A Security Framework for Routing over Low Power and Lossy Networks

Approval announcement
Draft of message to be sent after approval:

Technical Summary

   In recent times, networked electronic devices have found an
   increasing number of applications in various fields.  Yet, for
   reasons ranging from operational application to economics, these
   wired and wireless devices are often supplied with minimum physical
   resources; the constraints include those on computational resources
   (RAM, clock speed, storage), communication resources (duty cycle,
   packet size, etc.), but also form factors that may rule out user
   access interface (e.g., the housing of a small stick-on switch), or
   simply safety considerations (e.g., with gas meters).  As a
   consequence, the resulting networks are more prone to loss of traffic
   and other vulnerabilities.  The proliferation of these low power and
   lossy networks (LLNs), however, are drawing efforts to examine and
   address their potential networking challenges.  Securing the
   establishment and maintenance of network connectivity among these
   deployed devices becomes one of these key challenges.  

   This document presents a framework for securing Routing Over LLNs
   (ROLL) through an analysis that starts from the routing basics.  The
   objective is two-fold.  First, the framework will be used to identify
   pertinent security issues.  Second, it will facilitate both the
   assessment of a protocol's security threats and the identification of
   the necessary features for development of secure protocols for the
   ROLL Working Group.
   The approach adopted in this effort proceeds in four steps, to
   examine security issues in ROLL, to analyze threats and attacks, to
   consider the countermeasures, and then to make recommendations for
   securing ROLL.  The basis is found on identifying the assets and
   points of access of routing and evaluating their security needs based
   on the Confidentiality, Integrity, and Availability (CIA) model in
   the context of LLN.  The utility of this framework is demonstrated
   with an application to IPv6 Routing Protocol for Low Power and Lossy
   Networks (RPL).

Working Group Summary

   No discontent. 

Document Quality

   The document is an informational framework


   JP Vassuer (jvasseur@cisco.com) is the Document Shepherd.
   Adrian Farrel (adrian.farrel@huawei.com) is the Responsible AD'

RFC Editor Note

  (Insert RFC Editor Note here or remove section)


  (Insert IRTF Note here or remove section)


  (Insert IESG Note here or remove section)


  (Insert IANA Note here or remove section)