The QUIC Latency Spin Bit
draft-ietf-quic-spin-exp-00

Document Type Active Internet-Draft (quic WG)
Last updated 2018-04-26
Stream IETF
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream WG state WG Document
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
QUIC                                                    B. Trammell, Ed.
Internet-Draft                                             M. Kuehlewind
Intended status: Experimental                                 ETH Zurich
Expires: October 28, 2018                                 April 26, 2018

                       The QUIC Latency Spin Bit
                      draft-ietf-quic-spin-exp-00

Abstract

   This document specifies the addition of a latency spin bit to the
   QUIC transport protocol and describes how to use it to measure end-
   to-end latency.

Note to Readers

   This document specifies an experimental delta to the QUIC transport
   protocol.  Specifically, this experimentation is intended to
   determine:

   o  the impact of the addition of the latency spin bit on
      implementation and specification complexity; and

   o  the accuracy and value of the information derived from spin bit
      measurement on live network traffic.

   The information generated by this experiment will be used by the QUIC
   working group as input to a decision about the standardization of the
   latency spin bit.  Although this is a Working Group document, it is
   currently NOT a Working Group deliverable.

   Discussion of this draft takes place on the QUIC working group
   mailing list (quic@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/search/?email_list=quic [1].

   Working Group information can be found at https://github.com/quicwg
   [2]; source code and issues list for this draft can be found at
   https://github.com/quicwg/base-drafts/labels/-spin [3].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute

Trammell & Kuehlewind   Expires October 28, 2018                [Page 1]
Internet-Draft                QUIC Spin Bit                   April 2018

   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on October 28, 2018.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  The Spin Bit Mechanism  . . . . . . . . . . . . . . . . . . .   3
     2.1.  Proposed Short Header Format Including Spin Bit . . . . .   3
     2.2.  Setting the Spin Bit on Outgoing Packets  . . . . . . . .   4
     2.3.  Resetting Spin Value State  . . . . . . . . . . . . . . .   4
   3.  Using the Spin Bit for Passive RTT Measurement  . . . . . . .   4
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   5
   5.  Security and Privacy Considerations . . . . . . . . . . . . .   5
   6.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   6
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .   6
     7.2.  Informative References  . . . . . . . . . . . . . . . . .   7
     7.3.  URIs  . . . . . . . . . . . . . . . . . . . . . . . . . .   7
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

   The QUIC transport protocol [QUIC-TRANSPORT] uses Transport Layer
   Security (TLS) [TLS] to encrypt most of its protocol internals.  In
   contrast to TCP where the sequence and acknowledgement numbers and
   timestamps (if the respective option is in use) can be seen by on-

Trammell & Kuehlewind   Expires October 28, 2018                [Page 2]
Internet-Draft                QUIC Spin Bit                   April 2018

   path observers and used to estimate end-to-end latency, QUIC's wire
   image (see [WIRE-IMAGE]) currently does not expose any information
   that can be used for passive latency measurement techniques that rely
   on this information (e.g.  [CACM-TCP], [TMA-QOF]).

   This document adds an explicit signal for passive latency
Show full document text