Congestion Control Requirements for Interactive Real-Time Media
draft-ietf-rmcat-cc-requirements-09

Document Type Active Internet-Draft (rmcat WG)
Last updated 2015-10-14 (latest revision 2014-12-12)
Replaces draft-jesup-rmcat-reqs
Stream IETF
Intended RFC status Informational
Formats plain text xml pdf html bibtex
Stream WG state Submitted to IESG for Publication Dec 2012 Dec 2015
Document shepherd Mirja K├╝hlewind
Shepherd write-up Show (last changed 2014-11-13)
IESG IESG state RFC Ed Queue
Consensus Boilerplate Yes
Telechat date
Responsible AD Spencer Dawkins
Send notices to (None)
IANA IANA review state Version Changed - Review Needed
IANA action state No IC
RFC Editor RFC Editor state MISSREF
Network Working Group                                           R. Jesup
Internet-Draft                                                   Mozilla
Intended status: Informational                            Z. Sarker, Ed.
Expires: June 15, 2015                                          Ericsson
                                                       December 12, 2014

    Congestion Control Requirements for Interactive Real-Time Media
                  draft-ietf-rmcat-cc-requirements-09

Abstract

   Congestion control is needed for all data transported across the
   Internet, in order to promote fair usage and prevent congestion
   collapse.  The requirements for interactive, point-to-point real-time
   multimedia, which needs low-delay, semi-reliable data delivery, are
   different from the requirements for bulk transfer like FTP or bursty
   transfers like Web pages.  Due to an increasing amount of RTP-based
   real-time media traffic on the Internet (e.g. with the introduction
   of the Web Real-Time Communication (WebRTC)), it is especially
   important to ensure that this kind of traffic is congestion
   controlled.

   This document describes a set of requirements that can be used to
   evaluate other congestion control mechanisms in order to figure out
   their fitness for this purpose, and in particular to provide a set of
   possible requirements for real-time media congestion avoidance
   technique.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].
   The terms are presented in many cases using lowercase for
   readability.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

Jesup & Sarker            Expires June 15, 2015                 [Page 1]
Internet-Draft  RTP Media Congestion Control Requirements  December 2014

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 15, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Requirements  . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Deficiencies of existing mechanisms . . . . . . . . . . . . .   8
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  10
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  10
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  11

1.  Introduction

   Most of today's TCP congestion control schemes were developed with a
   focus on an use of the Internet for reliable bulk transfer of non-
   time-critical data, such as transfer of large files.  They have also
   been used successfully to govern the reliable transfer of smaller
   chunks of data in as short a time as possible, such as when fetching
   Web pages.

   These algorithms have also been used for transfer of media streams
   that are viewed in a non-interactive manner, such as "streaming"
   video, where having the data ready when the viewer wants it is
   important, but the exact timing of the delivery is not.
Show full document text