Skip to main content

Advertising Tunneling Capability in OSPF
draft-ietf-ospf-encapsulation-cap-03

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 9013.
Authors Xiaohu Xu , Bruno Decraene , Robert Raszuk , Luis M. Contreras , Luay Jalil
Last updated 2017-06-14 (Latest revision 2017-05-19)
Replaces draft-xu-ospf-encapsulation-cap
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Acee Lindem
Shepherd write-up Show Last changed 2017-05-19
IESG IESG state Became RFC 9013 (Proposed Standard)
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Alia Atlas
Send notices to Acee Lindem <acee@cisco.com>
draft-ietf-ospf-encapsulation-cap-03
OSPF Working Group                                            X. Xu, Ed.
Internet-Draft                                                    Huawei
Intended status: Standards Track                        B. Decraene, Ed.
Expires: November 20, 2017                                        Orange
                                                               R. Raszuk
                                                            Bloomberg LP
                                                            L. Contreras
                                                          Telefonica I+D
                                                                L. Jalil
                                                                 Verizon
                                                            May 19, 2017

                Advertising Tunneling Capability in OSPF
                  draft-ietf-ospf-encapsulation-cap-03

Abstract

   Networks use tunnels for a variety of reasons.  A large variety of
   tunnel types are defined and the ingress needs to select a type of
   tunnel which is supported by the egress and itself.  This document
   defines how to advertise egress tunnel capabilities in OSPF Router
   Information Link State Advertisement (LSAs).

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 20, 2017.

Xu, et al.              Expires November 20, 2017               [Page 1]
Internet-Draft                                                  May 2017

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Advertising Encapsulation Capability  . . . . . . . . . . . .   3
   4.  Tunnel Encapsulation Type . . . . . . . . . . . . . . . . . .   3
   5.  Tunnel Encapsulation Attribute  . . . . . . . . . . . . . . .   5
     5.1.  Encapsulation Sub-TLV . . . . . . . . . . . . . . . . . .   6
     5.2.  Protocol Type Sub-TLV . . . . . . . . . . . . . . . . . .   6
     5.3.  Endpoint Sub-TLV  . . . . . . . . . . . . . . . . . . . .   6
     5.4.  Color Sub-TLV . . . . . . . . . . . . . . . . . . . . . .   6
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6
     6.1.  OSPF Router Information . . . . . . . . . . . . . . . . .   6
     6.2.  IGP Tunnel Encapsulation Types Registry . . . . . . . . .   6
     6.3.  IGP Tunnel Encapsulation Attribute Types Registry . . . .   7
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   8.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .   8
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   8
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     10.1.  Normative References . . . . . . . . . . . . . . . . . .   8
     10.2.  Informative References . . . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  11

1.  Introduction

   Networks use tunnels for a variety of reasons, such as:

   o  Partial deployment of MPLS-SPRING as described in
      [I-D.xu-mpls-unified-source-routing-instruction], where IP tunnels
      are used between MPLS-SPRING-enabled routers to traverse non-MPLS
      routers.

Xu, et al.              Expires November 20, 2017               [Page 2]
Internet-Draft                                                  May 2017

   o  Partial deployment of MPLS-BIER as described in
      [I-D.ietf-bier-architecture], where IP tunnels are used between
      MPLS-BIER-capable routers to traverse non MPLS-BIER
      [I-D.ietf-bier-mpls-encapsulation] routers.

   o  Partial deployment of IPv6 in IPv4 networks or IPv6 in IPv4
      networks as described in [RFC5565], where IPvx tunnels are used
      between IPvx-enabled routers so as to traverse non-IPvx routers.

   o  Remote Loop-Free Alternate (RLFA) repair tunnels as described in
      [RFC7490], where tunnels are used between the Point of Local
      Repair and the selected PQ node.

   The ingress needs to select a type of tunnel which is supported by
   the egress and itself.  This document describes how to use OSPF
   Router Information Link State Advertisements (LSAs) to advertise the
   egress tunneling capabilities of OSPF routers.  In this document,
   OSPF refers to both OSPFv2 and OSPFv3.

2.  Terminology

   This memo makes use of the terms defined in [RFC7770].

3.  Advertising Encapsulation Capability

   Routers advertise their supported encapsulation type(s) by
   advertising a new TLV of the OSPF Router Information (RI) Opaque LSA
   [RFC7770], referred to as the Encapsulation Capability TLV.  This TLV
   is applicable to both OSPFv2 and OSPFv3.  The Encapsulation
   Capability TLV SHOULD NOT appear more than once within a given OSPF
   Router Information (RI) Opaque LSA.  If the Encapsulation Capability
   TLV appears more than once in an OSPF Router Information LSA, only
   the first occurrence MUST be processed and others MUST be ignored.
   The scope of the advertisement depends on the application but it is
   recommended that it SHOULD be domain- wide.  The Type code of the
   Encapsulation Capability TLV is TBD1, the Length value is variable,
   and the Value field contains one or more Tunnel Encapsulation Type
   Sub-TLVs.  Each Encapsulation Type Sub-TLVs indicates a particular
   encapsulation format that the advertising router supports.

4.  Tunnel Encapsulation Type

   The Tunnel Encapsulation Type Sub-TLV is structured as follows:

Xu, et al.              Expires November 20, 2017               [Page 3]
Internet-Draft                                                  May 2017

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Tunnel Type (2 Octets)     |        Length (2 Octets)      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                            Sub-TLVs                           |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Tunnel Type (2 octets): Identifies the type of tunneling
      technology being signaled.  This document defines the following
      types:

      1.   L2TPv3 over IP [RFC3931] : Type code=1;

      2.   GRE [RFC2784] : Type code=2;

      3.   Transmit tunnel endpoint [RFC5566] : Type code=3;

      4.   IPsec in Tunnel-mode [RFC5566] : Type code=4;

      5.   IP-in-IP tunnel with IPsec Transport Mode [RFC5566] : Type
           code=5;

      6.   MPLS-in-IP tunnel with IPsec Transport Mode [RFC5566] : Type
           code=6;

      7.   IP-in-IP [RFC2003] [RFC4213]: Type code=7;

      8.   VXLAN [RFC7348] : Type code=8;

      9.   NVGRE [RFC7637] : Type code=9;

      10.  MPLS [RFC3032] : Type code=10;

      11.  MPLS-in-GRE [RFC4023] : Type code=11;

      12.  VXLAN GPE [I-D.ietf-nvo3-vxlan-gpe] : Type code=12;

      13.  MPLS-in-UDP [RFC7510] : Type code=13;

      14.  MPLS-in-UDP-with-DTLS [RFC7510] : Type code=14;

      15.  MPLS-in-L2TPv3 [RFC4817] : Type code=15;

      16.  GTP: Type code=16;

Xu, et al.              Expires November 20, 2017               [Page 4]
Internet-Draft                                                  May 2017

      Unknown types are to be ignored and skipped upon receipt.

      Length (2 octets): Unsigned 16-bit integer indicating the total
      number of octets of the value field.

      Value (variable): Zero or more Tunnel Encapsulation Attribute Sub-
      TLVs as defined in Section 5.

5.  Tunnel Encapsulation Attribute

   The Tunnel Encapsulation Attribute Sub-TLV is structured as follows:

              +-----------------------------------+
              |      Sub-TLV Type (1 Octet)       |
              +-----------------------------------+
              |     Sub-TLV Length (1 Octet)      |
              +-----------------------------------+
              |     Sub-TLV Value (Variable)      |
              |                                   |
              +-----------------------------------+

      Sub-TLV Type (1 octet): Each Sub-TLV type defines a certain
      property of the tunnel TLV that contains this Sub-TLV.  The
      following are the types defined in this document:

      1.  Encapsulation: Sub-TLV type = 1; (See Section 5.1)

      2.  Protocol Type: Sub-TLV type = 2; (See Section 5.2)

      3.  Endpoint: Sub-TLV type = 3; (See Section 5.3)

      4.  Color: Sub-TLV type = 4; (See Section 5.4)

      Sub-TLV Length (1 octet): Unsigned 8-bit integer indicating the
      total number of octets of the Sub-TLV value field.

      Sub-TLV Value (variable): Encodings of the value field depend on
      the Sub-TLV type as enumerated above.  The following sub-sections
      define the encoding in detail.

   Any unknown Sub-TLVs MUST be ignored and skipped upon receipt.
   However, if the TLV is understood, the entire TLV MUST NOT be ignored
   just because it contains an unknown Sub-TLV.

   If a Sub-TLV is invalid, this specific Tunnel Encapsulation MUST be
   ignored and skipped.  However, other Tunnel Encapsulations MUST be
   considered.

Xu, et al.              Expires November 20, 2017               [Page 5]
Internet-Draft                                                  May 2017

5.1.  Encapsulation Sub-TLV

   This Sub-TLV has its format defined in [RFC5512] and
   [I-D.ietf-idr-tunnel-encaps] under the name Encapsulation Sub-TLV.

5.2.  Protocol Type Sub-TLV

   This Sub-TLV has its format defined in [RFC5512] and
   [I-D.ietf-idr-tunnel-encaps] under the name Protocol Type.

5.3.  Endpoint Sub-TLV

   The value field carries the Network Address to be used as tunnel
   destination address.

   If length is 4, the tunnel endpoint is an IPv4 address.

   If length is 16, the tunnel endpoint is an IPv6 address.

5.4.  Color Sub-TLV

   The valued field is a 4-octet opaque unsigned integer.

   The color value is user defined and configured locally on the
   advertising routers.  It may be used by service providers to define
   policies.

6.  IANA Considerations

6.1.  OSPF Router Information

   This document requests IANA to allocate a new code point from the
   OSPF Router Information (RI) registry.

       Value   TLV Name                               Reference
       -----   ------------------------------------   -------------
       TBD1    Tunnel Capabilities                    This document

6.2.  IGP Tunnel Encapsulation Types Registry

   This document requests IANA to create a new registry "IGP Tunnel
   Encapsulation Types" with the following registration procedure:

Xu, et al.              Expires November 20, 2017               [Page 6]
Internet-Draft                                                  May 2017

              Registry Name: IGP Tunnel Encapsulation Type

   Value      Name                                         Reference
   -------    ------------------------------------------   -------------
         0    Reserved                                     This document
         1    L2TPv3 over IP                               This document
         2    GRE                                          This document
         3    Transmit tunnel endpoint                     This document
         4    IPsec in Tunnel-mode                         This document
         5    IP-in-IP tunnel with IPsec Transport Mode    This document
         6    MPLS-in-IP tunnel with IPsec Transport Mode  This document
         7    IP-in-IP                                     This document
         8    VXLAN                                        This document
         9    NVGRE                                        This document
        10    MPLS                                         This document
        11    MPLS-in-GRE                                  This document
        12    VXLAN-GPE                                    This document
        13    MPLS-in-UDP                                  This document
        14    MPLS-in-UDP-with-DTLS                        This document
        15    MPLS-in-L2TPv3                               This document
        16    GTP                                          This document
    17-250    Unassigned
   251-254    Experimental                                 This document
       255    Reserved                                     This document

   Assignments of Encapsulation Types are via Standards Action
   [RFC5226].

6.3.  IGP Tunnel Encapsulation Attribute Types Registry

   This document requests IANA to create a new registry "IGP Tunnel
   Encapsulation Attribute Types" with the following registration
   procedure:

              Registry Name: IGP Tunnel Encapsulation Attribute Types

   Value      Name                                      Reference
   -------    ------------------------------------      -------------
         0    Reserved                                  This document
         1    Encapsulation                             This document
         2    Protocol Type                             This document
         3    Endpoint                                  This document
         4    Color                                     This document
     5-250    Unassigned
   251-254    Experimental                              This document
       255    Reserved                                  This document

Xu, et al.              Expires November 20, 2017               [Page 7]
Internet-Draft                                                  May 2017

   Assignments of Encapsulation Attribute Types are via Standards Action
   [RFC5226].

7.  Security Considerations

   Security considerations applicable to softwires can be found in the
   mesh framework [RFC5565].  In general, security issues of the tunnel
   protocols signaled through this OSPF capability extension are
   inherited.

   If a third-party is able to modify any of the information that is
   used to form encapsulation headers, to choose a tunnel type, or to
   choose a particular tunnel for a particular payload type, user data
   packets may end up getting misrouted, misdelivered, and/or dropped.

   Security considerations for the base OSPF protocol are covered in
   [RFC2328] and [RFC5340].

8.  Contributors

   Uma Chunduri
   Huawei
   Email: uma.chunduri@gmail.com

9.  Acknowledgements

   This document is partially inspired by [RFC5512].

   The authors would like to thank Greg Mirsky, John E Drake, Carlos
   Pignataro and Karsten Thomann for their valuable comments on this
   document.  Special thanks should be given to Acee Lindem for his
   detailed review of this document.

10.  References

10.1.  Normative References

   [RFC2003]  Perkins, C., "IP Encapsulation within IP", RFC 2003,
              DOI 10.17487/RFC2003, October 1996,
              <http://www.rfc-editor.org/info/rfc2003>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

Xu, et al.              Expires November 20, 2017               [Page 8]
Internet-Draft                                                  May 2017

   [RFC2784]  Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
              Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
              DOI 10.17487/RFC2784, March 2000,
              <http://www.rfc-editor.org/info/rfc2784>.

   [RFC3931]  Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,
              "Layer Two Tunneling Protocol - Version 3 (L2TPv3)",
              RFC 3931, DOI 10.17487/RFC3931, March 2005,
              <http://www.rfc-editor.org/info/rfc3931>.

   [RFC4213]  Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
              for IPv6 Hosts and Routers", RFC 4213,
              DOI 10.17487/RFC4213, October 2005,
              <http://www.rfc-editor.org/info/rfc4213>.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.

   [RFC7770]  Lindem, A., Ed., Shen, N., Vasseur, JP., Aggarwal, R., and
              S. Shaffer, "Extensions to OSPF for Advertising Optional
              Router Capabilities", RFC 7770, DOI 10.17487/RFC7770,
              February 2016, <http://www.rfc-editor.org/info/rfc7770>.

10.2.  Informative References

   [I-D.ietf-bier-architecture]
              Wijnands, I., Rosen, E., Dolganow, A., Przygienda, T., and
              S. Aldrin, "Multicast using Bit Index Explicit
              Replication", draft-ietf-bier-architecture-06 (work in
              progress), April 2017.

   [I-D.ietf-bier-mpls-encapsulation]
              Wijnands, I., Rosen, E., Dolganow, A., Tantsura, J.,
              Aldrin, S., and I. Meilik, "Encapsulation for Bit Index
              Explicit Replication in MPLS and non-MPLS Networks",
              draft-ietf-bier-mpls-encapsulation-06 (work in progress),
              December 2016.

   [I-D.ietf-idr-tunnel-encaps]
              Rosen, E., Patel, K., and G. Velde, "The BGP Tunnel
              Encapsulation Attribute", draft-ietf-idr-tunnel-encaps-04
              (work in progress), April 2017.

Xu, et al.              Expires November 20, 2017               [Page 9]
Internet-Draft                                                  May 2017

   [I-D.ietf-nvo3-vxlan-gpe]
              Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
              Extension for VXLAN", draft-ietf-nvo3-vxlan-gpe-04 (work
              in progress), April 2017.

   [I-D.xu-mpls-unified-source-routing-instruction]
              Xu, X., Bryant, S., Raszuk, R., Chunduri, U., Contreras,
              L., Jalil, L., and H. Assarpour, "Unified Source Routing
              Instruction using MPLS Label Stack", draft-xu-mpls-
              unified-source-routing-instruction-00 (work in progress),
              March 2017.

   [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328,
              DOI 10.17487/RFC2328, April 1998,
              <http://www.rfc-editor.org/info/rfc2328>.

   [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
              Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
              Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
              <http://www.rfc-editor.org/info/rfc3032>.

   [RFC4023]  Worster, T., Rekhter, Y., and E. Rosen, Ed.,
              "Encapsulating MPLS in IP or Generic Routing Encapsulation
              (GRE)", RFC 4023, DOI 10.17487/RFC4023, March 2005,
              <http://www.rfc-editor.org/info/rfc4023>.

   [RFC4817]  Townsley, M., Pignataro, C., Wainner, S., Seely, T., and
              J. Young, "Encapsulation of MPLS over Layer 2 Tunneling
              Protocol Version 3", RFC 4817, DOI 10.17487/RFC4817, March
              2007, <http://www.rfc-editor.org/info/rfc4817>.

   [RFC5340]  Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
              for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008,
              <http://www.rfc-editor.org/info/rfc5340>.

   [RFC5512]  Mohapatra, P. and E. Rosen, "The BGP Encapsulation
              Subsequent Address Family Identifier (SAFI) and the BGP
              Tunnel Encapsulation Attribute", RFC 5512,
              DOI 10.17487/RFC5512, April 2009,
              <http://www.rfc-editor.org/info/rfc5512>.

   [RFC5565]  Wu, J., Cui, Y., Metz, C., and E. Rosen, "Softwire Mesh
              Framework", RFC 5565, DOI 10.17487/RFC5565, June 2009,
              <http://www.rfc-editor.org/info/rfc5565>.

   [RFC5566]  Berger, L., White, R., and E. Rosen, "BGP IPsec Tunnel
              Encapsulation Attribute", RFC 5566, DOI 10.17487/RFC5566,
              June 2009, <http://www.rfc-editor.org/info/rfc5566>.

Xu, et al.              Expires November 20, 2017              [Page 10]
Internet-Draft                                                  May 2017

   [RFC7348]  Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
              L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
              eXtensible Local Area Network (VXLAN): A Framework for
              Overlaying Virtualized Layer 2 Networks over Layer 3
              Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
              <http://www.rfc-editor.org/info/rfc7348>.

   [RFC7490]  Bryant, S., Filsfils, C., Previdi, S., Shand, M., and N.
              So, "Remote Loop-Free Alternate (LFA) Fast Reroute (FRR)",
              RFC 7490, DOI 10.17487/RFC7490, April 2015,
              <http://www.rfc-editor.org/info/rfc7490>.

   [RFC7510]  Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
              "Encapsulating MPLS in UDP", RFC 7510,
              DOI 10.17487/RFC7510, April 2015,
              <http://www.rfc-editor.org/info/rfc7510>.

   [RFC7637]  Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
              Virtualization Using Generic Routing Encapsulation",
              RFC 7637, DOI 10.17487/RFC7637, September 2015,
              <http://www.rfc-editor.org/info/rfc7637>.

Authors' Addresses

   Xiaohu Xu (editor)
   Huawei

   Email: xuxiaohu@huawei.com

   Bruno Decraene  (editor)
   Orange

   Email: bruno.decraene@orange.com

   Robert Raszuk
   Bloomberg LP

   Email: robert@raszuk.net

   Luis M. Contreras
   Telefonica I+D

   Email: luismiguel.contrerasmurillo@telefonica.com

Xu, et al.              Expires November 20, 2017              [Page 11]
Internet-Draft                                                  May 2017

   Luay Jalil
   Verizon

   Email: luay.jalil@verizon.com

Xu, et al.              Expires November 20, 2017              [Page 12]