Video Traffic Models for RTP Congestion Control Evaluations
draft-ietf-rmcat-video-traffic-model-07

Document Type Active Internet-Draft (rmcat WG)
Last updated 2019-03-15 (latest revision 2019-02-19)
Replaces draft-zhu-rmcat-video-traffic-source
Stream IETF
Intended RFC status Informational
Formats plain text xml pdf html bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Colin Perkins
Shepherd write-up Show (last changed 2018-12-10)
IESG IESG state RFC Ed Queue
Consensus Boilerplate Yes
Telechat date
Responsible AD Mirja K├╝hlewind
Send notices to Colin Perkins <csp@csperkins.org>
IANA IANA review state IANA OK - No Actions Needed
IANA action state No IANA Actions
RFC Editor RFC Editor state EDIT
Network Working Group                                             X. Zhu
Internet-Draft                                                   S. Mena
Intended status: Informational                             Cisco Systems
Expires: August 23, 2019                                       Z. Sarker
                                                             Ericsson AB
                                                       February 19, 2019

      Video Traffic Models for RTP Congestion Control Evaluations
                draft-ietf-rmcat-video-traffic-model-07

Abstract

   This document describes two reference video traffic models for
   evaluating RTP congestion control algorithms.  The first model
   statistically characterizes the behavior of a live video encoder in
   response to changing requests on the target video rate.  The second
   model is trace-driven and emulates the output of actual encoded video
   frame sizes from a high-resolution test sequence.  Both models are
   designed to strike a balance between simplicity, repeatability, and
   authenticity in modeling the interactions between a live video
   traffic source and the congestion control module.  Finally, the
   document describes how both approaches can be combined into a hybrid
   model.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 23, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Zhu, et al.              Expires August 23, 2019                [Page 1]
Internet-Draft        Video Traffic Models for RTP         February 2019

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Desired Behavior of A Synthetic Video Traffic Model . . . . .   3
   4.  Interactions Between Synthetic Video Traffic Source and
       Other Components at the Sender  . . . . . . . . . . . . . . .   5
   5.  A Statistical Reference Model . . . . . . . . . . . . . . . .   6
     5.1.  Time-damped response to target rate update  . . . . . . .   7
     5.2.  Temporary burst and oscillation during the transient
           period  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     5.3.  Output rate fluctuation at steady state . . . . . . . . .   8
     5.4.  Rate range limit imposed by video content . . . . . . . .   9
   6.  A Trace-Driven Model  . . . . . . . . . . . . . . . . . . . .   9
     6.1.  Choosing the video sequence and generating the traces . .  10
     6.2.  Using the traces in the synthetic codec . . . . . . . . .  11
       6.2.1.  Main algorithm  . . . . . . . . . . . . . . . . . . .  11
       6.2.2.  Notes to the main algorithm . . . . . . . . . . . . .  13
     6.3.  Varying frame rate and resolution . . . . . . . . . . . .  14
   7.  Combining The Two Models  . . . . . . . . . . . . . . . . . .  14
   8.  Implementation Status . . . . . . . . . . . . . . . . . . . .  16
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  16
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  16
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  16
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  16
     11.2.  Informative References . . . . . . . . . . . . . . . . .  16
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  17

1.  Introduction

   When evaluating candidate congestion control algorithms designed for
   real-time interactive media, it is important to account for the
   characteristics of traffic patterns generated from a live video
   encoder.  Unlike synthetic traffic sources that can conform perfectly
   to the rate changing requests from the congestion control module, a
Show full document text