IPv6 SPRING Use Cases
draft-ietf-spring-ipv6-use-cases-02

The information below is for an old version of the document
Document Type Active Internet-Draft (spring WG)
Last updated 2014-10-27
Replaces draft-martin-spring-segment-routing-ipv6-use-cases
Stream IETF
Intended RFC status Informational
Formats pdf htmlized bibtex
Reviews
Stream WG state WG Document
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Consensus Boilerplate Unknown
Telechat date
Responsible AD (None)
Send notices to (None)
Spring                                                     J. Brzozowski
Internet-Draft                                                  J. Leddy
Intended status: Informational                                   Comcast
Expires: April 30, 2015                                         I. Leung
                                                   Rogers Communications
                                                              S. Previdi
                                                             M. Townsley
                                                               C. Martin
                                                            C.  Filsfils
                                                        R. Maglione, Ed.
                                                           Cisco Systems
                                                        October 27, 2014

                         IPv6 SPRING Use Cases
                  draft-ietf-spring-ipv6-use-cases-02

Abstract

   Source Packet Routing in Networking (SPRING) architecture leverages
   the source routing paradigm.  A node steers a packet through a
   controlled set of instructions, called segments, by prepending the
   packet with SPRING header.  A segment can represent any instruction,
   topological or service-based.  A segment can have a local semantic to
   the SPRING node or global within the SPRING domain.  SPRING allows to
   enforce a flow through any topological path and service chain while
   maintaining per-flow state only at the ingress node to the SPRING
   domain.

   The objective of this document is to illustrate some use cases that
   need to be taken into account by the Source Packet Routing in
   Networking (SPRING) architecture.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

Brzozowski, et al.       Expires April 30, 2015                 [Page 1]
Internet-Draft       IPv6 Segment Routing Use Cases         October 2014

   This Internet-Draft will expire on April 30, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  IPv6 SPRING use cases . . . . . . . . . . . . . . . . . . . .   3
     2.1.  SPRING in the Home Network  . . . . . . . . . . . . . . .   5
     2.2.  SPRING in the Access Network  . . . . . . . . . . . . . .   6
     2.3.  SPRING in the Data Center . . . . . . . . . . . . . . . .   7
     2.4.  SPRING in the Content Delivery Networks . . . . . . . . .   7
     2.5.  SPRING in the Core networks . . . . . . . . . . . . . . .   8
   3.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   9
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
   6.  Informative References  . . . . . . . . . . . . . . . . . . .  10
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   Source Packet Routing in Networking (SPRING) architecture leverages
   the source routing paradigm.  An ingress node steers a packet through
   a controlled set of instructions, called segments, by prepending the
   packet with SPRING header.  A segment can represent any instruction,
   topological or service-based.  A segment can represent a local
   semantic on the SPRING node, or a global semantic within the SPRING
   domain.  SPRING allows one to enforce a flow through any topological
   path and service chain while maintaining per-flow state only at the
   ingress node to the SPRING domain.

   The SPRING architecture is described in
   [I-D.filsfils-spring-segment-routing].  The SPRING control plane is
   agnostic to the dataplane, thus it can be applied to both MPLS and
Show full document text