | encoding                 |
   +--------+--------------------+--------------------------+
   | 0x800A | VLAN COS marking   | COS value                |
   +--------+--------------------+--------------------------+
   The VLAN COS marking extended community instructs a system to modify
   the COS bits of a transiting Ethernet packet to the corresponding
   value. This extended community is encoded as a sequence of 5 zero
   bytes followed by the VLAN COS value encoded in the 3 least
   significant bits of 6th byte.

   In virtual local-area network (VLAN) stacking case, the VLAN COS is
   outer VLAN COS.

5. Security Considerations

   No new security issues are introduced to the BGP protocol by this
   specification.

6. IANA Considerations

   IANA is requested to rename currently defined SAFI 134 per [RFC5575]
   to read:

      134     VPN dissemination of flow specification rules

   IANA is requested to create and maintain a new registry for "Flow
   spec L2VPN Component Types". For completeness, the types defined in
   [RFC5575] and [draft-ietf-idr-flow-spec-v6-06] also are listed here.

Hao & Liang,et,al       Expires July 7, 2015                  [Page 7]
Internet-Draft             EVPN Flow Spec                   March 2015

   +--------+-------------------------------+--------------------------+
   |  type  |         RFC or Draft          |       discription        |
   +--------+-------------------------------+--------------------------+
   |   1    |RFC5575                        | Destination Prefix       |
   |   1    |draft-ietf-idr-flow-spec-v6-06 | Destination IPv6 Prefix  |
   |   2    |RFC5575                        | Source Prefix            |
   |   2    |draft-ietf-idr-flow-spec-v6-06 | Source IPv6 Prefix       |
   |   3    |RFC5575                        | IP Protocol              |
   |   3    |draft-ietf-idr-flow-spec-v6-06 | Next Header              |
   |   4    |RFC5575                        | Port                     |
   |   5    |RFC5575                        | Destination port         |
   |   6    |RFC5575                        | Source port              |
   |   7    |RFC5575                        | ICMP type                |
   |   8    |RFC5575                        | ICMP code                |
   |   9    |RFC5575                        | TCP flags                |
   |   10   |RFC5575                        | Packet length            |
   |   11   |RFC5575                        | DSCP                     |
   |   12   |RFC5575                        | Fragment                 |
   |   13   |draft-ietf-idr-flow-spec-v6-06 | Flow Label               |
   |   14   |This draft                     | Source MAC               |
   |   15   |This draft                     | Destination MAC          |
   |   16   |This draft                     | Ethernet Type            |
   |   17   |This draft                     | DSAP in LLC              |
   |   18   |This draft                     | SSAP in LLC              |
   |   19   |This draft                     | Control field in LLC     |
   |   20   |This draft                     | SNAP                     |
   |   21   |This draft                     | VLAN ID                  |
   |   22   |This draft                     | VLAN COS                 |
   |   23   |This draft                     | Inner VLAN ID            |
   |   24   |This draft                     | Inner VLAN COS           |
   +--------+-------------------------------+--------------------------+
   IANA is requested to update the reference for the following
   assignment in the "BGP Extended Communities Type - extended,
   transitive" registry:

   Type value Name Reference

   ---------- ---------------------------------------- ---------

   0x080A Flow spec VLAN COS marking [this document]

6.1. Normative References

   [1]  [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

         Requirement Levels", BCP 14, RFC 2119, March 1997.

Hao & Liang,et,al       Expires July 7, 2015                  [Page 8]
Internet-Draft             EVPN Flow Spec                   March 2015

   [2]  [RFC5575] P. Marques, N. Sheth, R. Raszuk, B. Greene, J.Mauch,
         D. McPherson, "Dissemination of Flow Specification Rules", RFC
         5575, August 2009.

   [3]  [RFC4761] K. Kompella, Ed., Y. Rekhter, Ed., "Virtual Private
         LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling",
         RFC4761, January 2007.

   [4]  [RFC4762] M. Lasserre, Ed., V. Kompella, Ed., "Virtual Private
         LAN Service (VPLS) Using Label Distribution Protocol (LDP)
         Signaling", RFC4762, January 2007.

   [5]  [RFC6074] E. Rosen, B. Davie, V. Radoaca, "Provisioning, Auto-
         Discovery, and Signaling in Layer 2 Virtual Private Networks
         (L2VPNs)", RFC6074, January 2011.

6.2. Informative References

   [1]   [EVPN] Sajassi et al., "BGP MPLS Based Ethernet VPN", draft-
         ietf-l2vpn-evpn-07.txt, work in progress, May, 2014.

   [2]   [IEEE 802.1p] Javin, et.al. "IEEE 802.1p: LAN Layer 2 QoS/CoS
         Protocol for Traffic Prioritization", 2012-02-15

7. Acknowledgments

   The authors wish to acknowledge the important contributions of
   Xiaohu Xu, Lucy Yong.

Hao & Liang,et,al       Expires July 7, 2015                  [Page 9]
Internet-Draft             EVPN Flow Spec                   March 2015

   Authors' Addresses

   Weiguo Hao
   Huawei Technologies
   101 Software Avenue,
   Nanjing 210012
   China
   Email: haoweiguo@huawei.com

   Qiandeng Liang
   Huawei Technologies
   101 Software Avenue,
   Nanjing 210012
   China
   Email: liangqiandeng@huawei.com

   James Uttaro
   AT&T
   EMail: uttaro@att.com

   Stephane Litkowski
   Orange
   stephane.litkowski@orange.com

   Shunwan Zhuang
   Huawei Technologies
   Huawei Bld., No.156 Beiqing Rd.
   Beijing  100095
   China
   Email: zhuangshunwan@huawei.com

Hao & Liang,et,al       Expires July 7, 2015                 [Page 10]