Skip to main content

Routing Area Common YANG Data Types
draft-ietf-rtgwg-routing-types-15

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 8294.
Authors Xufeng Liu , Yingzhen Qu , Acee Lindem , Christian Hopps , Lou Berger
Last updated 2017-10-04 (Latest revision 2017-09-29)
Replaces draft-rtgyangdt-rtgwg-routing-types
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
RTGDIR Early review (of -02) by Stewart Bryant Partially completed Has issues
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Jeff Tantsura
Shepherd write-up Show Last changed 2017-09-19
IESG IESG state Became RFC 8294 (Proposed Standard)
Consensus boilerplate Yes
Telechat date (None)
Needs a YES. Needs 9 more YES or NO OBJECTION positions to pass.
Responsible AD Alia Atlas
Send notices to Jeff Tantsura <jefftant.ietf@gmail.com>
IANA IANA review state IANA OK - Actions Needed
draft-ietf-rtgwg-routing-types-15
Network Working Group                                             X. Liu
Internet-Draft                                                     Jabil
Intended status: Standards Track                                   Y. Qu
Expires: April 2, 2018                      Futurewei Technologies, Inc.
                                                               A. Lindem
                                                           Cisco Systems
                                                                C. Hopps
                                                        Deutsche Telekom
                                                               L. Berger
                                                 LabN Consulting, L.L.C.
                                                      September 29, 2017

                  Routing Area Common YANG Data Types
                   draft-ietf-rtgwg-routing-types-15

Abstract

   This document defines a collection of common data types using the
   YANG data modeling language.  These derived common types are designed
   to be imported by other modules defined in the routing area.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 2, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Liu, et al.               Expires April 2, 2018                 [Page 1]
Internet-Draft             Routing Types YANG             September 2017

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   2
   3.  IETF Routing Types YANG Module  . . . . . . . . . . . . . . .   6
   4.  IANA Routing Types YANG Module  . . . . . . . . . . . . . . .  22
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  31
     5.1.  IANA-Maintained iana-routing-types Module . . . . . . . .  32
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  33
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  33
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  34
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  34
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  34
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  36

1.  Introduction

   The YANG [RFC6020] [RFC7950] is a data modeling language used to
   model configuration data, state data, Remote Procedure Calls, and
   notifications for network management protocols.  The YANG language
   supports a small set of built-in data types and provides mechanisms
   to derive other types from the built-in types.

   This document introduces a collection of common data types derived
   from the built-in YANG data types.  The derived types are designed to
   be the common types applicable for modeling in the routing area.

1.1.  Terminology

   The terminology for describing YANG data models is found in
   [RFC7950].

2.  Overview

   This document defines the two models for common routing types, ietf-
   routing-types and iana-routing-types.  The only module imports are
   from [RFC6991].  The ietf-routing-types model contains common routing
   types other than those corresponding directly to IANA mappings.
   These include:

   router-id

Liu, et al.               Expires April 2, 2018                 [Page 2]
Internet-Draft             Routing Types YANG             September 2017

      Router Identifiers are commonly used to identify nodes in routing
      and other control plane protocols.  An example usage of router-id
      can be found in [I-D.ietf-ospf-yang].

   route-target
      Route Targets (RTs) are commonly used to control the distribution
      of virtual routing and forwarding (VRF) information, see
      [RFC4364], in support of BGP/MPLS IP virtual private networks
      (VPNs) and BGP/MPLS Ethernet VPNs [RFC7432].  An example usage can
      be found in [I-D.ietf-bess-l2vpn-yang].

   ipv6-route-target
      IPv6 Route Targets (RTs) are similar to standard Route Targets
      only they are IPv6 Address Specific BGP Extended Communities as
      described in [RFC5701].  An IPv6 Route Target is 20 octets and
      includes an IPv6 address as the global administrator.

   route-target-type
      This type defines the import and export rules of Route Targets, as
      described in Section 4.3.1 of [RFC4364].  An example usage can be
      found in [I-D.ietf-idr-bgp-model].

   route-distinguisher
      Route Distinguishers (RDs) are commonly used to identify separate
      routes in support of virtual private networks (VPNs).  For
      example, in [RFC4364], RDs are commonly used to identify
      independent VPNs and VRFs, and more generally, to identify
      multiple routes to the same prefix.  An example usage can be found
      in [I-D.ietf-idr-bgp-model].

   route-origin
      Route Origin is commonly used to indicate the Site of Origin for
      Routing and forwarding (VRF) information, see [RFC4364], in
      support of BGP/MPLS IP virtual private networks (VPNs) and BGP/
      MPLS Ethernet VPNs [RFC7432].  An example usage can be found in
      [I-D.ietf-bess-l3vpn-yang].

   ipv6-route-origin
      An IPv6 Route Origin would also be used to indicate the Site of
      Origin for Routing and forwarding (VRF) information, see
      [RFC4364], in support of virtual private networks (VPNs).  IPv6
      Route Origins are IPv6 Address Specific BGP Extended Communities
      as described in [RFC5701].  An IPv6 Route Origin is 20 octets and
      includes an IPv6 address as the global administrator.

   ipv4-multicast-group-address

Liu, et al.               Expires April 2, 2018                 [Page 3]
Internet-Draft             Routing Types YANG             September 2017

      This type defines the representation of an IPv4 multicast group
      address, which is in the range from 224.0.0.0 to 239.255.255.255.
      An example usage can be found in [I-D.ietf-pim-yang].

   ipv6-multicast-group-address
      This type defines the representation of an IPv6 multicast group
      address, which is in the range of FF00::/8.  An example usage can
      be found in [I-D.ietf-pim-yang].

   ip-multicast-group-address
      This type represents an IP multicast group address and is IP
      version neutral.  The format of the textual representation implies
      the IP version.  An example usage can be found in
      [I-D.ietf-pim-yang].

   ipv4-multicast-source-address
      IPv4 source address type for use in multicast control protocols.
      This type also allows the indication of wildcard sources, i.e.,
      "*".  An example of where this type may/will be used is
      [I-D.ietf-pim-yang].

   ipv6-multicast-source-address
      IPv6 source address type for use in multicast control protocols.
      This type also allows the indication of wildcard sources, i.e.,
      "*".  An example of where this type may/will be used is
      [I-D.ietf-pim-yang].

   bandwidth-ieee-float32
      Bandwidth in IEEE 754 floating point 32-bit binary format
      [IEEE754].  Commonly used in Traffic Engineering control plane
      protocols.  An example of where this type may/will be used is
      [I-D.ietf-ospf-yang].

   link-access-type
      This type identifies the IGP link type.  An example of where this
      type may/will be used is [I-D.ietf-ospf-yang].

   timer-multiplier
      This type is used in conjunction with a timer-value type.  It is
      generally used to indicate define the number of timer-value
      intervals that may expire before a specific event must occur.
      Examples of this include the arrival of any BFD packets, see
      [RFC5880] Section 6.8.4, or hello_interval in [RFC3209].  Example
      of where this type may/will be used is [I-D.ietf-idr-bgp-model]
      and [I-D.ietf-teas-yang-rsvp].

   timer-value-seconds16

Liu, et al.               Expires April 2, 2018                 [Page 4]
Internet-Draft             Routing Types YANG             September 2017

      This type covers timers which can be set in seconds, not set, or
      set to infinity.  This type supports a range of values that can be
      represented in a uint16 (2 octets).  An example of where this type
      may/will be used is [I-D.ietf-ospf-yang].

   timer-value-seconds32
      This type covers timers which can be set in seconds, not set, or
      set to infinity.  This type supports a range of values that can be
      represented in a uint32 (4 octets).  An example of where this type
      may/will be used is [I-D.ietf-teas-yang-rsvp].

   timer-value-milliseconds
      This type covers timers which can be set in milliseconds, not set,
      or set to infinity.  This type supports a range of values that can
      be represented in a uint32 (4 octets).  Examples of where this
      type may/will be used include [I-D.ietf-teas-yang-rsvp] and
      [I-D.ietf-bfd-yang].

   percentage
      This type defines a percentage with a range of 0-100%.  An example
      usage can be found in [I-D.ietf-idr-bgp-model].

   timeticks64
      This type is based on the timeticks type defined in [RFC6991] but
      with 64-bit precision.  It represents the time in hundredths of a
      second between two epochs.  An example usage can be found in
      [I-D.ietf-idr-bgp-model].

   uint24
      This type defines a 24-bit unsigned integer.  It is used by
      target="I-D.ietf-ospf-yang"/>.

   generalized-label
      This type represents a generalized label for Generalized Multi-
      Protocol Label Switching (GMPLS) [RFC3471].  The Generalized Label
      does not identify its type, which is known from the context.  An
      example usage can be found in [I-D.ietf-teas-yang-te].

   mpls-label-special-purpose
      This type represents the special-purpose Multiprotocol Label
      Switching (MPLS) label values [RFC7274].  An example usage can be
      found in [I-D.ietf-mpls-base-yang].

   mpls-label-general-use
      The 20 bits label values in an MPLS label stack entry, specified
      in [RFC3032].  This label value does not include the encodings of
      Traffic Class and TTL (time to live).  The label range specified
      by this type is for general use, with special-purpose MPLS label

Liu, et al.               Expires April 2, 2018                 [Page 5]
Internet-Draft             Routing Types YANG             September 2017

      values excluded.  An example usage can be found in
      [I-D.ietf-mpls-base-yang].

   mpls-label
      The 20 bits label values in an MPLS label stack entry, specified
      in [RFC3032].  This label value does not include the encodings of
      Traffic Class and TTL (time to live).  The label range specified
      by this type covers the general use values and the special-purpose
      label values.  An example usage can be found in
      [I-D.ietf-mpls-base-yang].

   This document defines the following YANG groupings:

   mpls-label-stack
      This grouping defines a reusable collection of schema nodes
      representing an MPLS label stack [RFC3032].  An example usage can
      be found in [I-D.ietf-mpls-base-yang].

   vpn-route-targets
      This grouping defines a reusable collection of schema nodes
      representing Route Target import-export rules used in the BGP
      enabled Virtual Private Networks (VPNs).  [RFC4364][RFC4664].  An
      example usage can be found in [I-D.ietf-bess-l2vpn-yang].

   The iana-routing-types model contains common routing types
   corresponding directly to IANA mappings.  These include:

   address-family
      This type defines values for use in address family identifiers.
      The values are based on the IANA Address Family Numbers Registry
      [IANA-ADDRESS-FAMILY-REGISTRY].  An example usage can be found in
      [I-D.ietf-idr-bgp-model].

   subsequent-address-family
      This type defines values for use in subsequent address family
      (SAFI) identifiers.  The values are based on the IANA Subsequent
      Address Family Identifiers (SAFI) Parameters Registry
      [IANA-SAFI-REGISTRY].

3.  IETF Routing Types YANG Module

   <CODE BEGINS> file "ietf-routing-types@2017-09-19.yang"
   module ietf-routing-types {
     namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types";
     prefix rt-types;

     import ietf-yang-types {
       prefix yang;

Liu, et al.               Expires April 2, 2018                 [Page 6]
Internet-Draft             Routing Types YANG             September 2017

     }
     import ietf-inet-types {
       prefix inet;
     }

     organization
       "IETF RTGWG - Routing Area Working Group";
     contact
       "WG Web:   <http://tools.ietf.org/wg/rtgwg/>
        WG List:  <mailto:rtgwg@ietf.org>

        Editor:   Xufeng Liu
                  <mailto:Xufeng_Liu@jabail.com>
                  Yingzhen Qu
                  <mailto:yingzhen.qu@huawei.com>
                  Acee Lindem
                  <mailto:acee@cisco.com>
                  Christian Hopps
                  <mailto:chopps@chopps.org>
                  Lou Berger
                  <mailto:lberger@labn.com>";
     description
       "This module contains a collection of YANG data types
        considered generally useful for routing protocols.

        Copyright (c) 2017 IETF Trust and the persons
        identified as authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX; see
        the RFC itself for full legal notices.";
     reference "RFC XXXX";

     revision 2017-09-19 {
       description "Initial revision.";
       reference "RFC TBD: Routing YANG Data Types";
     }

     /*** Identities related to MPLS/GMPLS ***/

     identity mpls-label-special-purpose-value {
       description

Liu, et al.               Expires April 2, 2018                 [Page 7]
Internet-Draft             Routing Types YANG             September 2017

         "Base identity for deriving identities describing
          special-purpose Multiprotocol Label Switching (MPLS) label
          values.";
       reference
         "RFC7274: Allocating and Retiring Special-Purpose MPLS
          Labels.";
     }

     identity ipv4-explicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the IPv4 Explicit NULL Label.";
       reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
     }

     identity router-alert-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Router Alert Label.";
       reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
     }

     identity ipv6-explicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the IPv6 Explicit NULL Label.";
       reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
     }

     identity implicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Implicit NULL Label.";
       reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
     }

     identity entropy-label-indicator {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Entropy Label Indicator.";
       reference
         "RFC6790: The Use of Entropy Labels in MPLS Forwarding.
          Sections 3 and 10.1.";
     }

     identity gal-label {
       base mpls-label-special-purpose-value;
       description

Liu, et al.               Expires April 2, 2018                 [Page 8]
Internet-Draft             Routing Types YANG             September 2017

         "This identity represents the Generic Associated Channel
          Label (GAL).";
       reference
         "RFC5586: MPLS Generic Associated Channel.
          Sections 4 and 10.";
     }

     identity oam-alert-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the OAM Alert Label.";
       reference
         "RFC3429: Assignment of the 'OAM Alert Label' for
          Multiprotocol Label Switching Architecture (MPLS)
          Operation and Maintenance (OAM) Functions.
          Sections 3 and 6.";
     }

     identity extension-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Extension Label.";
       reference
         "RFC7274: Allocating and Retiring Special-Purpose MPLS
          Labels.  Sections 3.1 and 5.";
     }

     /*** Collection of types related to routing ***/

     typedef router-id {
       type yang:dotted-quad;
       description
         "A 32-bit number in the dotted quad format assigned to each
          router. This number uniquely identifies the router within
          an Autonomous System.";
     }

     /*** Collection of types related to VPN ***/

     typedef route-target {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]):(429496729[0-5]|'
         +     '42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
         +     '42949[0-5][0-9]{4}|'

Liu, et al.               Expires April 2, 2018                 [Page 9]
Internet-Draft             Routing Types YANG             September 2017

         +     '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
         +     '42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[0-3]?[0-9]{0,8}[0-9]))|'
         + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
         +     '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
         +     '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
         +     '655[0-2][0-9]|'
         +     '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]))|'
         + '(2:(429496729[0-5]|42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|'
         +     '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|'
         +     '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[0-3]?[0-9]{0,8}[0-9]):'
         +     '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]))|'
         + '(6(:[a-fA-F0-9]{2}){6})|'
         + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
         +     '[0-9a-fA-F]{1,12})';
       }
       description
         "A route target is an 8-octet BGP extended community
          initially identifying a set of sites in a BGP
          VPN (RFC 4364). However, it has since taken on a more
          general role in BGP route filtering.
          A route target consists of two or three fields:
          a 2-octet type field, an administrator field,
          and, optionally, an assigned number field.

          According to the data formats for type 0, 1, 2, and 6
          defined in RFC4360, RFC5668, and RFC7432, the encoding
          pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number.
          6:6-octet-mac-address.

          Additionally, a generic pattern is defined for future
          route target types:

          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are: 0:100:100, 1:1.1.1.1:100,
          2:1234567890:203 and 6:26:00:08:92:78:00";
       reference

Liu, et al.               Expires April 2, 2018                [Page 10]
Internet-Draft             Routing Types YANG             September 2017

         "RFC4360: BGP Extended Communities Attribute.
          RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
          RFC5668: 4-Octet AS Specific BGP Extended Community.
          RFC7432: BGP MPLS-Based Ethernet VPN";
     }

     typedef ipv6-route-target {
       type string {
         pattern
             '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
             + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
             + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[0-5]?[0-9]{0,3}[0-9])';
         pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[0-5]?[0-9]{0,3}[0-9])';
       }
       description
         "An IPv6 route target is a 20-octet BGP IPv6 address
          specific extended community serving the same function
          as a standard 8-octet route target only allowing for
          an IPv6 address as the global administrator. The format
          is <ipv6-address:2-octet-number>.

          Some valid examples are: 2001:DB8::1:6544 and
          2001:DB8::5eb1:791:6b37:17958";
       reference
         "RFC5701: IPv6 Address Specific BGP Extended Community
                   Attribute";
     }

     typedef route-target-type {
       type enumeration {
         enum "import" {
           value 0;
           description
             "The route target applies to route import.";
         }
         enum "export" {
           value 1;
           description

Liu, et al.               Expires April 2, 2018                [Page 11]
Internet-Draft             Routing Types YANG             September 2017

             "The route target applies to route export.";
         }
         enum "both" {
           value 2;
           description
             "The route target applies to both route import and
              route export.";
         }
       }
       description
         "Indicates the role a route target takes
          in route filtering.";
       reference "RFC4364: BGP/MPLS IP Virtual Private Networks
                  (VPNs).";
     }

     typedef route-distinguisher {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]):(429496729[0-5]|'
         +     '42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
         +     '42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
         +     '42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[0-3]?[0-9]{0,8}[0-9]))|'
         + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
         +     '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
         +     '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
         +     '655[0-2][0-9]|'
         +     '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]))|'
         + '(2:(429496729[0-5]|42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|'
         +     '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|'
         +     '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[0-3]?[0-9]{0,8}[0-9]):'
         +     '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]))|'
         + '(6(:[a-fA-F0-9]{2}){6})|'
         + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
         +     '[0-9a-fA-F]{1,12})';
       }
       description

Liu, et al.               Expires April 2, 2018                [Page 12]
Internet-Draft             Routing Types YANG             September 2017

         "A route distinguisher is an 8-octet value used to
          distinguish routes from different BGP VPNs (RFC 4364).
          As per RFC 4360, a route distinguisher will have the same
          format as a route target and will consist of two or three
          fields including a 2-octet type field, an administrator
          field, and, optionally, an assigned number field.

          According to the data formats for type 0, 1, 2, and 6
          defined in RFC4360, RFC5668, and RFC7432, the encoding
          pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number.
          6:6-octet-mac-address.

          Additionally, a generic pattern is defined for future
          route discriminator types:

          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are: 0:100:100, 1:1.1.1.1:100,
          2:1234567890:203 and 6:26:00:08:92:78:00";
       reference
         "RFC4360: BGP Extended Communities Attribute.
          RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
          RFC5668: 4-Octet AS Specific BGP Extended Community.
          RFC7432: BGP MPLS-Based Ethernet VPN";
     }

     typedef route-origin {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]):(429496729[0-5]|'
         +     '42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
         +     '42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
         +     '42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[0-3]?[0-9]{0,8}[0-9]))|'
         + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
         +     '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
         +     '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
         +     '655[0-2][0-9]|'
         +     '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]))|'

Liu, et al.               Expires April 2, 2018                [Page 13]
Internet-Draft             Routing Types YANG             September 2017

         + '(2:(429496729[0-5]|42949672[0-8][0-9]|'
         +     '4294967[01][0-9]{2}|'
         +     '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
         +     '4294[0-8][0-9]{5}|'
         +     '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
         +     '[0-3]?[0-9]{0,8}[0-9]):'
         +     '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
         +     '6[0-4][0-9]{3}|'
         +     '[0-5]?[0-9]{0,3}[0-9]))|'
         + '(6(:[a-fA-F0-9]{2}){6})|'
         + '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
         +    '[0-9a-fA-F]{1,12})';
       }
       description
         "A route origin is an 8-octet BGP extended community
          identifying the set of sites where the BGP route
          originated (RFC 4364). A route target consists of two
          or three fields: a 2-octet type field, an administrator
          field, and, optionally, an assigned number field.

          According to the data formats for type 0, 1, 2, and 6
          defined in RFC4360, RFC5668, and RFC7432, the encoding
          pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number.
          6:6-octet-mac-address.

          Additionally, a generic pattern is defined for future
          route origin types:

          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are: 0:100:100, 1:1.1.1.1:100,
          2:1234567890:203 and 6:26:00:08:92:78:00";
       reference
         "RFC4360: BGP Extended Communities Attribute.
          RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
          RFC5668: 4-Octet AS Specific BGP Extended Community.
          RFC7432: BGP MPLS-Based Ethernet VPN";
     }

     typedef ipv6-route-origin {
       type string {
         pattern
             '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
             + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'

Liu, et al.               Expires April 2, 2018                [Page 14]
Internet-Draft             Routing Types YANG             September 2017

             + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
             + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[0-5]?[0-9]{0,3}[0-9])';
         pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
             + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
             + ':'
             + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
             + '6[0-4][0-9]{3}|'
             + '[0-5]?[0-9]{0,3}[0-9])';
       }
       description
         "An IPv6 route origin is a 20-octet BGP IPv6 address
          specific extended community serving the same function
          as a standard 8-octet route only allowing for
          an IPv6 address as the global administrator. The format
          is <ipv6-address:2-octet-number>.

          Some valid examples are: 2001:DB8::1:6544 and
          2001:DB8::5eb1:791:6b37:17958";
       reference
         "RFC5701: IPv6 Address Specific BGP Extended Community
                   Attribute";
     }

     /*** Collection of types common to multicast ***/

     typedef ipv4-multicast-group-address {
       type inet:ipv4-address {
         pattern '(2((2[4-9])|(3[0-9]))\.).*';
       }
       description
         "This type represents an IPv4 multicast group address,
          which is in the range from 224.0.0.0 to 239.255.255.255.";
       reference "RFC1112: Host Extensions for IP Multicasting.";
     }

     typedef ipv6-multicast-group-address {
       type inet:ipv6-address {
         pattern
           '(([fF]{2}[0-9a-fA-F]{2}):).*';
       }
       description
         "This type represents an IPv6 multicast group address,
          which is in the range of FF00::/8.";
       reference

Liu, et al.               Expires April 2, 2018                [Page 15]
Internet-Draft             Routing Types YANG             September 2017

         "RFC4291: IP Version 6 Addressing Architecture. Sec 2.7.
          RFC7346: IPv6 Multicast Address Scopes.";
     }

     typedef ip-multicast-group-address {
       type union {
         type ipv4-multicast-group-address;
         type ipv6-multicast-group-address;
       }
       description
         "This type represents a version-neutral IP multicast group
          address. The format of the textual representation implies
          the IP version.";
     }

     typedef ipv4-multicast-source-address {
       type union {
         type enumeration {
           enum "*" {
             description
               "Any source address.";
           }
         }
         type inet:ipv4-address;
       }
       description
         "Multicast source IPv4 address type.";
     }

     typedef ipv6-multicast-source-address {
       type union {
         type enumeration {
           enum "*" {
             description
               "Any source address.";
           }
         }
         type inet:ipv6-address;
       }
       description
         "Multicast source IPv6 address type.";
     }

     /*** Collection of types common to protocols ***/

     typedef bandwidth-ieee-float32 {
       type string {
         pattern

Liu, et al.               Expires April 2, 2018                [Page 16]
Internet-Draft             Routing Types YANG             September 2017

           '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
         + '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
         + '1[01][0-9]|0?[0-9]?[0-9])?)';
       }
       description
         "Bandwidth in IEEE 754 floating point 32-bit binary format:
          (-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
          where Exponent uses 8 bits, and Fraction uses 23 bits.
          The units are octets per second.
          The encoding format is the external hexadecimal-significant
          character sequences specified in IEEE 754 and C99. The
          format is restricted to be normalized, non-negative, and
          non-fraction: 0x1.hhhhhhp{+}d or 0X1.HHHHHHP{+}D
          where 'h' and 'H' are hexadecimal digits, 'd' and 'D' are
          integers in the range of [0..127].
          When six hexadecimal digits are used for 'hhhhhh' or
          'HHHHHH', the least significant digit must be an even
          number. 'x' and 'X' indicate hexadecimal; 'p' and 'P'
          indicate power of two. Some examples are: 0x0p0, 0x1p10, and
          0x1.abcde2p+20";
       reference
         "IEEE Std 754-2008: IEEE Standard for Floating-Point
          Arithmetic.";
     }

     typedef link-access-type {
       type enumeration {
         enum "broadcast" {
           description
             "Specify broadcast multi-access network.";
         }
         enum "non-broadcast-multiaccess" {
           description
             "Specify Non-Broadcast Multi-Access (NBMA) network.";
         }
         enum "point-to-multipoint" {
           description
             "Specify point-to-multipoint network.";
         }
         enum "point-to-point" {
           description
             "Specify point-to-point network.";
         }
       }
       description
         "Link access type.";
     }

Liu, et al.               Expires April 2, 2018                [Page 17]
Internet-Draft             Routing Types YANG             September 2017

     typedef timer-multiplier {
       type uint8;
       description
         "The number of timer value intervals that should be
          interpreted as a failure.";
     }

     typedef timer-value-seconds16 {
       type union {
         type uint16 {
           range "1..65535";
         }
         type enumeration {
           enum "infinity" {
             description
               "The timer is set to infinity.";
           }
           enum "not-set" {
             description
               "The timer is not set.";
           }
         }
       }
       units "seconds";
       description
         "Timer value type, in seconds (16-bit range).";
     }

     typedef timer-value-seconds32 {
       type union {
         type uint32 {
           range "1..4294967295";
         }
         type enumeration {
           enum "infinity" {
             description
               "The timer is set to infinity.";
           }
           enum "not-set" {
             description
               "The timer is not set.";
           }
         }
       }
       units "seconds";
       description
         "Timer value type, in seconds (32-bit range).";
     }

Liu, et al.               Expires April 2, 2018                [Page 18]
Internet-Draft             Routing Types YANG             September 2017

     typedef timer-value-milliseconds {
       type union {
         type uint32 {
           range "1..4294967295";
         }
         type enumeration {
           enum "infinity" {
             description
               "The timer is set to infinity.";
           }
           enum "not-set" {
             description
               "The timer is not set.";
           }
         }
       }
       units "milliseconds";
       description
         "Timer value type, in milliseconds.";
     }

     typedef percentage {
       type uint8 {
         range "0..100";
       }
       description
         "Integer indicating a percentage value";
     }

     typedef timeticks64 {
       type uint64;
       description
         "This type is based on the timeticks type defined in
          RFC 6991, but with 64-bit width.  It represents the time,
          modulo 2^64, in hundredths of a second between two epochs.";
       reference "RFC 6991 - Common YANG Data Types";
     }

     typedef uint24 {
       type uint32 {
         range "0 .. 16777215";
       }
       description
         "24-bit unsigned integer";
     }

     /*** Collection of types related to MPLS/GMPLS ***/

Liu, et al.               Expires April 2, 2018                [Page 19]
Internet-Draft             Routing Types YANG             September 2017

     typedef generalized-label {
       type binary;
       description
         "Generalized label. Nodes sending and receiving the
          Generalized Label are aware of the link-specific
          label context and type.";
       reference "RFC3471: Section 3.2";
     }

     typedef mpls-label-special-purpose {
       type identityref {
         base mpls-label-special-purpose-value;
       }
       description
         "This type represents the special-purpose Multiprotocol Label
          Switching (MPLS) label values.";
       reference
         "RFC3032: MPLS Label Stack Encoding.
          RFC7274: Allocating and Retiring Special-Purpose MPLS
          Labels.";
     }

     typedef mpls-label-general-use {
       type uint32 {
         range "16..1048575";
       }
       description
         "The 20-bit label values in an MPLS label stack entry,
          specified in RFC3032. This label value does not include
          the encodings of Traffic Class and TTL (time to live).
          The label range specified by this type is for general use,
          with special-purpose MPLS label values excluded.";
       reference "RFC3032: MPLS Label Stack Encoding.";
     }

     typedef mpls-label {
       type union {
         type mpls-label-special-purpose;
         type mpls-label-general-use;
       }
       description
         "The 20-bit label values in an MPLS label stack entry,
          specified in RFC3032. This label value does not include
          the encodings of Traffic Class and TTL (time to live).";
       reference "RFC3032: MPLS Label Stack Encoding.";
     }

     /*** Groupings **/

Liu, et al.               Expires April 2, 2018                [Page 20]
Internet-Draft             Routing Types YANG             September 2017

     grouping mpls-label-stack {
       description
         "This grouping specifies an MPLS label stack.  The label
          stack is encoded as a list of label stack entries.  The
          list key is an identifier which indicates relative
          ordering of each entry, with the lowest value identifier
          corresponding to the top of the label stack.";
       container mpls-label-stack {
         description
           "Container for a list of MPLS label stack entries.";
         list entry {
           key "id";
           description
             "List of MPLS label stack entries.";
           leaf id {
             type uint8;
             description
               "Identifies the entry in a sequence of MPLS label
                stack entries. An entry with a smaller identifier
                value precedes an entry with a larger identifier
                value in the label stack. The value of this ID has
                no semantic meaning other than relative ordering
                and referencing the entry.";
           }
           leaf label {
             type rt-types:mpls-label;
             description
               "Label value.";
           }
           leaf ttl {
             type uint8;
             description
               "Time to Live (TTL).";
             reference "RFC3032: MPLS Label Stack Encoding.";
           }
           leaf traffic-class {
             type uint8 {
               range "0..7";
             }
             description
               "Traffic Class (TC).";
             reference
               "RFC5462: Multiprotocol Label Switching (MPLS) Label
                Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
                Field.";
           }
         }
       }

Liu, et al.               Expires April 2, 2018                [Page 21]
Internet-Draft             Routing Types YANG             September 2017

     }

     grouping vpn-route-targets {
       description
         "A grouping that specifies Route Target import-export rules
          used in the BGP enabled Virtual Private Networks (VPNs).";
       reference
         "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).
          RFC4664: Framework for Layer 2 Virtual Private Networks
          (L2VPNs)";
       list vpn-target {
         key "route-target";
         description
           "List of Route Targets.";
         leaf route-target {
           type rt-types:route-target;
           description
             "Route Target value";
         }
         leaf route-target-type {
           type rt-types:route-target-type;
           mandatory true;
           description
             "Import/export type of the Route Target.";
         }
       }
     }
   }

   <CODE ENDS>

4.  IANA Routing Types YANG Module

   <CODE BEGINS> file "iana-routing-types@2017-09-19.yang"
   module iana-routing-types {
     namespace "urn:ietf:params:xml:ns:yang:iana-routing-types";
     prefix iana-rt-types;

     organization
       "IANA";
     contact
       "        Internet Assigned Numbers Authority

        Postal: ICANN
                4676 Admiralty Way, Suite 330
                Marina del Rey, CA 90292

        Tel:    +1 310 823 9358

Liu, et al.               Expires April 2, 2018                [Page 22]
Internet-Draft             Routing Types YANG             September 2017

        <mailto:iana@iana.org>";
     description
       "This module contains a collection of YANG data types
        considered defined by IANA and used for routing
        protocols.

        Copyright (c) 2017 IETF Trust and the persons
        identified as authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX; see
        the RFC itself for full legal notices.";
     reference "RFC XXXX";

     revision 2017-09-19 {
       description "Initial revision.";
       reference "RFC TBD: IANA Routing YANG Data Types";
     }

     /*** Collection of IANA types related to routing ***/
     /*** IANA address family enumeration ***/

     typedef address-family {
       type enumeration {
         enum ipv4 {
           value 1;
           description "IPv4 Address Family";
         }

         enum ipv6 {
           value 2;
           description "IPv6 Address Family";
         }

         enum nsap {
           value 3;
           description "OSI Network Service Access Point (NSAP)
                        Address Family";
         }

         enum hdlc {
           value 4;

Liu, et al.               Expires April 2, 2018                [Page 23]
Internet-Draft             Routing Types YANG             September 2017

           description "High-Level Data Link Control (HDLC)
                        Address Family";

         }

         enum bbn1822 {
           value 5;
           description "Bolt, Beranek, and Newman Report
                        1822 (BBN 1822) Address Family";
         }

         enum ieee802 {
           value 6;
           description "IEEE 802 Committee Address Family (aka,
                        MAC address)";
         }

         enum e163 {
           value 7;
           description "ITU-T E.163 Address Family";
         }

         enum e164 {
           value 8;
           description "ITU-T E.164 (SMDS, Frame Relay, ATM)
                        Address Family";
         }

         enum f69 {
           value 9;
           description "ITU-T F.69 (Telex) Address Family";
         }

         enum x121 {
           value 10;
           description  "ITU-T X.121 (X.25, Frame Relay)
                         Address Family";
         }

         enum ipx {
           value 11;
           description "Novell Internetwork Packet Exchange (IPX)
                        Address Family";
         }

         enum appletalk {
           value 12;
           description  "Apple AppleTalk Address Family";

Liu, et al.               Expires April 2, 2018                [Page 24]
Internet-Draft             Routing Types YANG             September 2017

         }

         enum decnet-iv {
           value 13;
           description "Digital Equipment DECnet Phase IV
                        Address Family";
         }

         enum vines {
           value 14;
           description "Banyan Vines Address Family";
         }

         enum e164-nsap {
           value 15;
           description "ITU-T E.164 with NSAP sub-address
                        Address Family";
         }

         enum dns {
           value 16;
           description "Domain Name System (DNS) Address
                        Family";
         }

         enum distinguished-name {
           value 17;
           description "Distinguished Name Address Family";
         }

         enum as-num {
           value 18;
           description "AS Number Address Family";
         }

         enum xtp-v4 {
           value 19;
           description "Xpress Transport Protocol (XTP) over IPv4
                        Address Family";
         }

         enum xtp-v6 {
           value 20;
           description "Xpress Transport Protocol (XTP) over IPv6
                        Address Family";
         }

         enum xtp-native {

Liu, et al.               Expires April 2, 2018                [Page 25]
Internet-Draft             Routing Types YANG             September 2017

           value 21;
           description "Xpress Transport Protocol (XTP) native mode
                        Address Family";
         }

         enum fc-port {
           value 22;
           description "Fibre Channel (FC) World-Wide Port Name
                         Address Family";
         }

         enum fc-node {
           value 23;
           description "Fibre Channel (FC) World-Wide Node Name
                        Address Family";
         }

         enum gwid {
           value 24;
           description
             "ATM Gateway Identifier (GWID) Number Address Family";
         }

         enum l2vpn {
           value 25;
           description "Layer-2 VPN (L2VPN) Address Family";
         }

         enum mpls-tp-section-eid {
           value 26;
           description "MPLS-TP Section Endpoint Identifier
                        Address Family";
         }

         enum mpls-tp-lsp-eid {
           value 27;
           description "MPLS-TP LSP Endpoint Identifier
                        Address Family";
         }

         enum mpls-tp-pwe-eid {
           value 28;
           description "MPLS-TP Pseudowire Endpoint Identifier
                        Address Family";
         }

         enum mt-v4 {
           value 29;

Liu, et al.               Expires April 2, 2018                [Page 26]
Internet-Draft             Routing Types YANG             September 2017

           description "Multi-Topology IPv4 Address Family";
         }

         enum mt-v6 {
           value 30;
           description "Multi-Topology IPv6 Address Family";
         }

         enum eigrp-common-sf {
           value 16384;
           description "Enhanced Interior Gateway Routing Protocol
                        (EIGRP) Common Service Family Address
                        Family";
         }

         enum eigrp-v4-sf {
           value 16385;
           description "Enhanced Interior Gateway Routing Protocol
                        (EIGRP) IPv4 Service Family Address Family";
         }

         enum eigrp-v6-sf {
           value 16386;
           description "Enhanced Interior Gateway Routing Protocol
                       (EIGRP) IPv6 Service Family Address Family";
         }

         enum lcaf {
           value 16387;
           description "LISP Canonical Address Format (LCAF)
                        Address Family";
         }

         enum bgp-ls {
           value 16388;
           description "Border Gateway Protocol - Link State (BGP-LS)
                        Address Family";
         }

         enum mac-48 {
           value 16389;
           description  "IEEE 48-bit Media Access Control (MAC)
                         Address Family";
         }

         enum mac-64 {
           value 16390;
           description "IEEE 64-bit Media Access Control (MAC)

Liu, et al.               Expires April 2, 2018                [Page 27]
Internet-Draft             Routing Types YANG             September 2017

                        Address Family";
         }

         enum trill-oui {
           value 16391;
           description "TRILL IEEE Organizationally Unique
                        Identifier (OUI) Address Family";
         }

         enum trill-mac-24 {
           value 16392;
           description "TRILL Final 3 octets of 48-bit MAC
                        address Address Family";
         }

         enum trill-mac-40 {
           value 16393;
           description "TRILL Final 5 octets of 64-bit MAC
                        address Address Family";
         }

         enum ipv6-64 {
           value 16394;
           description "First 8 octets (64-bits) of an IPv6
                        address Address Family";
         }

         enum trill-rbridge-port-id {
           value 16395;
           description "TRILL Remote Bridge (RBridge) Port ID
                        Address Family";
         }

         enum trill-nickname {
           value 16396;
           description "TRILL Nickname Address Family";
         }
       }
       description "Enumeration containing all the IANA
                     defined address families.";

     }

     /*** SAFIs for Multi-Protocol BGP enumeration ***/

     typedef bgp-safi {
       type enumeration {
         enum unicast-safi {

Liu, et al.               Expires April 2, 2018                [Page 28]
Internet-Draft             Routing Types YANG             September 2017

           value 1;
           description "Unicast SAFI";
         }

         enum multicast-safi {
           value 2;
           description "Multicast SAFI";
         }

         enum labeled-unicast-safi {
           value 4;
           description "Labeled Unicast SAFI";
         }

         enum multicast-vpn-safi {
           value 5;
           description "Multicast VPN SAFI";
         }

         enum pseudowire-safi {
           value 6;
           description "Multi-segment Pseudowire VPN SAFI";
         }

         enum tunnel-encap-safi {
           value 7;
           description "Tunnel Encap SAFI";
         }

         enum mcast-vpls-safi {
           value 8;
           description "Multicast Virtual Private LAN Service
                        (VPLS) SAFI";
         }

         enum tunnel-safi {
           value 64;
           description "Tunnel SAFI";
         }

         enum vpls-safi {
           value 65;
           description "Virtual Private LAN Service (VPLS) SAFI";
         }

         enum mdt-safi {
           value 66;
           description "Multicast Distribution Tree (MDT) SAFI";

Liu, et al.               Expires April 2, 2018                [Page 29]
Internet-Draft             Routing Types YANG             September 2017

         }

         enum v4-over-v6-safi {
           value 67;
           description "IPv4 over IPv6 SAFI";
         }

         enum v6-over-v4-safi {
           value 68;
           description "IPv6 over IPv4 SAFI";
         }

         enum l1-vpn-auto-discovery-safi {
           value 69;
           description "Layer-1 VPN Auto Discovery SAFI";
         }

         enum evpn-safi {
           value 70;
           description "Ethernet VPN (EVPN) SAFI";
         }

         enum bgp-ls-safi {
           value 71;
           description "BGP Link-State (BGP-LS) SAFI";
         }

         enum bgp-ls-vpn-safi {
           value 72;
           description "BGP Link-State (BGP-LS) VPN SAFI";
         }

         enum sr-te-safi {
           value 73;
           description "Segment Routing - Traffic Engineering
                        (SR-TE) SAFI";
         }

         enum labeled-vpn-safi {
           value 128;
           description "MPLS Labeled VPN SAFI";
         }

         enum multicast-mpls-vpn-safi {
           value 129;
           description "Multicast for BGP/MPLS IP VPN SAFI";
         }

Liu, et al.               Expires April 2, 2018                [Page 30]
Internet-Draft             Routing Types YANG             September 2017

         enum route-target-safi {
           value 132;
           description "Route Target SAFI";
         }

         enum ipv4-flow-spec-safi {
           value 133;
           description "IPv4 Flow Specification SAFI";
         }

         enum vpnv4-flow-spec-safi {
           value 134;
           description "IPv4 VPN Flow Specification SAFI";
         }

         enum vpn-auto-discovery-safi {
           value 140;
           description "VPN Auto-Discovery SAFI";
         }
       }
       description "Enumeration for BGP Subsequent Address
                    Family Identifier (SAFI) - RFC 4760.";
     }
   }

   <CODE ENDS>

5.  IANA Considerations

   RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
   actual RFC number (and remove this note).

   This document registers the following namespace URIs in the IETF XML
   registry [RFC3688]:

   --------------------------------------------------------------------
   URI: urn:ietf:params:xml:ns:yang:ietf-routing-types
   Registrant Contact: The IESG.
   XML: N/A, the requested URI is an XML namespace.
   --------------------------------------------------------------------

   --------------------------------------------------------------------
   URI: urn:ietf:params:xml:ns:yang:iana-routing-types
   Registrant Contact: IANA
   XML: N/A, the requested URI is an XML namespace.
   --------------------------------------------------------------------

Liu, et al.               Expires April 2, 2018                [Page 31]
Internet-Draft             Routing Types YANG             September 2017

   This document registers the following YANG modules in the YANG Module
   Names registry [RFC6020]:

   --------------------------------------------------------------------
   name:         ietf-routing-types
   namespace:    urn:ietf:params:xml:ns:yang:ietf-routing-types
   prefix:       rt-types
   reference:    RFC XXXX
   --------------------------------------------------------------------

   --------------------------------------------------------------------
   name:         iana-routing-types
   namespace:    urn:ietf:params:xml:ns:yang:iana-routing-types
   prefix:       iana-rt-types
   reference:    RFC XXXX
   --------------------------------------------------------------------

5.1.  IANA-Maintained iana-routing-types Module

   This document defines the initial version of the IANA-maintained
   iana-routing-types YANG module.

   The iana-routing-types YANG module is intended to reflect the
   "Address Family Numbers" registry [IANA-ADDRESS-FAMILY-REGISTRY] and
   "Subsequent Address Family Identifiers (SAFI) Parameters" registry
   [IANA-SAFI-REGISTRY].

   IANA has added this notes to the "iana-routing-types YANG Module"
   registry:

      Address Families and Subsequent Address Families must not be
      directly added to the iana-routing-types YANG module.  They must
      instead be respectively added to the "Address Family Numbers"
      and "Subsequent Address Family Identifiers (SAFI) Parameters"
      registries.

   When an Address Family or Subsequent Address Family is respectively
   added to the "Address Family Numbers" registry or the "Subsequent
   Address Family Identifiers (SAFI) Parameters" registry, a new "enum"
   statement must be added to the iana-routing-types YANG module.  The
   name of the "enum" is the same as the corresponding address family or
   SAFI only it will be a valid YANG identifier in all lowercase and
   with hyphens separating individual words in compound identifiers.
   The following substatements to the "enum" statement should be
   defined:

Liu, et al.               Expires April 2, 2018                [Page 32]
Internet-Draft             Routing Types YANG             September 2017

      "enum": Contains the YANG enum identifier for the address-family
              or "bgp-safi" for subsequent address families. This may
              be the same as the address-family or "bgp-safi" or it may
              be a shorter version to faciliate YANG identifier usage.

      "value": Contains the IANA assigned value corresponding to the
               address-family or "bgp-safi" for subsequent address
               families.

      "status": Include only if a registration has been deprecated (use
                the value "deprecated") or obsoleted (use the value
                "obsolete").

      "description": Replicate the description from the registry,
                     if any.  Insert line breaks as needed so that the
                     line does not exceed 72 characters.

      "reference": Replicate the reference from the registry, if any,
                   and add the title of the document.

   Unassigned or reserved values are not present in these modules.

   When the iana-routing-types YANG module is updated, a new "revision"
   statement must be added in front of the existing revision statements.

   IANA has added this new note to the "Address Family Numbers" and
   "Subsequent Address Family Identifiers (SAFI) Parameters" registries:

         When this registry is modified, the YANG module
         iana-routing-types must be updated as defined in RFC XXXX.

6.  Security Considerations

   This document defines common data types using the YANG data modeling
   language.  The definitions themselves have no security impact on the
   Internet, but the usage of these definitions in concrete YANG modules
   might have.  The security considerations spelled out in the YANG
   specification [RFC7950] apply for this document as well.

7.  Acknowledgements

   The Routing Area Yang Architecture design team members included Acee
   Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Ebben Aries,
   Lou Berger, Qin Wu, Rob Shakir, Xufeng Liu, and Yingzhen Qu.

   Thanks to Martin Bjorkland, Tom Petch, Stewart Bryant, and Radek
   Krejci for comments on the model and document text.  Thanks to Jeff

Liu, et al.               Expires April 2, 2018                [Page 33]
Internet-Draft             Routing Types YANG             September 2017

   Haas and Robert Raszuk for suggestions for additional common routing
   types.

8.  References

8.1.  Normative References

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004, <https://www.rfc-
              editor.org/info/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010, <https://www.rfc-
              editor.org/info/rfc6020>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [IANA-ADDRESS-FAMILY-REGISTRY]
              "IANA Address Family Registry",
              <https://www.iana.org/assignments/address-family-numbers/
              address-family-numbers.xhtml#address-family-numbers-2>.

   [IANA-SAFI-REGISTRY]
              "IANA Subsequent Address Family Identities (SAFI)
              Parameters Registry", <https://www.iana.org/assignments/
              safi-namespace/safi-namespace.xhtml#safi-namespace-2>.

8.2.  Informative References

   [IEEE754]  IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE
              Std 754-2008, August 2008.

   [I-D.ietf-bfd-yang]
              Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and
              G. Mirsky, "YANG Data Model for Bidirectional Forwarding
              Detection (BFD)", draft-ietf-bfd-yang-06 (work in
              progress), June 2017.

Liu, et al.               Expires April 2, 2018                [Page 34]
Internet-Draft             Routing Types YANG             September 2017

   [I-D.ietf-idr-bgp-model]
              Shaikh, A., Shakir, R., Patel, K., Hares, S., D'Souza, K.,
              Bansal, D., Clemm, A., Zhdankin, A., Jethanandani, M., and
              X. Liu, "BGP Model for Service Provider Networks", draft-
              ietf-idr-bgp-model-02 (work in progress), July 2016.

   [I-D.ietf-ospf-yang]
              Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem,
              "Yang Data Model for OSPF Protocol", draft-ietf-ospf-
              yang-08 (work in progress), July 2017.

   [I-D.ietf-pim-yang]
              Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
              Y., and f. hu, "A YANG data model for Protocol-Independent
              Multicast (PIM)", draft-ietf-pim-yang-08 (work in
              progress), April 2017.

   [I-D.ietf-teas-yang-rsvp]
              Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I.,
              and H. Shah, "A YANG Data Model for Resource Reservation
              Protocol (RSVP)", draft-ietf-teas-yang-rsvp-07 (work in
              progress), March 2017.

   [I-D.ietf-teas-yang-te]
              Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
              I. Bryskin, "A YANG Data Model for Traffic Engineering
              Tunnels and Interfaces", draft-ietf-teas-yang-te-08 (work
              in progress), July 2017.

   [I-D.ietf-bess-l2vpn-yang]
              Shah, H., Brissette, P., Chen, I., Hussain, I., Wen, B.,
              and K. Tiruveedhula, "YANG Data Model for MPLS-based
              L2VPN", draft-ietf-bess-l2vpn-yang-06 (work in progress),
              June 2017.

   [I-D.ietf-bess-l3vpn-yang]
              Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S.,
              Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model
              for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-01 (work
              in progress), April 2017.

   [I-D.ietf-mpls-base-yang]
              Raza, K., Gandhi, R., Liu, X., Beeram, V., Saad, T.,
              Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG Data
              Model for MPLS Base", draft-ietf-mpls-base-yang-05 (work
              in progress), July 2017.

Liu, et al.               Expires April 2, 2018                [Page 35]
Internet-Draft             Routing Types YANG             September 2017

   [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
              Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
              Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
              <https://www.rfc-editor.org/info/rfc3032>.

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
              <https://www.rfc-editor.org/info/rfc3209>.

   [RFC3471]  Berger, L., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Functional Description",
              RFC 3471, DOI 10.17487/RFC3471, January 2003,
              <https://www.rfc-editor.org/info/rfc3471>.

   [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
              Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
              2006, <https://www.rfc-editor.org/info/rfc4364>.

   [RFC4664]  Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer
              2 Virtual Private Networks (L2VPNs)", RFC 4664,
              DOI 10.17487/RFC4664, September 2006, <https://www.rfc-
              editor.org/info/rfc4664>.

   [RFC5701]  Rekhter, Y., "IPv6 Address Specific BGP Extended Community
              Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009,
              <https://www.rfc-editor.org/info/rfc5701>.

   [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
              (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
              <https://www.rfc-editor.org/info/rfc5880>.

   [RFC7274]  Kompella, K., Andersson, L., and A. Farrel, "Allocating
              and Retiring Special-Purpose MPLS Labels", RFC 7274,
              DOI 10.17487/RFC7274, June 2014, <https://www.rfc-
              editor.org/info/rfc7274>.

   [RFC7432]  Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
              Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
              Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
              2015, <https://www.rfc-editor.org/info/rfc7432>.

Authors' Addresses

Liu, et al.               Expires April 2, 2018                [Page 36]
Internet-Draft             Routing Types YANG             September 2017

   Xufeng Liu
   Jabil
   8281 Greensboro Drive, Suite 200
   McLean  VA 22102
   USA

   EMail: Xufeng_Liu@jabil.com

   Yingzhen Qu
   Futurewei Technologies, Inc.
   2330 Central Expressway
   Santa Clara  CA 95050
   USA

   EMail: yingzhen.qu@huawei.com

   Acee Lindem
   Cisco Systems
   301 Midenhall Way
   Cary, NC  27513
   USA

   EMail: acee@cisco.com

   Christian Hopps
   Deutsche Telekom

   EMail: chopps@chopps.org

   Lou Berger
   LabN Consulting, L.L.C.

   EMail: lberger@labn.net

Liu, et al.               Expires April 2, 2018                [Page 37]