Skip to main content

Extensible Messaging and Presence Protocol (XMPP): Address Format
draft-ietf-xmpp-6122bis-22

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7622.
Author Peter Saint-Andre
Last updated 2015-06-03 (Latest revision 2015-05-11)
Replaces draft-saintandre-xmpp-6122bis
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Matthew A. Miller
Shepherd write-up Show Last changed 2015-04-30
IESG IESG state Became RFC 7622 (Proposed Standard)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD Ben Campbell
Send notices to xmpp-chairs@ietf.org, draft-ietf-xmpp-6122bis.ad@ietf.org, draft-ietf-xmpp-6122bis@ietf.org, mamille2@cisco.com, draft-ietf-xmpp-6122bis.shepherd@ietf.org
IANA IANA review state IANA OK - Actions Needed
draft-ietf-xmpp-6122bis-22
XMPP                                                      P. Saint-Andre
Internet-Draft                                                      &yet
Obsoletes: 6122 (if approved)                               May 11, 2015
Intended status: Standards Track
Expires: November 12, 2015

   Extensible Messaging and Presence Protocol (XMPP): Address Format
                       draft-ietf-xmpp-6122bis-22

Abstract

   This document defines the address format for the Extensible Messaging
   and Presence Protocol (XMPP), including support for code points
   outside the ASCII range.  This document obsoletes RFC 6122.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 12, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Saint-Andre             Expires November 12, 2015               [Page 1]
Internet-Draft             XMPP Address Format                  May 2015

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Addresses . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Fundamentals  . . . . . . . . . . . . . . . . . . . . . .   3
     3.2.  Domainpart  . . . . . . . . . . . . . . . . . . . . . . .   5
       3.2.1.  Preparation . . . . . . . . . . . . . . . . . . . . .   6
       3.2.2.  Enforcement . . . . . . . . . . . . . . . . . . . . .   6
       3.2.3.  Comparison  . . . . . . . . . . . . . . . . . . . . .   7
     3.3.  Localpart . . . . . . . . . . . . . . . . . . . . . . . .   7
       3.3.1.  Further Excluded Characters . . . . . . . . . . . . .   7
     3.4.  Resourcepart  . . . . . . . . . . . . . . . . . . . . . .   8
       3.4.1.  Applicability to XMPP Extensions  . . . . . . . . . .   9
     3.5.  Examples  . . . . . . . . . . . . . . . . . . . . . . . .   9
   4.  Enforcement in JIDs and JID Parts . . . . . . . . . . . . . .  13
   5.  Internationalization Considerations . . . . . . . . . . . . .  15
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
     6.1.  Stringprep Profiles Registry  . . . . . . . . . . . . . .  15
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
     7.1.  Reuse of PRECIS . . . . . . . . . . . . . . . . . . . . .  16
     7.2.  Reuse of Unicode  . . . . . . . . . . . . . . . . . . . .  16
     7.3.  Address Spoofing  . . . . . . . . . . . . . . . . . . . .  16
       7.3.1.  Address Forging . . . . . . . . . . . . . . . . . . .  16
       7.3.2.  Address Mimicking . . . . . . . . . . . . . . . . . .  17
   8.  Conformance Requirements  . . . . . . . . . . . . . . . . . .  18
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  20
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  20
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  21
   Appendix A.  Differences from RFC 6122  . . . . . . . . . . . . .  24
   Appendix B.  Acknowledgements . . . . . . . . . . . . . . . . . .  25
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  25

1.  Introduction

   The Extensible Messaging and Presence Protocol (XMPP) [RFC6120] is an
   application profile of the Extensible Markup Language [XML] for
   streaming XML data in close to real time between any two or more
   network-aware entities.  The address format for XMPP entities was
   originally developed in the Jabber open-source community in 1999,
   first described by [XEP-0029] in 2002, and then defined canonically
   by [RFC3920] in 2004 and [RFC6122] in 2011.

   As specified in RFC 3920 and RFC 6122, the XMPP address format used
   the "stringprep" technology for preparation and comparison of non-
   ASCII characters [RFC3454].  Following the migration of
   internationalized domain names away from stringprep, this document
   defines the XMPP address format in a way that no longer depends on

Saint-Andre             Expires November 12, 2015               [Page 2]
Internet-Draft             XMPP Address Format                  May 2015

   stringprep (see the PRECIS problem statement [RFC6885]).  Instead,
   this document builds upon the internationalization framework defined
   by the IETF's PRECIS Working Group [I-D.ietf-precis-framework].

   Although every attempt has been made to ensure that the characters
   allowed in Jabber Identifiers (JIDs) under Stringprep are still
   allowed and handled in the same way under PRECIS, there is no
   guarantee of strict backward compatibility because of changes in
   Unicode and the fact that PRECIS handling is based on Unicode
   properties, not a hardcoded table of characters.  Because it is
   possible that previously-valid JIDs might no longer be valid (or
   previously-invalid JIDs might now be valid), operators of XMPP
   services are advised to perform careful testing before migrating
   accounts and other data.

   This document obsoletes RFC 6122.

2.  Terminology

   Many important terms used in this document are defined in
   [I-D.ietf-precis-framework], [RFC5890], [RFC6120], [RFC6365], and
   [Unicode].

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].

3.  Addresses

3.1.  Fundamentals

   An XMPP entity is anything that can communicate using XMPP.  For
   historical reasons, the network address of an XMPP entity is called a
   Jabber Identifier ("JID").  A valid JID is a string of Unicode code
   points [Unicode], encoded using UTF-8 [RFC3629], and structured as an
   ordered sequence of localpart, domainpart, and resourcepart, where
   the first two parts are demarcated by the '@' character used as a
   separator and the last two parts are similarly demarcated by the '/'
   character (e.g., <juliet@example.com/balcony>).

   The syntax for a JID is defined as follows using the Augmented
   Backus-Naur Form (ABNF) as specified in [RFC5234].

Saint-Andre             Expires November 12, 2015               [Page 3]
Internet-Draft             XMPP Address Format                  May 2015

      jid          = [ localpart "@" ] domainpart [ "/" resourcepart ]
      localpart    = 1*1023(userbyte)
                     ;
                     ; a "userbyte" is a byte used to represent a
                     ; UTF-8 encoded Unicode code point that can be
                     ; contained in a string that conforms to the
                     ; "UsernameCaseMapped" profile of the PRECIS
                     ; IdentifierClass
                     ;
      domainpart   = IP-literal / IPv4address / ifqdn
                     ;
                     ; the "IPv4address" and "IP-literal" rules are
                     ; defined in RFC 3986, and the first-match-wins
                     ; (a.k.a. "greedy") algorithm described therein
                     ; applies to the matching process
                     ;
                     ; note well that reuse of the IP-literal rule from
                     ; RFC 3986 implies that IPv6 addresses are enclosed
                     ; in square brackets (i.e., beginning with '[' and
                     ; ending with ']')
                     ;
      ifqdn        = 1*1023(domainbyte)
                     ;
                     ; a "domainbyte" is a byte used to represent a
                     ; UTF-8 encoded Unicode code point that can be
                     ; contained in a string that conforms to RFC 5890
                     ;
      resourcepart = 1*1023(opaquebyte)
                     ;
                     ; an "opaquebyte" is a byte used to represent a
                     ; UTF-8 encoded Unicode code point that can be
                     ; contained in a string that conforms to the
                     ; "OpaqueString" profile of the PRECIS
                     ; FreeformClass
                     ;

   All JIDs are based on the foregoing structure.  However, note that
   the formal syntax provided above does not capture all of the rules
   and restrictions that apply to JIDs, which are described below.

   Each allowable portion of a JID (localpart, domainpart, and
   resourcepart) MUST NOT be zero octets in length and MUST NOT be more
   than 1023 octets in length, resulting in a maximum total size
   (including the '@' and '/' separators) of 3071 octets.

      Implementation Note: The length limits on JIDs and parts of JIDs
      are based on octets (bytes), not characters.  UTF-8 encoding can
      result in more than one octet per character.

Saint-Andre             Expires November 12, 2015               [Page 4]
Internet-Draft             XMPP Address Format                  May 2015

      Implementation Note: When dividing a JID into its component parts,
      an implementation needs to match the separator characters '@' and
      '/' before applying any transformation algorithms, which might
      decompose certain Unicode code points to the separator characters.

   This document defines the native format for JIDs; see [RFC5122] for
   information about the representation of a JID as a Uniform Resource
   Identifier (URI) [RFC3986] or Internationalized Resource Identifier
   (IRI) [RFC3987] and the extraction of a JID from an XMPP URI or IRI.

3.2.  Domainpart

   The domainpart of a JID is that portion which remains once any
   portion from the first '/' character to the end of the string has
   been removed (if there is a '/' character present), and then any
   portion from the beginning of the string to the first '@' character
   (if there is a '@' character present).  The domainpart is the primary
   identifier and is the only REQUIRED element of a JID (a mere
   domainpart is a valid JID).  Typically a domainpart identifies the
   "home" server to which clients connect for XML routing and data
   management functionality.  However, it is not necessary for an XMPP
   domainpart to identify an entity that provides core XMPP server
   functionality (e.g., a domainpart can identify an entity such as a
   multi-user chat service [XEP-0045], a publish-subscribe service
   [XEP-0060], or a user directory).

   The domainpart for every XMPP service MUST be a fully-qualified
   domain name (FQDN), an IPv4 address, an IPv6 address, or an
   unqualified hostname (i.e., a text label that is resolvable on a
   local network).

      Informational Note: The term "fully-qualified domain name" is not
      well defined.  In [RFC1034] it is also called an absolute domain
      name, and the two terms are associated in [RFC1535].  The earliest
      use of the term can be found in [RFC1123].  References to those
      older specifications ought not to be construed as limiting the
      characters of a fully-qualified domain name to the ASCII range;
      for example, [RFC5890] mentions that a fully-qualified domain name
      can contain one or more U-labels.

      Interoperability Note: Domainparts that are IP addresses might not
      be accepted by other services for the purpose of server-to-server
      communication, and domainparts that are unqualified hostnames
      cannot be used on public networks because they are resolvable only
      on a local network.

   If the domainpart includes a final character considered to be a label
   separator (dot) by [RFC1034], this character MUST be stripped from

Saint-Andre             Expires November 12, 2015               [Page 5]
Internet-Draft             XMPP Address Format                  May 2015

   the domainpart before the JID of which it is a part is used for the
   purpose of routing an XML stanza, comparing against another JID, or
   constructing an XMPP URI or IRI [RFC5122].  In particular, such a
   character MUST be stripped before any other canonicalization steps
   are taken.

   In general, the content of a domainpart is an Internationalized
   Domain Name ("IDN") as described in the specifications for
   Internationalized Domain Names in Applications (commonly called
   "IDNA2008"), and a domainpart is an "IDNA-aware domain name slot" as
   defined in [RFC5890].

   After any and all normalization, conversion, and mapping of code
   points as well as encoding of the string as UTF-8, a domainpart MUST
   NOT be zero octets in length and MUST NOT be more than 1023 octets in
   length.  (Naturally, the length limits of [RFC1034] apply, and
   nothing in this document is to be interpreted as overriding those
   more fundamental limits.)

   Detailed rules and considerations for preparation, enforcement, and
   comparison are provided in the following sections.

3.2.1.  Preparation

   An entity that prepares a string for inclusion in an XMPP domainpart
   slot MUST ensure that the string consists only of Unicode code points
   that are allowed in NR-LDH labels or U-labels as defined in
   [RFC5890].  This implies that the string MUST NOT include A-labels as
   defined in [RFC5890]; each A-label MUST be converted to a U-label
   during preparation of a string for inclusion in a domainpart slot.
   In addition, the string MUST be encoded as UTF-8 [RFC3629].

3.2.2.  Enforcement

   An entity that performs enforcement in XMPP domainpart slots MUST
   prepare a string as described in the previous section and MUST also
   apply the normalization, case-mapping, and width-mapping rules
   defined in [RFC5892].

      The order in which the rules are applied for IDNA2008 (see
      [RFC5892] and [RFC5895]) is different from the order for
      localparts and resourceparts as described under Section 3.3 and
      Section 3.4.

Saint-Andre             Expires November 12, 2015               [Page 6]
Internet-Draft             XMPP Address Format                  May 2015

3.2.3.  Comparison

   An entity that performs comparison of two strings before or after
   their inclusion in XMPP domainpart slots MUST prepare each string and
   enforce the normalization, case-mapping, and width-mapping rules
   specified in the previous two sections.  The two strings are to be
   considered equivalent if they are an exact octet-for-octet match
   (sometimes called "bit-string identity").

3.3.  Localpart

   The localpart of a JID is an optional identifier placed before the
   domainpart and separated from the latter by the '@' character.
   Typically a localpart uniquely identifies the entity requesting and
   using network access provided by a server (i.e., a local account),
   although it can also represent other kinds of entities (e.g., a chat
   room associated with a multi-user chat service [XEP-0045]).  The
   entity represented by an XMPP localpart is addressed within the
   context of a specific domain (i.e., <localpart@domainpart>).

   The localpart of a JID MUST NOT be zero octets in length and MUST NOT
   be more than 1023 octets in length.  This rule is to be enforced
   after any normalization and mapping of code points as well as
   encoding of the string as UTF-8.

   The localpart of a JID is an instance of the UsernameCaseMapped
   profile of the PRECIS IdentifierClass, which is specified in
   [I-D.ietf-precis-saslprepbis].  The rules and considerations provided
   in that specification MUST be applied to XMPP localparts.

      Implementation Note: XMPP uses the Simple Authentication and
      Security Layer (SASL) [RFC4422] for authentication.  At the time
      of this writing, some SASL mechanisms use SASLprep [RFC4013] for
      handling of usernames and passwords; in the future these SASL
      mechanisms will likely transition to the use of PRECIS-based
      handling rules as specified in [I-D.ietf-precis-saslprepbis].  For
      a detailed discussion about the implications of that transition
      (including the potential need to modify or remove certain
      characters in the underlying account database), see both
      Section 6.1 and Appendix A of [I-D.ietf-precis-saslprepbis].

3.3.1.  Further Excluded Characters

   In XMPP, the following characters are explicitly disallowed in XMPP
   localparts even though they are allowed by the IdentifierClass base
   class and the UsernameCaseMapped profile:

      U+0022 (QUOTATION MARK), i.e., "

Saint-Andre             Expires November 12, 2015               [Page 7]
Internet-Draft             XMPP Address Format                  May 2015

      U+0026 (AMPERSAND), i.e., &

      U+0027 (APOSTROPHE), i.e., '

      U+002F (SOLIDUS), i.e., /

      U+003A (COLON), i.e., :

      U+003C (LESS-THAN SIGN), i.e., <

      U+003E (GREATER-THAN SIGN), i.e., >

      U+0040 (COMMERCIAL AT), i.e., @

      Implementation Note: An XMPP-specific method for escaping the
      foregoing characters (along with U+0020, i.e., ASCII SPACE) has
      been defined in the JID Escaping specification [XEP-0106].

3.4.  Resourcepart

   The resourcepart of a JID is an optional identifier placed after the
   domainpart and separated from the latter by the '/' character.  A
   resourcepart can modify either a <localpart@domainpart> address or a
   mere <domainpart> address.  Typically a resourcepart uniquely
   identifies a specific connection (e.g., a device or location) or
   object (e.g., an occupant in a multi-user chat room [XEP-0045])
   belonging to the entity associated with an XMPP localpart at a domain
   (i.e., <localpart@domainpart/resourcepart>).

   XMPP entities SHOULD consider resourceparts to be opaque strings and
   SHOULD NOT impute meaning to any given resourcepart.  In particular:

   o  Use of the '/' character as a separator between the domainpart and
      the resourcepart does not imply that XMPP addresses are
      hierarchical in the way that, say, HTTP URIs are hierarchical (see
      [RFC3986] for general discussion); thus for example an XMPP
      address of the form <localpart@domainpart/foo/bar> does not
      identify a resource "bar" that exists below a resource "foo" in a
      hierarchy of resources associated with the entity
      "localpart@domainpart".

   o  The '@' character is allowed in the resourcepart and is often used
      in the "handle" shown in XMPP chatrooms [XEP-0045].  For example,
      the JID <room@chat.example.com/user@host> describes an entity who
      is an occupant of the room <room@chat.example.com> with a handle
      of <user@host>.  However, chatroom services do not necessarily
      check such an asserted handle against the occupant's real JID.

Saint-Andre             Expires November 12, 2015               [Page 8]
Internet-Draft             XMPP Address Format                  May 2015

   The resourcepart of a JID MUST NOT be zero octets in length and MUST
   NOT be more than 1023 octets in length.  This rule is to be enforced
   after any normalization and mapping of code points as well as
   encoding of the string as UTF-8.

   The resourcepart of a JID is an instance of the OpaqueString profile
   of the PRECIS FreeformClass, which is specified in
   [I-D.ietf-precis-saslprepbis].  The rules and considerations provided
   in that specification MUST be applied to XMPP resourceparts.

3.4.1.  Applicability to XMPP Extensions

   In some contexts, it might be appropriate to apply more restrictive
   rules to the preparation, enforcement, and comparison of XMPP
   resourceparts.  For example, in XMPP Multi-User Chat [XEP-0045] it
   might be appropriate to apply the rules specified in
   [I-D.ietf-precis-nickname].  However, the application of more
   restrictive rules is out of scope for resourceparts in general and is
   properly defined in specifications for the relevant XMPP extensions.

3.5.  Examples

   The following examples illustrate a small number of JIDs that are
   consistent with the format defined above (note that the characters <
   and > are used to delineate the actual JIDs and are not part of the
   JIDs themselves).

Saint-Andre             Expires November 12, 2015               [Page 9]
Internet-Draft             XMPP Address Format                  May 2015

   Table 1: A sample of legal JIDs

   +----------------------------------+-------------------------------+
   | # | JID                          | Notes                         |
   +----------------------------------+-------------------------------+
   | 1 | <juliet@example.com>         | A "bare JID"                  |
   +----------------------------------+-------------------------------+
   | 2 | <juliet@example.com/foo>     | A "full JID"                  |
   +----------------------------------+-------------------------------+
   | 3 | <juliet@example.com/foo bar> | Single space in resourcepart  |
   +----------------------------------+-------------------------------+
   | 4 | <juliet@example.com/foo@bar> | At sign in resourcepart       |
   +----------------------------------+-------------------------------+
   | 5 | <foo\20bar@example.com>      | Single space in localpart, as |
   |   |                              | optionally escaped using the  |
   |   |                              | XMPP "JID Escaping" extension |
   +----------------------------------+-------------------------------+
   | 6 | <fussball@example.com>       | Another bare JID              |
   +----------------------------------+-------------------------------+
   | 7 | <fu&#xDF;ball@example.com>   | The third character is LATIN  |
   |   |                              | SMALL LETTER SHARP S (U+00DF) |
   +----------------------------------+-------------------------------+
   | 8 | <&#x3C0;@example.com>        | A localpart of GREEK SMALL    |
   |   |                              | LETTER PI (U+03C0)            |
   +----------------------------------+-------------------------------+
   | 9 | <&#x3A3;@example.com/foo>    | A localpart of GREEK CAPITAL  |
   |   |                              | LETTER SIGMA (U+03A3)         |
   +----------------------------------+-------------------------------+
   | 10| <&#x3C3;@example.com/foo>    | A localpart of GREEK SMALL    |
   |   |                              | LETTER SIGMA (U+03C3)         |
   +----------------------------------+-------------------------------+
   | 11| <&#x3C2;@example.com/foo>    | A localpart of GREEK SMALL    |
   |   |                              | LETTER FINAL SIGMA (U+03C2)   |
   +----------------------------------+-------------------------------+
   | 12| <king@example.com/&#x265A>;  | A resourcepart of the Unicode |
   |   |                              | character BLACK CHESS KING    |
   |   |                              | (U+265A)                      |
   +----------------------------------+-------------------------------+
   | 13| <example.com>                | A domainpart                  |
   +----------------------------------+-------------------------------+
   | 14| <example.com/foobar>         | A domainpart and resourcepart |
   +----------------------------------+-------------------------------+
   | 15| <a.example.com/b@example.net>| A domainpart followed by a    |
   |   |                              | resourcepart that contains an |
   |   |                              | at sign                       |
   +----------------------------------+-------------------------------+

Saint-Andre             Expires November 12, 2015              [Page 10]
Internet-Draft             XMPP Address Format                  May 2015

   Several points are worth noting.  Regarding examples 6 and 7:
   although in German the character esszett (LATIN SMALL LETTER SHARP S,
   U+00DF) can mostly be used interchangeably with the two characters
   "ss", the localparts in these examples are different and (if desired)
   a server would need to enforce a registration policy that disallows
   one of them if the other is registered.  Regarding examples 9, 10,
   and 11: case-mapping of GREEK CAPITAL LETTER SIGMA (U+03A3) to
   lowercase (i.e., to GREEK SMALL LETTER SIGMA, U+03C3) during
   comparison would result in matching the JIDs in examples 9 and 10;
   however, because the PRECIS mapping rules do not account for the
   special status of GREEK SMALL LETTER FINAL SIGMA (U+03C2), the JIDs
   in examples 9 and 11 or examples 10 and 11 would not be matched.
   Regarding example 12: symbol characters such as BLACK CHESS KING
   (U+265A) are allowed by the PRECIS FreeformClass and thus can be used
   in resourceparts.  Regarding examples 14 and 15: JIDs consisting of a
   domainpart and resourcepart are rarely seen in the wild, but are
   allowed according to the XMPP address format.  Example 15 illustrates
   the need for careful extraction of the domainpart as described in the
   first paragraph of Section 3.2.

   The following examples illustrate strings that are not JIDs because
   they violate the format defined above.

Saint-Andre             Expires November 12, 2015              [Page 11]
Internet-Draft             XMPP Address Format                  May 2015

   Table 2: A sample of strings that violate the JID rules

   +----------------------------------+-------------------------------+
   | # | Non-JID string               | Notes                         |
   +----------------------------------+-------------------------------+
   | 16| <"juliet"@example.com>       | Quotation marks (U+0022) in   |
   |   |                              | localpart                     |
   +----------------------------------+-------------------------------+
   | 17| <foo bar@example.com>        | Space (U+0020) in localpart   |
   +----------------------------------+-------------------------------+
   | 18| <juliet@example.com/ foo>    | Leading space in resourcepart |
   +----------------------------------+-------------------------------+
   | 19| <@example.com/>              | Zero-length localpart and     |
   |   |                              | resourcepart                  |
   +----------------------------------+-------------------------------+
   | 20| <henry&#x2163;@example.com>  | The sixth character is ROMAN  |
   |   |                              | NUMERAL FOUR (U+2163)         |
   +----------------------------------+-------------------------------+
   | 21| <&#x265A;@example.com>       | A localpart of BLACK CHESS    |
   |   |                              | KING (U+265A)                 |
   +----------------------------------+-------------------------------+
   | 22| <juliet@>                    | A localpart without a         |
   |   |                              | domainpart                    |
   +----------------------------------+-------------------------------+
   | 23| </foobar>                    | A resourcepart without a      |
   |   |                              | domainpart                    |
   +----------------------------------+-------------------------------+

   Here again, several points are worth noting.  Regarding example 17,
   even though ASCII SPACE (U+0020) is disallowed in the PRECIS
   IdentifierClass, it can be escaped to "\20" in XMPP localparts by
   using the JID Escaping rules defined in [XEP-0106], as illustrated by
   example 4 in Table 1.  Regarding example 20, the Unicode character
   ROMAN NUMERAL FOUR (U+2163) has a compatibility equivalent of the
   string formed of LATIN CAPITAL LETTER I (U+0049) and LATIN CAPITAL
   LETTER V (U+0056), but characters with compatibility equivalents are
   not allowed in the PRECIS IdentiferClass.  Regarding example 21:
   symbol characters such as BLACK CHESS KING (U+265A) are not allowed
   in the PRECIS IdentifierClass; however, both of the non-ASCII
   characters in examples 20 and 21 are allowed in the PRECIS Freeform
   class and therefore in the XMPP resourcepart (as illustrated for
   U+265A by example 12 in Table 1).  Regarding examples 22 and 23: the
   domainpart is required in a JID.

Saint-Andre             Expires November 12, 2015              [Page 12]
Internet-Draft             XMPP Address Format                  May 2015

4.  Enforcement in JIDs and JID Parts

   Enforcement entails applying all of the rules specified in this
   document.  Enforcement of the XMPP address format rules is the
   responsibility of XMPP servers.  Although XMPP clients SHOULD prepare
   complete JIDs and parts of JIDs in accordance with this document
   before including them in protocol slots within XML streams, XMPP
   servers MUST enforce the rules wherever possible and reject stanzas
   and other XML elements that violate the rules (for stanzas, by
   returning a <jid-malformed/> error to the sender as described in
   Section 8.3.3.8 of [RFC6120]).

   Entities that enforce the rules specified in this document are
   encouraged to be liberal in what they accept by following this
   procedure:

   1.  Where possible, map characters (e.g, through width mapping,
       additional mapping, special mapping, case mapping, or
       normalization) and accept the mapped string.

   2.  If mapping is not possible (e.g., because a character is
       disallowed in the FreeformClass), reject the string and return a
       <jid-malformed/> error.

   Enforcement applies to complete JIDs and to parts of JIDs.  To
   facilitate implementation, this document defines the concepts of "JID
   slot", "localpart slot", and "resourcepart slot" (similar to the
   concept of a "domain name slot" for IDNA2008 defined in
   Section 2.3.2.6 of [RFC5890]):

   JID Slot:  An XML element or attribute explicitly designated in XMPP
      or in XMPP extensions for carrying a complete JID.

   Localpart Slot:  An XML element or attribute explicitly designated in
      XMPP or in XMPP extensions for carrying the localpart of a JID.

   Resourcepart Slot:  An XML element or attribute explicitly designated
      in XMPP or in XMPP extensions for carrying the resourcepart of a
      JID.

   A server is responsible for enforcing the address format rules when
   receiving protocol elements from clients where the server is expected
   to handle such elements directly or to use them for purposes of
   routing a stanza to another domain or delivering a stanza to a local
   entity; two examples from [RFC6120] are the 'to' attribute on XML
   stanzas (which is a JID slot used by XMPP servers for routing of
   outbound stanzas) and the <resource/> child of the <bind/> element
   (which is a resourcepart slot used by XMPP servers for binding of a

Saint-Andre             Expires November 12, 2015              [Page 13]
Internet-Draft             XMPP Address Format                  May 2015

   resource to an account for routing of stanzas between the server and
   a particular client).  An example from [RFC6121] is the 'jid'
   attribute of the roster <item/> element.

   A server is not responsible for enforcing the rules when the protocol
   elements are intended for communication among other entities,
   typically within the payload of a stanza that the server is merely
   routing to another domain or delivering to a local entity.  Two
   examples are the 'initiator' attribute in the Jingle extension
   [XEP-0166] (which is a JID slot used for client-to-client
   coordination of multimedia sessions) and the 'nick' attribute in the
   Multi-User Chat extension [XEP-0045] (which is a resourcepart slot
   used for administrative purposes in the context of XMPP chatrooms).
   In such cases, the entities involved SHOULD enforce the rules
   themselves and not depend on the server to do so, and client
   implementers need to understand that not enforcing the rules can lead
   to a degraded user experience or to security vulnerabilities.
   However, when an add-on service (e.g., a multi-user chat service)
   handles a stanza directly, it ought to enforce the rules as well, as
   defined in the relevant specification for that type of service.

   This document does not provide an exhaustive list of JID slots,
   localpart slots, or resourcepart slots.  However, implementers of
   core XMPP servers are advised to consider as JID slots at least the
   following elements and attributes when they are handled directly or
   used for purposes of routing to another domain or delivering to a
   local entity:

   o  The 'from' and 'to' stream attributes and the 'from' and 'to'
      stanza attributes [RFC6120].

   o  The 'jid' attribute of the roster <item/> element for contact list
      management [RFC6121].

   o  The 'value' attribute of the <item/> element for Privacy Lists
      [RFC3921] [XEP-0016] when the value of the 'type' attribute is
      "jid".

   o  The 'jid' attribute of the <item/> element for Service Discovery
      defined in [XEP-0030].

   o  The <value/> element for Data Forms [XEP-0004], when the 'type'
      attribute is "jid-single" or "jid-multi".

   o  The 'jid' attribute of the <conference/> element for Bookmark
      Storage [XEP-0048].

Saint-Andre             Expires November 12, 2015              [Page 14]
Internet-Draft             XMPP Address Format                  May 2015

   o  The <JABBERID/> of the <vCard/> element for vCard 3.0 [XEP-0054]
      and the <uri/> child of the <impp/> element for vCard 4.0
      [XEP-0292] when the XML character data identifies an XMPP URI
      [RFC5122].

   o  The 'from' attribute of the <delay/> element for Delayed Delivery
      [XEP-0203].

   o  The 'jid' attribute of the <item/> element for the Blocking
      Command [XEP-0191].

   o  The 'from' and 'to' attributes of the <result/> and <verify/>
      elements for Server Dialback [RFC3921], [XEP-0220].

   o  The 'from' and 'to' attributes of the <iq/>, <message/>, and
      <presence/> elements for the Jabber Component Protocol [XEP-0114].

   Developers of XMPP clients and specialized XMPP add-on services are
   advised to check the appropriate specifications for JID slots,
   localpart slots, and resourcepart slots in XMPP protocol extensions
   such as Service Discovery [XEP-0030], Multi-User Chat [XEP-0045],
   Publish-Subscribe [XEP-0060], SOCKS5 Bytestreams [XEP-0065], In-Band
   Registration [XEP-0077], Roster Item Exchange [XEP-0144], and Jingle
   [XEP-0166].

5.  Internationalization Considerations

   XMPP applications MUST support IDNA2008 for domainparts as described
   under Section 3.2, the "UsernameCaseMapped" profile for localparts as
   described under Section 3.3, and the "OpaqueString" profile for
   resourceparts as described under Section 3.4.  This enables XMPP
   addresses to include a wide variety of characters outside the ASCII
   range.  Rules for enforcement of the XMPP address format are provided
   in [RFC6120] and specifications for various XMPP extensions.

      Interoperability Note: For backward compatibility, many existing
      XMPP implementations and deployments support IDNA2003 [RFC3490]
      for domainparts, and the stringprep [RFC3454] profiles Nodeprep
      and Resourceprep [RFC3920] for localparts and resourceparts.

6.  IANA Considerations

6.1.  Stringprep Profiles Registry

   The Stringprep specification [RFC3454] did not provide for entries in
   the Stringprep Profiles registry to be marked as anything except
   current or not current.  Because this document obsoletes RFC 6122,
   which registered the "Nodeprep" and "Resourceprep" profiles, IANA is

Saint-Andre             Expires November 12, 2015              [Page 15]
Internet-Draft             XMPP Address Format                  May 2015

   requested at the least to mark those profiles as not current
   (preferably with a pointer to this document).

7.  Security Considerations

7.1.  Reuse of PRECIS

   The security considerations described in [I-D.ietf-precis-framework]
   apply to the "IdentifierClass" and "FreeformClass" base string
   classes used in this document for XMPP localparts and resourceparts,
   respectively.  The security considerations described in [RFC5890]
   apply to internationalized domain names, which are used here for XMPP
   domainparts.

7.2.  Reuse of Unicode

   The security considerations described in [UTS39] apply to the use of
   Unicode characters in XMPP addresses.

7.3.  Address Spoofing

   There are two forms of address spoofing: forging and mimicking.

7.3.1.  Address Forging

   In the context of XMPP technologies, address forging occurs when an
   entity is able to generate an XML stanza whose 'from' address does
   not correspond to the account credentials with which the entity
   authenticated onto the network (or an authorization identity provided
   during negotiation of SASL authentication [RFC4422] as described in
   [RFC6120]).  For example, address forging occurs if an entity that
   authenticated as "juliet@im.example.com" is able to send XML stanzas
   from "nurse@im.example.com" or "romeo@example.net".

   Address forging is difficult in XMPP systems, given the requirement
   for sending servers to stamp 'from' addresses and for receiving
   servers to verify sending domains via server-to-server authentication
   (see [RFC6120]).  However, address forging is possible if:

   o  A poorly implemented server ignores the requirement for stamping
      the 'from' address.  This would enable any entity that
      authenticated with the server to send stanzas from any
      localpart@domainpart as long as the domainpart matches the sending
      domain of the server.

   o  An actively malicious server generates stanzas on behalf of any
      registered account at the domain or domains hosted at that server.

Saint-Andre             Expires November 12, 2015              [Page 16]
Internet-Draft             XMPP Address Format                  May 2015

   Therefore, an entity outside the security perimeter of a particular
   server cannot reliably distinguish between JIDs of the form
   <localpart@domainpart> at that server and thus can authenticate only
   the domainpart of such JIDs with any level of assurance.  This
   specification does not define methods for discovering or
   counteracting the kind of poorly implemented or rogue servers just
   described.  However, the end-to-end authentication or signing of XMPP
   stanzas could help to mitigate this risk, since it would require the
   rogue server to generate false credentials for signing or encryption
   of each stanza, in addition to modifying 'from' addresses.

7.3.2.  Address Mimicking

   Address mimicking occurs when an entity provides legitimate
   authentication credentials for and sends XML stanzas from an account
   whose JID appears to a human user to be the same as another JID.
   Because many characters are visually similar, it is relatively easy
   to mimic JIDs in XMPP systems.  As one simple example, the localpart
   "ju1iet" (using the Arabic numeral one as the third character) might
   appear the same as the localpart "juliet" (using lowercase "L" as the
   third character).

   As explained in [RFC5890], [I-D.ietf-precis-framework], [UTR36], and
   [UTS39], there is no straightforward solution to the problem of
   visually similar characters.  Furthermore, IDNA and PRECIS
   technologies do not attempt to define such a solution.  As a result,
   XMPP domainparts, localparts, and resourceparts could contain such
   characters, leading to security vulnerabilities such as the
   following:

   o  A domainpart is always employed as one part of an entity's address
      in XMPP.  One common usage is as the address of a server or
      server-side service, such as a multi-user chat service [XEP-0045].
      The security of such services could be compromised based on
      different interpretations of the internationalized domainpart; for
      example, a user might authorize a malicious entity at a fake
      server to view the user's presence information, or a user could
      join chatrooms at a fake multi-user chat service.

   o  A localpart can be employed as one part of an entity's address in
      XMPP.  One common usage is as the username of an instant messaging
      user; another is as the name of a multi-user chat room; and many
      other kinds of entities could use localparts as part of their
      addresses.  The security of such services could be compromised
      based on different interpretations of the internationalized
      localpart; for example, a user entering a single internationalized
      localpart could access another user's account information, or a

Saint-Andre             Expires November 12, 2015              [Page 17]
Internet-Draft             XMPP Address Format                  May 2015

      user could gain access to a hidden or otherwise restricted chat
      room or service.

   o  A resourcepart can be employed as one part of an entity's address
      in XMPP.  One common usage is as the name for an instant messaging
      user's connected resource; another is as the nickname of a user in
      a multi-user chat room; and many other kinds of entities could use
      resourceparts as part of their addresses.  The security of such
      services could be compromised based on different interpretations
      of the internationalized resourcepart; for example, two or more
      confusable resources could be bound at the same time to the same
      account (resulting in inconsistent authorization decisions in an
      XMPP application that uses full JIDs), or a user could send a
      private message to someone other than the intended recipient in a
      multi-user chat room.

   XMPP services and clients are strongly encouraged to define and
   implement consistent policies regarding the registration, storage,
   and presentation of visually similar characters in XMPP systems.  In
   particular, service providers and software implementers are strongly
   encouraged to apply the policies recommended in
   [I-D.ietf-precis-framework].

8.  Conformance Requirements

   This section describes a protocol feature set that summarizes the
   conformance requirements of this specification (similar feature sets
   are provided for XMPP in [RFC6120] and [RFC6121]).  The summary is
   purely informational and the conformance keywords of [RFC2119] as
   used here are intended only to briefly describe the referenced
   normative text from the body of this specification.  This feature set
   is appropriate for use in software certification, interoperability
   testing, and implementation reports.  For each feature, this section
   provides the following information:

   o  A human-readable name

   o  An informational description

   o  A reference to the particular section of this document that
      normatively defines the feature

   o  Whether the feature applies to the Client role, the Server role,
      or both (where "N/A" signifies that the feature is not applicable
      to the specified role)

   o  Whether the feature MUST or SHOULD be implemented, where the
      capitalized terms are to be understood as described in [RFC2119]

Saint-Andre             Expires November 12, 2015              [Page 18]
Internet-Draft             XMPP Address Format                  May 2015

   The feature set specified here provides a basis for interoperability
   testing and follows the spirit of a proposal made by Larry Masinter
   within the IETF's NEWTRK Working Group in 2005 [INTEROP].

   Feature:  address-domain-length

   Description:  Ensure that the domainpart of an XMPP address is at
      least one octet in length and at most 1023 octets in length, and
      that it conforms to the underlying length limits of the DNS.

   Section:  Section 3.2

   Roles:  Server MUST, client SHOULD.

   Feature:  address-domain-prep

   Description:  Ensure that the domainpart of an XMPP address conforms
      to IDNA2008, that it contains only NR-LDH labels and U-labels (not
      A-labels), and that all uppercase and titlecase code points are
      mapped to their lowercase equivalents.

   Section:  Section 3.2

   Roles:  Server MUST, client SHOULD.

   Feature:  address-localpart-length

   Description:  Ensure that the localpart of an XMPP address is at
      least one octet in length and at most 1023 octets in length.

   Section:  Section 3.3

   Roles:  Server MUST, client SHOULD.

   Feature:  address-localpart-prep

   Description:  Ensure that the localpart of an XMPP address conforms
      to the "UsernameCaseMapped" profile of the PRECIS IdentifierClass.

   Section:  Section 3.3

   Roles:  Server MUST, client SHOULD.

   Feature:  address-resource-length

   Description:  Ensure that the resourcepart of an XMPP address is at
      least one octet in length and at most 1023 octets in length.

Saint-Andre             Expires November 12, 2015              [Page 19]
Internet-Draft             XMPP Address Format                  May 2015

   Section:  Section 3.4

   Roles:  Server MUST, client SHOULD.

   Feature:  address-resource-prep

   Description:  Ensure that the resourcepart of an XMPP address
      conforms to the "OpaqueString" profile of the PRECIS
      FreeformClass.

   Section:  Section 3.4

   Roles:  Server MUST, client SHOULD.

9.  References

9.1.  Normative References

   [I-D.ietf-precis-framework]
              Saint-Andre, P. and M. Blanchet, "Precis Framework:
              Handling Internationalized Strings in Protocols", draft-
              ietf-precis-framework-23 (work in progress), February
              2015.

   [I-D.ietf-precis-saslprepbis]
              Saint-Andre, P. and A. Melnikov, "Username and Password
              Preparation Algorithms", draft-ietf-precis-saslprepbis-16
              (work in progress), April 2015.

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, November 1987.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
              10646", STD 63, RFC 3629, November 2003.

   [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC5890]  Klensin, J., "Internationalized Domain Names for
              Applications (IDNA): Definitions and Document Framework",
              RFC 5890, August 2010.

   [RFC5892]  Faltstrom, P., "The Unicode Code Points and
              Internationalized Domain Names for Applications (IDNA)",
              RFC 5892, August 2010.

Saint-Andre             Expires November 12, 2015              [Page 20]
Internet-Draft             XMPP Address Format                  May 2015

   [RFC6120]  Saint-Andre, P., "Extensible Messaging and Presence
              Protocol (XMPP): Core", RFC 6120, March 2011.

   [Unicode]  The Unicode Consortium, "The Unicode Standard",
              2015-present, <http://www.unicode.org/versions/latest/>.

   [UTR36]    The Unicode Consortium, "Unicode Technical Report #36:
              Unicode Security Considerations", November 2013,
              <http://www.unicode.org/reports/tr36/>.

9.2.  Informative References

   [I-D.ietf-precis-nickname]
              Saint-Andre, P., "Preparation and Comparison of
              Nicknames", draft-ietf-precis-nickname-17 (work in
              progress), April 2015.

   [INTEROP]  Masinter, L., "Formalizing IETF Interoperability
              Reporting", Work in Progress, October 2005.

   [RFC1123]  Braden, R., "Requirements for Internet Hosts - Application
              and Support", STD 3, RFC 1123, October 1989.

   [RFC1535]  Gavron, E., "A Security Problem and Proposed Correction
              With Widely Deployed DNS Software", RFC 1535, October
              1993.

   [RFC3454]  Hoffman, P. and M. Blanchet, "Preparation of
              Internationalized Strings ("stringprep")", RFC 3454,
              December 2002.

   [RFC3490]  Faltstrom, P., Hoffman, P., and A. Costello,
              "Internationalizing Domain Names in Applications (IDNA)",
              RFC 3490, March 2003.

              See Section 1 for an explanation of why the normative
              reference to an obsoleted specification is needed.

   [RFC3920]  Saint-Andre, P., Ed., "Extensible Messaging and Presence
              Protocol (XMPP): Core", RFC 3920, October 2004.

   [RFC3921]  Saint-Andre, P., Ed., "Extensible Messaging and Presence
              Protocol (XMPP): Instant Messaging and Presence", RFC
              3921, October 2004.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66, RFC
              3986, January 2005.

Saint-Andre             Expires November 12, 2015              [Page 21]
Internet-Draft             XMPP Address Format                  May 2015

   [RFC3987]  Duerst, M. and M. Suignard, "Internationalized Resource
              Identifiers (IRIs)", RFC 3987, January 2005.

   [RFC4013]  Zeilenga, K., "SASLprep: Stringprep Profile for User Names
              and Passwords", RFC 4013, February 2005.

   [RFC4422]  Melnikov, A. and K. Zeilenga, "Simple Authentication and
              Security Layer (SASL)", RFC 4422, June 2006.

   [RFC5122]  Saint-Andre, P., "Internationalized Resource Identifiers
              (IRIs) and Uniform Resource Identifiers (URIs) for the
              Extensible Messaging and Presence Protocol (XMPP)", RFC
              5122, February 2008.

   [RFC5895]  Resnick, P. and P. Hoffman, "Mapping Characters for
              Internationalized Domain Names in Applications (IDNA)
              2008", RFC 5895, September 2010.

   [RFC6121]  Saint-Andre, P., "Extensible Messaging and Presence
              Protocol (XMPP): Instant Messaging and Presence", RFC
              6121, March 2011.

   [RFC6122]  Saint-Andre, P., "Extensible Messaging and Presence
              Protocol (XMPP): Address Format", RFC 6122, March 2011.

   [RFC6365]  Hoffman, P. and J. Klensin, "Terminology Used in
              Internationalization in the IETF", BCP 166, RFC 6365,
              September 2011.

   [RFC6885]  Blanchet, M. and A. Sullivan, "Stringprep Revision and
              Problem Statement for the Preparation and Comparison of
              Internationalized Strings (PRECIS)", RFC 6885, March 2013.

   [UTS39]    The Unicode Consortium, "Unicode Technical Standard #39:
              Unicode Security Mechanisms", July 2012,
              <http://unicode.org/reports/tr39/>.

   [XEP-0004]
              Eatmon, R., Hildebrand, J., Miller, J., Muldowney, T., and
              P. Saint-Andre, "Data Forms", XSF XEP 0004, August 2007.

   [XEP-0016]
              Millard, P. and P. Saint-Andre, "Privacy Lists", XSF XEP
              0016, February 2007.

   [XEP-0029]
              Kaes, C., "Definition of Jabber Identifiers (JIDs)", XSF
              XEP 0029, October 2003.

Saint-Andre             Expires November 12, 2015              [Page 22]
Internet-Draft             XMPP Address Format                  May 2015

   [XEP-0030]
              Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
              Andre, "Service Discovery", XSF XEP 0030, June 2008.

   [XEP-0045]
              Saint-Andre, P., "Multi-User Chat", XSF XEP 0045, February
              2012.

   [XEP-0048]
              Blackman, R., Millard, P., and P. Saint-Andre,
              "Bookmarks", XSF XEP 0048, November 2007.

   [XEP-0054]
              Saint-Andre, P., "vcard-temp", XSF XEP 0054, July 2008.

   [XEP-0060]
              Millard, P., Saint-Andre, P., and R. Meijer, "Publish-
              Subscribe", XSF XEP 0060, July 2010.

   [XEP-0065]
              Smith, D., Miller, M., Saint-Andre, P., and J. Karneges,
              "SOCKS5 Bytestreams", XSF XEP 0065, April 2011.

   [XEP-0077]
              Saint-Andre, P., "In-Band Registration", XSF XEP 0077,
              January 2012.

   [XEP-0106]
              Hildebrand, J. and P. Saint-Andre, "JID Escaping", XSF XEP
              0106, June 2007.

   [XEP-0114]
              Saint-Andre, P., "Jabber Component Protocol", XSF XEP
              0114, March 2005.

   [XEP-0144]
              Saint-Andre, P., "Roster Item Exchange", XSF XEP 0144,
              August 2005.

   [XEP-0166]
              Ludwig, S., Beda, J., Saint-Andre, P., McQueen, R., Egan,
              S., and J. Hildebrand, "Jingle", XSF XEP 0166, December
              2009.

   [XEP-0191]
              Saint-Andre, P., "Blocking Command", XSF XEP 0191, July
              2012.

Saint-Andre             Expires November 12, 2015              [Page 23]
Internet-Draft             XMPP Address Format                  May 2015

   [XEP-0203]
              Saint-Andre, P., "Delayed Delivery", XSF XEP 0203,
              September 2009.

   [XEP-0220]
              Miller, J., Saint-Andre, P., and P. Hancke, "Server
              Dialback", XSF XEP 0220, August 2012.

   [XEP-0292]
              Saint-Andre, P. and S. Mizzi, "vCard4 Over XMPP", XSF XEP
              0292, October 2011.

   [XML]      Maler, E., Yergeau, F., Sperberg-McQueen, C., Paoli, J.,
              and T. Bray, "Extensible Markup Language (XML) 1.0 (Fifth
              Edition)", World Wide Web Consortium Recommendation REC-
              xml-20081126, November 2008,
              <http://www.w3.org/TR/2008/REC-xml-20081126>.

Appendix A.  Differences from RFC 6122

   Based on consensus derived from working group discussion,
   implementation and deployment experience, and formal interoperability
   testing, the following substantive modifications were made from RFC
   6122.

   o  Changed domainpart preparation to use IDNA2008 (instead of
      IDNA2003).

   o  Changed localpart preparation to use the UsernameCaseMapped
      profile of the PRECIS IdentifierClass (instead of the Nodeprep
      profile of Stringprep).

   o  Changed resourcepart preparation to use the OpaqueString profile
      of the PRECIS FreeformClass (instead of the Resourceprep profile
      of Stringprep).

   o  Specified that internationalized labels within domainparts must be
      U-labels (instead of "should be" U-labels).

   o  Specified that fullwidth and halfwidth characters must be mapped
      to their decomposition mappings (previously handled through the
      use of NFKC).

   o  Specified the use of Unicode Normalization Form C (instead of
      Unicode Normalization Form KC as specified in the Nodeprep and
      Resourceprep profiles of Stringprep).

   o  Specified that servers must enforce the address formatting rules.

Saint-Andre             Expires November 12, 2015              [Page 24]
Internet-Draft             XMPP Address Format                  May 2015

Appendix B.  Acknowledgements

   Thanks to Ben Campbell, Dave Cridland, Miguel Garcia, Joe Hildebrand,
   Jonathan Lennox, Matt Miller, Florian Schmaus, Sam Whited, and
   Florian Zeitz for their feedback.

   Peter Saint-Andre wishes to acknowledge Cisco Systems, Inc., for
   employing him during his work on earlier versions of this document.

Author's Address

   Peter Saint-Andre
   &yet

   Email: peter@andyet.com
   URI:   https://andyet.com/

Saint-Andre             Expires November 12, 2015              [Page 25]