Label Distribution Using ARP
draft-kompella-mpls-larp-09
MPLS Working Group K. Kompella
Internet-Draft R. Balaji
Intended status: Standards Track R. Thomas
Expires: 18 July 2021 Juniper Networks
14 January 2021
Label Distribution Using ARP
draft-kompella-mpls-larp-09
Abstract
This document describes extensions to the Address Resolution Protocol
to distribute MPLS labels for IPv4 and IPv6 host addresses.
Distribution of labels via ARP enables simple plug-and-play operation
of MPLS, which is key to deploying MPLS in data centers and
enterprises.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 18 July 2021.
Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text
as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.
Kompella, et al. Expires 18 July 2021 [Page 1]
Internet-Draft L-ARP January 2021
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Requirements Language . . . . . . . . . . . . . . . . . . 3
1.2. Approach . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Overview of Ethernet ARP . . . . . . . . . . . . . . . . . . 3
3. L-ARP Protocol Operation . . . . . . . . . . . . . . . . . . 4
3.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Egress Operation . . . . . . . . . . . . . . . . . . . . 5
3.3. Ingress Operation . . . . . . . . . . . . . . . . . . . . 5
3.4. Data Plane . . . . . . . . . . . . . . . . . . . . . . . 6
4. Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1. Secondary Attributes . . . . . . . . . . . . . . . . . . 7
5. L-ARP Message Format . . . . . . . . . . . . . . . . . . . . 7
5.1. Hardware Address Format . . . . . . . . . . . . . . . . . 9
5.2. CT TLV . . . . . . . . . . . . . . . . . . . . . . . . . 10
6. L-ARP Client Server Synchronisation . . . . . . . . . . . . . 10
6.1. L-ARP NAK . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2. Bulk withdrawal . . . . . . . . . . . . . . . . . . . . . 11
6.3. Garbage Collection Requirements . . . . . . . . . . . . . 11
7. Security Considerations . . . . . . . . . . . . . . . . . . . 11
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
9. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 12
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.1. Normative References . . . . . . . . . . . . . . . . . . 12
10.2. Informative References . . . . . . . . . . . . . . . . . 12
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 13
1. Introduction
This document describes extensions to the Address Resolution Protocol
(ARP) [RFC0826] to advertise label bindings for IP host addresses.
While there are well-established protocols, such as LDP, RSVP and
BGP, that provide robust mechanisms for label distribution, these
protocols tend to be relatively complex, and often require detailed
configuration for proper operation. There are situations where a
simpler protocol may be more suitable from an operational standpoint.
An example is the case where an MPLS Fabric is the underlay
technology in a Data Center; here, MPLS tunnels originate from host
machines. The host thus needs a mechanism to acquire label bindings
to participate in the MPLS Fabric, but in a simple, plug-and-play
manner. Existing signaling/routing protocols do not always meet this
Show full document text