OSPF Two-part Metric
draft-ietf-ospf-two-part-metric-09

The information below is for an old version of the document
Document Type Active Internet-Draft (ospf WG)
Last updated 2016-10-13 (latest revision 2016-08-29)
Replaces draft-zzhang-ospf-two-part-metric
Stream IETF
Intended RFC status Proposed Standard
Formats pdf htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Revised I-D Needed - Issue raised by AD
Document shepherd Yingzhen Qu
Shepherd write-up Show (last changed 2016-04-29)
IESG IESG state Approved-announcement to be sent::Revised I-D Needed
Consensus Boilerplate Yes
Telechat date
Responsible AD Alia Atlas
Send notices to "Yingzhen Qu" <yiqu@cisco.com>
IANA IANA review state IANA OK - Actions Needed
Network Working Group                                           Z. Zhang
Internet-Draft                                                   L. Wang
Updates: 2328, 5340 (if approved)                 Juniper Networks, Inc.
Intended status: Standards Track                               A. Lindem
Expires: March 2, 2017                                     Cisco Systems
                                                         August 29, 2016

                          OSPF Two-part Metric
                 draft-ietf-ospf-two-part-metric-09.txt

Abstract

   This document specifies an optional extension to the OSPF protocol,
   to represent the metric on a multi-access network as two parts: the
   metric from a router to the network, and the metric from the network
   to the router.  The router to router metric would be the sum of the
   two.  This document updates RFC 2328.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 2, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of

Zhang, et al.             Expires March 2, 2017                 [Page 1]
Internet-Draft            ospf-two-part-metric               August 2016

   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   2.  Proposed Enhancement  . . . . . . . . . . . . . . . . . . . .   3
   3.  Speficications  . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Router Interface Parameters . . . . . . . . . . . . . . .   4
     3.2.  Advertising Network-to-Router Metric in OSPFv2  . . . . .   4
     3.3.  Advertising Network-to-Router TE Metric . . . . . . . . .   5
     3.4.  Advertising Network-to-Router Metric in OSPFv3  . . . . .   5
     3.5.  OSPF Stub Router Behavior . . . . . . . . . . . . . . . .   5
     3.6.  SPF Calculation . . . . . . . . . . . . . . . . . . . . .   5
     3.7.  Backward Compatibility  . . . . . . . . . . . . . . . . .   6
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     6.1.  Normative References  . . . . . . . . . . . . . . . . . .   6
     6.2.  Informative References  . . . . . . . . . . . . . . . . .   7
   Appendix A.  Acknowledgements . . . . . . . . . . . . . . . . . .   8
   Appendix B.  Contributors' Addreses . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   With Open Shortest Path First (OSPF, [RFC2328], [RFC5340]) protocol,
   for a broadcast network, a Network-LSA is advertised to list all
   routers on the network, and each router on the network includes a
   link in its Router-LSA to describe its connection to the network.
   The link in the Router-LSA includes a metric but the listed routers
   in the Network LSA do not include a metric.  This is based on the
   assumption that from a particular router, all others on the same
   network can be reached with the same metric.

   With some broadcast networks, different routers can be reached with
   different metrics.  [RFC6845] extends the OSPF protocol with a hybrid
   interface type for that kind of broadcast network, where no Network
   LSA is advertised and Router-LSAs simply include p2p links to all
   routers on the same network with individual metrics.  Broadcast
   capability is still utilized to optimize database synchronization and
   adjacency maintenance.

   That works well for broadcast networks where the metric between
   different pair of routers are really independent.  For example, VPLS
Show full document text