Transport parameters for 0-RTT connections
draft-kuhn-quic-0rtt-bdp-01

Document Type Active Internet-Draft (individual)
Last updated 2019-03-11
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Internet Engineering Task Force                             N. Kuhn, Ed.
Internet-Draft                                                      CNES
Intended status: Informational                           E. Stephan, Ed.
Expires: September 12, 2019                                       Orange
                                                          March 11, 2019

               Transport parameters for 0-RTT connections
                      draft-kuhn-quic-0rtt-bdp-01

Abstract

   0-RTT is designed to accelerate the egress throughput at the
   establishment of a connection.  There are cases where 0-RTT alone
   does not improve the time-to-service.

   This memo discusses a solution where a fundamental characteristic of
   the path is learned during the 1-RTT phase and shared with the 0-RTT
   phase to accelerate the initial throughput during subsequent 0-RTT
   connections.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 12, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Kuhn & Stephan         Expires September 12, 2019               [Page 1]
Internet-Draft             Transport for 0-RTT                March 2019

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  QUIC connection establishment . . . . . . . . . . . . . . . .   3
   3.  Large BDP connections . . . . . . . . . . . . . . . . . . . .   3
   4.  TCP split solution  . . . . . . . . . . . . . . . . . . . . .   4
   5.  End-to-end solution . . . . . . . . . . . . . . . . . . . . .   4
     5.1.  Description of the extension in the NewSessionTicket  . .   4
     5.2.  Usage of the extension in the NewSessionTicket  . . . . .   5
   6.  Best current practice . . . . . . . . . . . . . . . . . . . .   5
   7.  Discussion  . . . . . . . . . . . . . . . . . . . . . . . . .   7
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   8
   9.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .   8
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
   11. Security Considerations . . . . . . . . . . . . . . . . . . .   8
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     12.1.  Normative References . . . . . . . . . . . . . . . . . .   8
     12.2.  Informative References . . . . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction

   0-RTT is designed to accelerate the throughput at the establishment
   of a connection.  There are cases where 0-RTT alone does not improve
   the time-to-service.

   As shown in [IJSCN19], the usage of a congestion control and
   transport initialization not adapted to satellite communication
   results in higher page loading time for heavy pages in a SATCOM
   context.  QUIC's congestion control is based on TCP NewReno
   [I-D.ietf-quic-recovery] and the recommended initial window is
   defined by [RFC6928].  This may not be suitable for good quality of
   experience for users in high Bandwidth Delay-Product (BDP) networks.

   This memo discusses a solution where a fundamental characteristic of
   the path is learned during the 1-RTT phase and shared with the 0-RTT
   phase to accelerate the initial throughput during subsequent 0-RTT
   connections.

Kuhn & Stephan         Expires September 12, 2019               [Page 2]
Internet-Draft             Transport for 0-RTT                March 2019

2.  QUIC connection establishment

   This section recalls how 1-RTT and 0-RTT work.

   QUIC leverages the 2 handshakes of TLS1.3 [I-D.ietf-quic-tls].  The
   1-RTT handshake initiates a first set of credentials.  When a
   handshake achieves successfully, the server pushes information
Show full document text