Architectural Principles for a Quantum Internet
draft-irtf-qirg-principles-00

Document Type Active Internet-Draft (qirg RG)
Last updated 2019-03-09
Stream IRTF
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream IRTF state (None)
Consensus Boilerplate Unknown
Document shepherd No shepherd assigned
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Quantum Internet Research Group                             W. Kozlowski
Internet-Draft                                                    QuTech
Intended status: Informational                             March 9, 2019
Expires: September 10, 2019

            Architectural Principles for a Quantum Internet
                     draft-irtf-qirg-principles-00

Abstract

   The vision of a quantum internet is to fundamentally enhance Internet
   technology by enabling quantum communication between any two points
   on Earth.  To achieve this goal, a quantum network stack must be
   built from the ground up as the physical nature of the communication
   is fundamentally different.  The first realisations of quantum
   networks are imminent, but there is no practical proposal for how to
   organise, utilise, and manage such networks.  In this memo, we
   attempt lay down the framework and introduce some basic architectural
   principles for a quantum internet.  This is intended for general
   guidance and general interest, but also to provide a foundation for
   discussion between physicists and network specialists.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 10, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of

Kozlowski              Expires September 10, 2019               [Page 1]
Internet-Draft      Principles for a Quantum Internet         March 2019

   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Model of computation  . . . . . . . . . . . . . . . . . . . .   3
     2.1.  Qubit . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     2.2.  Multiple qubits . . . . . . . . . . . . . . . . . . . . .   4
   3.  Entanglement as the fundamental service . . . . . . . . . . .   5
   4.  Achieving quantum connectivity  . . . . . . . . . . . . . . .   7
     4.1.  No-cloning theorem  . . . . . . . . . . . . . . . . . . .   7
     4.2.  Direct transmission . . . . . . . . . . . . . . . . . . .   7
     4.3.  Bell pairs and entanglement swapping  . . . . . . . . . .   7
       4.3.1.  Bell Pairs  . . . . . . . . . . . . . . . . . . . . .   7
       4.3.2.  Teleportation . . . . . . . . . . . . . . . . . . . .   8
       4.3.3.  Bell Pair links and entanglement swapping . . . . . .   9
       4.3.4.  Distillation  . . . . . . . . . . . . . . . . . . . .   9
     4.4.  Direct transmission vs. swapping  . . . . . . . . . . . .  10
   5.  Architecture of a quantum internet  . . . . . . . . . . . . .  10
     5.1.  Model of a quantum network  . . . . . . . . . . . . . . .  10
     5.2.  Physical constraints  . . . . . . . . . . . . . . . . . .  11
       5.2.1.  Fidelity  . . . . . . . . . . . . . . . . . . . . . .  11
       5.2.2.  Memory lifetimes  . . . . . . . . . . . . . . . . . .  12
       5.2.3.  Rates . . . . . . . . . . . . . . . . . . . . . . . .  12
       5.2.4.  Communication qubit . . . . . . . . . . . . . . . . .  12
       5.2.5.  Homogeneity . . . . . . . . . . . . . . . . . . . . .  13
     5.3.  Architectural principles  . . . . . . . . . . . . . . . .  13
       5.3.1.  Goals of a quantum internet . . . . . . . . . . . . .  13
       5.3.2.  The principles of a quantum internet  . . . . . . . .  15
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  18
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  18
   9.  Informative References  . . . . . . . . . . . . . . . . . . .  18
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  19

1.  Introduction

   Quantum networks are distributed systems of quantum computers that
Show full document text