Skip to main content

AES Encryption with HMAC-SHA2 for Kerberos 5
draft-ietf-kitten-aes-cts-hmac-sha2-07

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 8009.
Authors Michael J. Jenkins , Michael Peck , Kelley W. Burgin
Last updated 2015-12-03
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state In WG Last Call
Revised I-D Needed - Issue raised by WGLC
Document shepherd (None)
IESG IESG state Became RFC 8009 (Informational)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-kitten-aes-cts-hmac-sha2-07
Network Working Group                                         M. Jenkins
Internet Draft                                  National Security Agency
Intended Status: Informational                                   M. Peck
Expires: June 5, 2016                              The MITRE Corporation
                                                               K. Burgin
                                                        December 3, 2015

              AES Encryption with HMAC-SHA2 for Kerberos 5
                 draft-ietf-kitten-aes-cts-hmac-sha2-07

Abstract

   This document specifies two encryption types and two corresponding
   checksum types for Kerberos 5.  The new types use AES in CTS mode
   (CBC mode with ciphertext stealing) for confidentiality and HMAC with
   a SHA-2 hash for integrity.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 5, 2016.

Copyright and License Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
 

Jenkins, et al.           Expires June 5, 2016                  [Page 1]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Protocol Key Representation  . . . . . . . . . . . . . . . . .  3
   3.  Key Derivation Function  . . . . . . . . . . . . . . . . . . .  3
   4.  Key Generation from Pass Phrases . . . . . . . . . . . . . . .  4
   5.  Kerberos Algorithm Protocol Parameters . . . . . . . . . . . .  5
   6.  Checksum Parameters  . . . . . . . . . . . . . . . . . . . . .  7
   7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . .  7
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . .  7
     8.1.  Random Values in Salt Strings  . . . . . . . . . . . . . .  8
     8.2.  Algorithm Rationale  . . . . . . . . . . . . . . . . . . .  8
   9.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . .  9
   10.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  9
     10.1.  Normative References  . . . . . . . . . . . . . . . . . .  9
     10.2.  Informative References  . . . . . . . . . . . . . . . . .  9
   Appendix A.  Test Vectors  . . . . . . . . . . . . . . . . . . . . 10
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 16

 

Jenkins, et al.           Expires June 5, 2016                  [Page 2]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

1.  Introduction

   This document defines two encryption types and two corresponding
   checksum types for Kerberos 5 using AES with 128-bit or 256-bit keys.

   To avoid ciphertext expansion, we use a variation of the CBC-CS3 mode
   defined in [SP800-38A+], also referred to as ciphertext stealing or
   CTS mode.  The new types conform to the framework specified in
   [RFC3961], but do not use the simplified profile.

   The encryption and checksum types defined in this document are
   intended to support environments that desire to use SHA-256 or SHA-
   384 as the hash algorithm.  Differences between the encryption and
   checksum types defined in this document and the pre-existing Kerberos
   AES encryption and checksum types specified in [RFC3962] are:

   *  The pseudorandom function used by PBKDF2 is HMAC-SHA-256 or HMAC-
      SHA-384.

   *  A key derivation function from [SP800-108] using the SHA-256 or
      SHA-384 hash algorithm is used to produce keys for encryption,
      integrity protection, and checksum operations.

   *  The HMAC is calculated over the cipherstate concatenated with the
      AES output, instead of being calculated over the confounder and
      plaintext.  This allows the message receiver to verify the
      integrity of the message before decrypting the message.

   *  The HMAC algorithm uses the SHA-256 or SHA-384 hash algorithm for
      integrity protection and checksum operations.

2.  Protocol Key Representation

   The AES key space is dense, so we can use random or pseudorandom
   octet strings directly as keys.  The byte representation for the key
   is described in [FIPS197], where the first bit of the bit string is
   the high bit of the first byte of the byte string (octet string).

3.  Key Derivation Function

   We use a key derivation function from Section 5.1 of [SP800-108]
   which uses the HMAC algorithm as the PRF.

     KDF-HMAC-SHA2(key, label, k) = k-truncate(K1)

   key: The source of entropy from which subsequent keys are derived
   (this is known as Ki in [SP800-108]).

 

Jenkins, et al.           Expires June 5, 2016                  [Page 3]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   label: An octet string describing the intended usage of the derived
   key.

   k: Length in bits of the key to be outputted, expressed in big-endian
   binary representation in 4 bytes (this is known as L in [SP800-108]).
     (e.g. k = 128 is represented as 0x00000080,
     k = 192 as 0x000000C0, k = 256 as 0x00000100,
     k = 384 as 0x00000180)

   When the encryption type is aes128-cts-hmac-sha256-128, k must be no
   greater than 256. When the encryption type is aes256-cts-hmac-sha384-
   192, k must be no greater than 384.

   The k-truncate function is defined in [RFC3961], Section 5.1.

   In all computations in this document, | indicates concatenation.

   When the encryption type is aes128-cts-hmac-sha256-128, then K1 is
   computed as follows:

     K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | k)

   When the encryption type is aes256-cts-hmac-sha384-192, then K1 is
   computed as follows:

     K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | k)

4.  Key Generation from Pass Phrases

   PBKDF2 [RFC2898] is used to derive the base-key from a passphrase and
   salt.

   To ensure that different long-term base-keys are used with different
   enctypes, we prepend the enctype name to the salt, separated by a
   null byte.  The enctype-name is "aes128-cts-hmac-sha256-128" or
   "aes256-cts-hmac-sha384-192" (without the quotes).

   The user's long-term base-key is derived as follows:

     iter_count = string-to-key parameter (default is
                  decimal 32768 if not specified)
     saltp = enctype-name | 0x00 | salt
     tkey = PBKDF2(passphrase, saltp, iter_count, keylength)
     base-key = KDF-HMAC-SHA2(tkey, "kerberos", keylength)
                where "kerberos" is the octet-string
                0x6B65726265726F73

   where the pseudorandom function used by PBKDF2 is HMAC-SHA-256 when
 

Jenkins, et al.           Expires June 5, 2016                  [Page 4]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   the enctype is "aes128-cts-hmac-sha256-128" and HMAC-SHA-384 when the
   enctype is "aes256-cts-hmac-sha384-192", the value for keylength is
   the AES key length (128 or 256 bits), and the algorithm KDF-HMAC-SHA2
   is defined in Section 3.

5.  Kerberos Algorithm Protocol Parameters

   The cipherstate is used as the formal initialization vector (IV)
   input into CBC-CS3.  The plaintext is prepended with a 16-octet
   random nonce generated by the message originator, known as a
   confounder.

   The ciphertext is a concatenation of the output of AES in CBC-CS3
   mode and the HMAC of the cipherstate concatenated with the AES
   output.  The HMAC is computed using either SHA-256 or SHA-384
   depending on the encryption type.  The output of HMAC-SHA-256 is
   truncated to 128 bits and the output of HMAC-SHA-384 is truncated to
   192 bits. Sample test vectors are given in Appendix A.

   Decryption is performed by removing the HMAC, verifying the HMAC
   against the cipherstate concatenated with the ciphertext, and then
   decrypting the ciphertext if the HMAC is correct.  Finally, the first
   16 octets of the decryption output (the confounder) is discarded, and
   the remainder is returned as the plaintext decryption output.

   The following parameters apply to the encryption types aes128-cts-
   hmac-sha256-128 and aes256-cts-hmac-sha384-192.

   protocol key format: as defined in Section 2.

   specific key structure: three protocol-format keys: { Kc, Ke, Ki }.

   Kc: the checksum key, inputted into HMAC to provide the checksum
   mechanism defined in Section 6.

   Ke: the encryption key, inputted into AES encryption and decryption
   as defined in "encryption function" and "decryption function" below.

   Ki: the integrity key, inputted into HMAC to provide authenticated
   encryption as defined in "encryption function" and "decryption 
   function" below.

   required checksum mechanism: as defined in Section 6.

   key-generation seed length: key size (128 or 256 bits).

   string-to-key function: as defined in Section 4.

 

Jenkins, et al.           Expires June 5, 2016                  [Page 5]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   default string-to-key parameters: decimal 32768.

   key-derivation function: KDF-HMAC-SHA2 as defined in Section 3.  The 
   key usage number is expressed as four octets in big-endian order.

   If the enctype is aes128-cts-hmac-sha256-128:
   Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 128)
   Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 128)
   Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 128)

   If the enctype is aes256-cts-hmac-sha384-192:
   Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 192)
   Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 256)
   Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 192)

   cipherstate: a 128-bit CBC initialization vector derived from 
   the ciphertext.

   initial cipherstate: all bits zero.

   encryption function: as follows, where E() is AES encryption in 
   CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
   192 bits as described above).

      N = random nonce of length 128 bits (the AES block size) 
      IV = cipherstate
      C = E(Ke, N | plaintext, IV)
      H = HMAC(Ki, IV | C)
      ciphertext = C | H[1..h]
      cipherstate = the last full (128 bit) block of C
      (i.e. the next-to-last block if the last block
      is not a full 128 bits)

   decryption function: as follows, where D() is AES decryption in 
   CBC-CS3 mode, and h is the size of truncated HMAC.

      (C, H) = ciphertext
      IV = cipherstate
      if H != HMAC(Ki, IV | C)[1..h]
          stop, report error                          
      (N, P) = D(Ke, C, IV)
      Note: N is set to the first block of the decryption output, 
      P is set to the rest of the output.
      cipherstate = the last full (128 bit) block of C
      (i.e. the next-to-last block if the last block
      is not a full 128 bits)

   pseudo-random function: 
 

Jenkins, et al.           Expires June 5, 2016                  [Page 6]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

      If the enctype is aes128-cts-hmac-sha256-128:
      PRF = KDF-HMAC-SHA2(base-key, "prf" | octet-string, 256) 

      If the enctype is aes256-cts-hmac-sha384-192:
      PRF = KDF-HMAC-SHA2(base-key, "prf" | octet-string, 384)

      where "prf" is the octet-string 0x707266

6.  Checksum Parameters

   The following parameters apply to the checksum types hmac-sha256-128-
   aes128 and hmac-sha384-192-aes256, which are the associated checksums
   for aes128-cts-hmac-sha256-128 and aes256-cts-hmac-sha384-192,
   respectively.

   associated cryptosystem: AES-128-CTS or AES-256-CTS as appropriate.

   get_mic: HMAC(Kc, message)[1..h].
       where h is 128 bits for checksum type hmac-sha256-128-aes128
       and 192 bits for checksum type hmac-sha384-192-aes256

   verify_mic: get_mic and compare.

7.  IANA Considerations

   IANA is requested to assign:

   Encryption type numbers for aes128-cts-hmac-sha256-128 and
   aes256-cts-hmac-sha384-192 in the Kerberos Encryption Type Numbers
   registry.

      Etype   Encryption type              Reference
      -----   ---------------              ---------
      TBD1    aes128-cts-hmac-sha256-128   [this document]
      TBD2    aes256-cts-hmac-sha384-192   [this document]

   Checksum type numbers for hmac-sha256-128-aes128 and hmac-sha384-192-
   aes256 in the Kerberos Checksum Type Numbers registry.

      Sumtype   Checksum type            Size   Reference
      -------   -------------            ----   ---------
      TBD3      hmac-sha256-128-aes128   16     [this document] 
      TBD4      hmac-sha384-192-aes256   24     [this document]

8.  Security Considerations
 

Jenkins, et al.           Expires June 5, 2016                  [Page 7]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   This specification requires implementations to generate random
   values.  The use of inadequate pseudo-random number generators
   (PRNGs) can result in little or no security.  The generation of
   quality random numbers is difficult.  [RFC4086] offers random number
   generation guidance.

   This document specifies a mechanism for generating keys from pass
   phrases or passwords.  The salt and iteration count resist brute
   force and dictionary attacks, however, it is still important to
   choose or generate strong passphrases.

   NIST guidance in section 5.3 of [SP800-38A] requires CBC
   initialization vectors be unpredictable.  This specification does not
   formally comply with that guidance.  However, the use of a confounder
   as the first block of plaintext fills the cryptographic role
   typically played by an initialization vector.  This approach was
   chosen to align with other Kerberos cryptosystem approaches. 

8.1.  Random Values in Salt Strings

   NIST guidance in Section 5.1 of [SP800-132] requires that a portion
   of the salt of at least 128 bits shall be randomly generated.  Some
   known issues with including random values in Kerberos encryption type
   salt strings are:

   *  The string-to-key function as defined in [RFC3961] requires the
      salt to be valid UTF-8 strings.  Not every 128-bit random string
      will be valid UTF-8.

   Further, using a salt containing a random portion may have the
   following issues with some implementations:

   *  Cross-realm TGTs are typically managed by entering the same
   password at two KDCs to get the same keys.  If each KDC uses a random
   salt, they won't have the same keys.

   *  Random salts may interfere with password history checking.

   *  ktutil's add_entry command assumes the default salt.  

8.2.  Algorithm Rationale

   This document has been written to be consistent with common
   implementations of AES and SHA-2. The encryption and hash algorithm
   sizes have been chosen to create a consistent level of protection,
   with consideration to implementation efficiencies. So, for instance,
   SHA-384, which would normally be matched to AES-192, is instead
   matched to AES-256 to leverage the fact that there are efficient
 

Jenkins, et al.           Expires June 5, 2016                  [Page 8]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   hardware implementations of AES-256. Note that, as indicated by the
   enc-type name "aes256-cts-hmac-sha384-192", the truncation of the
   HMAC-SHA-384 output to 192-bits results in an overall 192-bit level
   of security.

9.  Acknowledgements

   Kelley Burgin was employed at the National Security Agency during
   much of the work on this document.

10.  References

10.1.  Normative References

   [RFC2898]    Kaliski, B., "PKCS #5: Password-Based Cryptography
                Specification Version 2.0", RFC 2898, September 2000.

   [RFC3961]    Raeburn, K., "Encryption and Checksum Specifications for
                Kerberos 5", RFC 3961, February 2005.

   [RFC3962]    Raeburn, K., "Advanced Encryption Standard (AES)
                Encryption for Kerberos 5", RFC 3962, February 2005.

   [FIPS197]    National Institute of Standards and Technology,
                "Advanced Encryption Standard (AES)", FIPS PUB 197,
                November 2001.

   [SP800-38A+] National Institute of Standards and Technology,
                "Recommendation for Block Cipher Modes of Operation:
                Three Variants of Ciphertext Stealing for CBC Mode",
                NIST Special Publication 800-38A Addendum, October 2010.

   [SP800-108]  National Institute of Standards and Technology,
                "Recommendation for Key Derivation Using Pseudorandom
                Functions", NIST Special Publication 800-108, October
                2009.

10.2.  Informative References

   [RFC4086]    Eastlake 3rd, D., Schiller, J., and S. Crocker,
                "Randomness Requirements for Security", BCP 106, RFC
                4086, June 2005.

   [SP800-38A]  National Institute of Standards and Technology,
                "Recommendation for Block Cipher Modes of Operation:
                Methods and Techniques", NIST Special Publication
                800-38A, December 2001.

 

Jenkins, et al.           Expires June 5, 2016                  [Page 9]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   [SP800-132]  National Institute of Standards and Technology,
                "Recommendation for Password-Based Key Derivation, Part
                1: Storage Applications", NIST Special Publication 800-
                132, June 2010.

Appendix A.  Test Vectors

   Sample results for string-to-key conversion:
   --------------------------------------------

   Iteration count = 32768
   Pass phrase = "password"
   Saltp for creating 128-bit base-key:
      61 65 73 31 32 38 2D 63 74 73 2D 68 6D 61 63 2D
      73 68 61 32 35 36 2D 31 32 38 00 10 DF 9D D7 83
      E5 BC 8A CE A1 73 0E 74 35 5F 61 41 54 48 45 4E
      41 2E 4D 49 54 2E 45 44 55 72 61 65 62 75 72 6E

   (The saltp is "aes128-cts-hmac-sha256-128" | 0x00 |
    random 16 byte valid UTF-8 sequence | "ATHENA.MIT.EDUraeburn")
   128-bit base-key:
      08 9B CA 48 B1 05 EA 6E A7 7C A5 D2 F3 9D C5 E7

   Saltp for creating 256-bit base-key:
      61 65 73 32 35 36 2D 63 74 73 2D 68 6D 61 63 2D
      73 68 61 33 38 34 2D 31 39 32 00 10 DF 9D D7 83
      E5 BC 8A CE A1 73 0E 74 35 5F 61 41 54 48 45 4E
      41 2E 4D 49 54 2E 45 44 55 72 61 65 62 75 72 6E
   (The saltp is "aes256-cts-hmac-sha384-192" | 0x00 |
    random 16 byte valid UTF-8 sequence | "ATHENA.MIT.EDUraeburn")
   256-bit base-key:
      45 BD 80 6D BF 6A 83 3A 9C FF C1 C9 45 89 A2 22
      36 7A 79 BC 21 C4 13 71 89 06 E9 F5 78 A7 84 67

   Sample results for key derivation:
   ----------------------------------

   enctype aes128-cts-hmac-sha256-128:
   128-bit base-key:
      37 05 D9 60 80 C1 77 28 A0 E8 00 EA B6 E0 D2 3C
   Kc value for key usage 2 (constant = 0x0000000299):
      B3 1A 01 8A 48 F5 47 76 F4 03 E9 A3 96 32 5D C3
   Ke value for key usage 2 (constant = 0x00000002AA):
      9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E
   Ki value for key usage 2 (constant = 0x0000000255):
      9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C

   enctype aes256-cts-hmac-sha384-192:
 

Jenkins, et al.           Expires June 5, 2016                 [Page 10]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   256-bit base-key:
      6D 40 4D 37 FA F7 9F 9D F0 D3 35 68 D3 20 66 98
      00 EB 48 36 47 2E A8 A0 26 D1 6B 71 82 46 0C 52
   Kc value for key usage 2 (constant = 0x0000000299):
      EF 57 18 BE 86 CC 84 96 3D 8B BB 50 31 E9 F5 C4
      BA 41 F2 8F AF 69 E7 3D
   Ke value for key usage 2 (constant = 0x00000002AA):
      56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7
      A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49
   Ki value for key usage 2 (constant = 0x0000000255):
      69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6
      22 C4 D0 0F FC 23 ED 1F

   Sample encryptions (all using the default cipher state):
   --------------------------------------------------------
   These sample encryptions use the above sample key
   derivation results, including use of the same
   base-key and key usage values.

   The following test vectors are for 
   enctype aes128-cts-hmac-sha256-128:

   Plaintext: (empty)
   Confounder:
      7E 58 95 EA F2 67 24 35 BA D8 17 F5 45 A3 71 48
   128-bit AES key (Ke):           
      9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E
   128-bit HMAC key (Ki):
      9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
   AES Output:    
      EF 85 FB 89 0B B8 47 2F 4D AB 20 39 4D CA 78 1D
   Truncated HMAC Output:
      AD 87 7E DA 39 D5 0C 87 0C 0D 5A 0A 8E 48 C7 18    
   Ciphertext (AES Output | HMAC Output):        
      EF 85 FB 89 0B B8 47 2F 4D AB 20 39 4D CA 78 1D
      AD 87 7E DA 39 D5 0C 87 0C 0D 5A 0A 8E 48 C7 18

   Plaintext: (length less than block size)    
      00 01 02 03 04 05 
   Confounder:
      7B CA 28 5E 2F D4 13 0F B5 5B 1A 5C 83 BC 5B 24  
   128-bit AES key (Ke):           
      9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E  
   128-bit HMAC key (Ki):
      9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
   AES Output: 
      84 D7 F3 07 54 ED 98 7B AB 0B F3 50 6B EB 09 CF
      B5 54 02 CE F7 E6
 

Jenkins, et al.           Expires June 5, 2016                 [Page 11]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   Truncated HMAC Output:
      87 7C E9 9E 24 7E 52 D1 6E D4 42 1D FD F8 97 6C 
   Ciphertext:           
      84 D7 F3 07 54 ED 98 7B AB 0B F3 50 6B EB 09 CF 
      B5 54 02 CE F7 E6 87 7C E9 9E 24 7E 52 D1 6E D4 
      42 1D FD F8 97 6C

   Plaintext: (length equals block size)
      00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   Confounder:
      56 AB 21 71 3F F6 2C 0A 14 57 20 0F 6F A9 94 8F 
   128-bit AES key (Ke):           
      9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E  
   128-bit HMAC key (Ki):
      9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
   AES Output: 
      35 17 D6 40 F5 0D DC 8A D3 62 87 22 B3 56 9D 2A
      E0 74 93 FA 82 63 25 40 80 EA 65 C1 00 8E 8F C2 
   Truncated HMAC Output:
      95 FB 48 52 E7 D8 3E 1E 7C 48 C3 7E EB E6 B0 D3  
   Ciphertext:
      35 17 D6 40 F5 0D DC 8A D3 62 87 22 B3 56 9D 2A 
      E0 74 93 FA 82 63 25 40 80 EA 65 C1 00 8E 8F C2 
      95 FB 48 52 E7 D8 3E 1E 7C 48 C3 7E EB E6 B0 D3

   Plaintext: (length greater than block size)
      00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
      10 11 12 13 14
   Confounder:
      A7 A4 E2 9A 47 28 CE 10 66 4F B6 4E 49 AD 3F AC 
   128-bit AES key (Ke):           
      9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E 
   128-bit HMAC key (Ki):
      9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
   AES Output:
      72 0F 73 B1 8D 98 59 CD 6C CB 43 46 11 5C D3 36
      C7 0F 58 ED C0 C4 43 7C 55 73 54 4C 31 C8 13 BC
      E1 E6 D0 72 C1
   Truncated HMAC Output:
      86 B3 9A 41 3C 2F 92 CA 9B 83 34 A2 87 FF CB FC  
   Ciphertext: 
      72 0F 73 B1 8D 98 59 CD 6C CB 43 46 11 5C D3 36 
      C7 0F 58 ED C0 C4 43 7C 55 73 54 4C 31 C8 13 BC 
      E1 E6 D0 72 C1 86 B3 9A 41 3C 2F 92 CA 9B 83 34 
      A2 87 FF CB FC

   The following test vectors are for enctype
   aes256-cts-hmac-sha384-192:
 

Jenkins, et al.           Expires June 5, 2016                 [Page 12]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

   Plaintext: (empty)
   Confounder:
      F7 64 E9 FA 15 C2 76 47 8B 2C 7D 0C 4E 5F 58 E4
   256-bit AES key (Ke):
      56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7 
      A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49
   192-bit HMAC key (Ki):
      69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6 
      22 C4 D0 0F FC 23 ED 1F
   AES Output:    
      41 F5 3F A5 BF E7 02 6D 91 FA F9 BE 95 91 95 A0 
   Truncated HMAC Output:
      58 70 72 73 A9 6A 40 F0 A0 19 60 62 1A C6 12 74 
      8B 9B BF BE 7E B4 CE 3C
   Ciphertext:
      41 F5 3F A5 BF E7 02 6D 91 FA F9 BE 95 91 95 A0 
      58 70 72 73 A9 6A 40 F0 A0 19 60 62 1A C6 12 74 
      8B 9B BF BE 7E B4 CE 3C

   Plaintext: (length less than block size)    
      00 01 02 03 04 05 
   Confounder:
      B8 0D 32 51 C1 F6 47 14 94 25 6F FE 71 2D 0B 9A 
   256-bit AES key (Ke):
      56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7 
      A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49         
   192-bit HMAC key (Ki):
      69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6 
      22 C4 D0 0F FC 23 ED 1F 
   AES Output:    
      4E D7 B3 7C 2B CA C8 F7 4F 23 C1 CF 07 E6 2B C7
      B7 5F B3 F6 37 B9 
   Truncated HMAC Output:
      F5 59 C7 F6 64 F6 9E AB 7B 60 92 23 75 26 EA 0D 
      1F 61 CB 20 D6 9D 10 F2
   Ciphertext:   
      4E D7 B3 7C 2B CA C8 F7 4F 23 C1 CF 07 E6 2B C7 
      B7 5F B3 F6 37 B9 F5 59 C7 F6 64 F6 9E AB 7B 60 
      92 23 75 26 EA 0D 1F 61 CB 20 D6 9D 10 F2

   Plaintext: (length equals block size)
      00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
   Confounder:
      53 BF 8A 0D 10 52 65 D4 E2 76 42 86 24 CE 5E 63
   256-bit AES key (Ke):           
      56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7 
      A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49 
   192-bit HMAC key (Ki):
 

Jenkins, et al.           Expires June 5, 2016                 [Page 13]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

      69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6 
      22 C4 D0 0F FC 23 ED 1F 
   AES Output:   
      BC 47 FF EC 79 98 EB 91 E8 11 5C F8 D1 9D AC 4B
      BB E2 E1 63 E8 7D D3 7F 49 BE CA 92 02 77 64 F6 
   Truncated HMAC Output:
      8C F5 1F 14 D7 98 C2 27 3F 35 DF 57 4D 1F 93 2E 
      40 C4 FF 25 5B 36 A2 66
   Ciphertext:
      BC 47 FF EC 79 98 EB 91 E8 11 5C F8 D1 9D AC 4B 
      BB E2 E1 63 E8 7D D3 7F 49 BE CA 92 02 77 64 F6 
      8C F5 1F 14 D7 98 C2 27 3F 35 DF 57 4D 1F 93 2E 
      40 C4 FF 25 5B 36 A2 66 

   Plaintext: (length greater than block size)
      00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
      10 11 12 13 14
   Confounder:
      76 3E 65 36 7E 86 4F 02 F5 51 53 C7 E3 B5 8A F1
   256-bit AES key (Ke):           
      56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7 
      A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49 
   192-bit HMAC key (Ki):
      69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6 
      22 C4 D0 0F FC 23 ED 1F
   AES Output:
      40 01 3E 2D F5 8E 87 51 95 7D 28 78 BC D2 D6 FE
      10 1C CF D5 56 CB 1E AE 79 DB 3C 3E E8 64 29 F2
      B2 A6 02 AC 86
   Truncated HMAC Output:
      FE F6 EC B6 47 D6 29 5F AE 07 7A 1F EB 51 75 08 
      D2 C1 6B 41 92 E0 1F 62
   Ciphertext:
      40 01 3E 2D F5 8E 87 51 95 7D 28 78 BC D2 D6 FE 
      10 1C CF D5 56 CB 1E AE 79 DB 3C 3E E8 64 29 F2 
      B2 A6 02 AC 86 FE F6 EC B6 47 D6 29 5F AE 07 7A 
      1F EB 51 75 08 D2 C1 6B 41 92 E0 1F 62

   Sample checksums:
   -----------------
   These sample checksums use the above sample key
   derivation results, including use of the same
   base-key and key usage values.

   Checksum type: hmac-sha256-128-aes128
   128-bit HMAC key (Kc):
      B3 1A 01 8A 48 F5 47 76 F4 03 E9 A3 96 32 5D C3
   Plaintext:
 

Jenkins, et al.           Expires June 5, 2016                 [Page 14]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

      00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
      10 11 12 13 14
   Checksum:
      D7 83 67 18 66 43 D6 7B 41 1C BA 91 39 FC 1D EE

   Checksum type: hmac-sha384-192-aes256
   192-bit HMAC key (Kc):
      EF 57 18 BE 86 CC 84 96 3D 8B BB 50 31 E9 F5 C4
      BA 41 F2 8F AF 69 E7 3D
   Plaintext:
      00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
      10 11 12 13 14
   Checksum:
      45 EE 79 15 67 EE FC A3 7F 4A C1 E0 22 2D E8 0D
      43 C3 BF A0 66 99 67 2A

   Sample pseudorandom function (PRF) invocations:
   ----------------------------------------

   PRF input octet-string: "test" (0x74657374)

   enctype aes128-cts-hmac-sha256-128:
   base-key value / HMAC-SHA-256 key:
      37 05 D9 60 80 C1 77 28 A0 E8 00 EA B6 E0 D2 3C
   HMAC-SHA-256 input message:
      00 00 00 01 70 72 66 74 65 73 74 00 00 00 01 00 
   PRF output:
      14 11 15 B0 A6 CB 9A 1D CB B4 C7 E2 5B 43 32 22
      52 DE 58 11 21 85 C5 DC F5 12 5E 7B 81 54 8D 39

   enctype aes256-cts-hmac-sha384-192:
   base-key value / HMAC-SHA-384 key:
      6D 40 4D 37 FA F7 9F 9D F0 D3 35 68 D3 20 66 98
      00 EB 48 36 47 2E A8 A0 26 D1 6B 71 82 46 0C 52
   HMAC-SHA-384 input message:
      00 00 00 01 70 72 66 74 65 73 74 00 00 00 01 80 
   PRF output:
      31 0A 4B 5C D2 90 F7 04 33 B2 A1 A1 D0 93 FD F7
      8C 6C 9D AE 5C AC D3 A7 BD 45 CB 67 44 41 99 43
      0D 36 19 06 44 E8 A2 16 66 43 AE AD E9 63 87 52

 

Jenkins, et al.           Expires June 5, 2016                 [Page 15]
Internet-Draft      AES-CTS HMAC-SHA2 For Kerberos 5    December 3, 2015

Authors' Addresses

   Michael J. Jenkins
   National Security Agency

   EMail: mjjenki@tycho.ncsc.mil

   Michael A. Peck
   The MITRE Corporation

   EMail: mpeck@mitre.org

   Kelley W. Burgin

   Email: kelley.burgin@gmail.com

Jenkins, et al.           Expires June 5, 2016                 [Page 16]