Discovery Mechanisms for QUIC-based Proxy Services
draft-kuehlewind-masque-proxy-discovery-00

Document Type Active Internet-Draft (individual)
Last updated 2020-09-11
Replaces draft-kuehlewind-quic-proxy-discovery
Stream (None)
Intended RFC status (None)
Formats plain text pdf htmlized (tools) htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                      M. Kuehlewind
Internet-Draft                                                 Z. Sarker
Intended status: Informational                             M. Westerlund
Expires: March 15, 2021                                         Ericsson
                                                      September 11, 2020

           Discovery Mechanisms for QUIC-based Proxy Services
             draft-kuehlewind-masque-proxy-discovery-00

Abstract

   Often an intermediate instance (such as a proxy server) is used to
   connect to a web server or a communicating peer if a direct end-to-
   end IP connectivity is not possible or the proxy can provide a
   support service like, e.g., address anonymisation.  To use a non-
   transparent proxy a client explicitly connects to it and requests
   forwarding to the final target server.  The MASQUE Connect-UDP Proxy
   service is an example of such a proxy service.  The client either
   knows the proxy address as preconfigured in the application or can
   dynamically learn about available proxy services.  This document
   describes different discovery mechanisms for non-transparent proxies
   that are either located in the local network, e.g. home or enterprise
   network, in the access network, or somewhere else on the Internet
   usually close to the target server or even in the same network as the
   target server.

   This document assumes that the non-transparent proxy server is
   connected via QUIC and discusses potential discovery mechanisms for
   such a QUIC-based, non-transparent proxy.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 15, 2021.

Kuehlewind, et al.       Expires March 15, 2021                 [Page 1]
Internet-Draft        QUIC Proxy Service Discovery        September 2020

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Using DHCP for Local Discovery  . . . . . . . . . . . . . . .   4
   3.  Using IPv6 Neighbor Discovery for Local Discovery . . . . . .   5
     3.1.  Using PVDs  . . . . . . . . . . . . . . . . . . . . . . .   6
   4.  DNS Service Discovery (DNS-SD)  . . . . . . . . . . . . . . .   7
     4.1.  Local discovery using mDNS  . . . . . . . . . . . . . . .   7
     4.2.  Discovery for Remote Domains  . . . . . . . . . . . . . .   8
   5.  Using PCP options . . . . . . . . . . . . . . . . . . . . . .   8
   6.  Using Anycast address . . . . . . . . . . . . . . . . . . . .   9
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   8.  Security Consideration  . . . . . . . . . . . . . . . . . . .  10
   9.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  10
   10. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  10
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  11
     11.2.  Informative References . . . . . . . . . . . . . . . . .  12
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   QUIC is a new transport protocol that was initially developed as a
   way to optimize HTTP traffic by supporting multiplexing without head-
   of-line-blocking and integrating security directly into the
   transport.  This tight integration of security allows the transport
   and security handshakes to be combined into a single round-trip
   exchange, after which both the transport connection and authenticated
   encryption keys are ready.

   Often an intermediate instance (such as a proxy server) is used to
   connect to a web server or a communicating peer if a direct end-to-
Show full document text