Dynamic Flooding on Dense Graphs
draft-ietf-lsr-dynamic-flooding-08
Internet Engineering Task Force T. Li, Ed.
Internet-Draft Arista Networks
Intended status: Standards Track P. Psenak, Ed.
Expires: June 17, 2021 L. Ginsberg
Cisco Systems, Inc.
H. Chen
Futurewei
T. Przygienda
Juniper Networks, Inc.
D. Cooper
CenturyLink
L. Jalil
Verizon
S. Dontula
ATT
G. Mishra
Verizon Inc.
December 14, 2020
Dynamic Flooding on Dense Graphs
draft-ietf-lsr-dynamic-flooding-08
Abstract
Routing with link state protocols in dense network topologies can
result in sub-optimal convergence times due to the overhead
associated with flooding. This can be addressed by decreasing the
flooding topology so that it is less dense.
This document discusses the problem in some depth and an
architectural solution. Specific protocol changes for IS-IS, OSPFv2,
and OSPFv3 are described in this document.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
Li, et al. Expires June 17, 2021 [Page 1]
Internet-Draft Dynamic Flooding December 2020
This Internet-Draft will expire on June 17, 2021.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Requirements Language . . . . . . . . . . . . . . . . . . 5
2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . 5
3. Solution Requirements . . . . . . . . . . . . . . . . . . . . 5
4. Dynamic Flooding . . . . . . . . . . . . . . . . . . . . . . 6
4.1. Applicability . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Leader election . . . . . . . . . . . . . . . . . . . . . 8
4.3. Computing the Flooding Topology . . . . . . . . . . . . . 8
4.4. Topologies on Complete Bipartite Graphs . . . . . . . . . 9
4.4.1. A Minimal Flooding Topology . . . . . . . . . . . . . 9
4.4.2. Xia Topologies . . . . . . . . . . . . . . . . . . . 10
4.4.3. Optimization . . . . . . . . . . . . . . . . . . . . 11
4.5. Encoding the Flooding Topology . . . . . . . . . . . . . 11
4.6. Advertising the Local Edges Enabled for Flooding . . . . 11
5. Protocol Elements . . . . . . . . . . . . . . . . . . . . . . 12
5.1. IS-IS TLVs . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.1. IS-IS Area Leader Sub-TLV . . . . . . . . . . . . . . 12
5.1.2. IS-IS Dynamic Flooding Sub-TLV . . . . . . . . . . . 13
5.1.3. IS-IS Area Node IDs TLV . . . . . . . . . . . . . . . 14
5.1.4. IS-IS Flooding Path TLV . . . . . . . . . . . . . . . 15
5.1.5. IS-IS Flooding Request TLV . . . . . . . . . . . . . 16
5.1.6. IS-IS LEEF Advertisement . . . . . . . . . . . . . . 18
Show full document text