FROST: Flexible Round-Optimized Schnorr Threshold Signatures
draft-komlo-frost-00

Document Type Expired Internet-Draft (individual)
Authors Chelsea Komlo  , Ian Goldberg 
Last updated 2021-02-08 (latest revision 2020-08-07)
Stream (None)
Intended RFC status (None)
Formats
Expired & archived
pdf htmlized (tools) htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state Expired
Telechat date
Responsible AD (None)
Send notices to (None)

This Internet-Draft is no longer active. A copy of the expired Internet-Draft can be found at
https://www.ietf.org/archive/id/draft-komlo-frost-00.txt

Abstract

Unlike signatures in a single-party setting, threshold signatures require cooperation among a threshold number of signers each holding a share of a common private key. Consequently, generating signatures in a threshold setting imposes overhead due to network rounds among signers, proving costly when secret shares are stored on network- limited devices or when coordination occurs over unreliable networks. This draft describes FROST, a Flexible Round-Optimized Schnorr Threshold signature scheme that reduces network overhead during signing operations while employing a novel technique to protect against forgery attacks applicable to similar schemes in the literature. FROST improves upon the state of the art in Schnorr threshold signature protocols, as it can safely perform signing operations in a single round without limiting concurrency of signing operations, yet allows for true threshold signing, as only a threshold number of participants are required for signing operations. FROST can be used as either a two-round protocol where signers send and receive two messages in total, or optimized to a single-round signing protocol with a pre-processing stage. FROST achieves its efficiency improvements in part by allowing the protocol to abort in the presence of a misbehaving participant (who is then identified and excluded from future operations)--a reasonable model for practical deployment scenarios.

Authors

Chelsea Komlo (ckomlo@uwaterloo.ca)
Ian Goldberg (iang@uwaterloo.ca)

(Note: The e-mail addresses provided for the authors of this Internet-Draft may no longer be valid.)