Industrial Use Cases for In-Network Computing
draft-kunze-coin-industrial-use-cases-01

Document Type Active Internet-Draft (individual)
Last updated 2019-11-04
Stream (None)
Intended RFC status (None)
Formats plain text pdf htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
COIN                                                            I. Kunze
Internet-Draft                                                 K. Wehrle
Intended status: Informational                    RWTH Aachen University
Expires: May 7, 2020                                   November 04, 2019

             Industrial Use Cases for In-Network Computing
                draft-kunze-coin-industrial-use-cases-01

Abstract

   Cyber-physical systems and the Industrial Internet of Things are
   characterized by diverse sets of requirements which can hardly be
   satisfied using standard networking technology.  One example are
   latency-critical computations which become increasingly complex and
   are consequently outsourced to more powerful cloud platforms for
   feasibility reasons.  The intrinsic physical propagation delay to
   these remote sites can, however, already be too high for given
   requirements.  The challenge is to develop techniques that bring
   together these requirements.  Utilizing available computational
   capabilities within the network can be a solution to this challenge
   which makes in-network computing concepts a promising starting point.
   This document discusses select industrial use cases to demonstrate
   how in-network computing concepts can be applied to the industrial
   domain and to point out essential requirements of industrial
   applications.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 7, 2020.

Kunze & Wehrle             Expires May 7, 2020                  [Page 1]
Internet-Draft            Industrial Use Cases             November 2019

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  In-Network Control / Time-sensitive applications  . . . . . .   4
     2.1.  Characterization and Requirements . . . . . . . . . . . .   5
       2.1.1.  Approaches  . . . . . . . . . . . . . . . . . . . . .   5
   3.  Large Volume Applications/ Traffic Filtering  . . . . . . . .   6
     3.1.  Characterization and Requirements . . . . . . . . . . . .   6
     3.2.  Approaches  . . . . . . . . . . . . . . . . . . . . . . .   7
       3.2.1.  Traffic Filters . . . . . . . . . . . . . . . . . . .   7
       3.2.2.  In-Network (Pre-)Processing . . . . . . . . . . . . .   8
   4.  Industrial Safety (Dead Man's Switch) . . . . . . . . . . . .   9
     4.1.  Characterization and Requirements . . . . . . . . . . . .   9
       4.1.1.  Approaches  . . . . . . . . . . . . . . . . . . . . .  10
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
   7.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . .  11
   8.  Informative References  . . . . . . . . . . . . . . . . . . .  11
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   The Internet is based on a best-effort network that provides limited
   guarantees regarding the timely and successful transmission of
   packets.  This design-choice is suitable for general Internet-based
   applications, but specialized industrial applications demand a number
   of strict performance guarantees, e.g., regarding real-time
   capabilities, which cannot be provided over regular best-effort
   networks.

   Enhancements to the standard Ethernet such as Time-Sensitive-
   Networking [TSN] try to achieve the requirements on the link layer by
   statically reserving shares of the bandwidth.  These concepts are

Kunze & Wehrle             Expires May 7, 2020                  [Page 2]
Internet-Draft            Industrial Use Cases             November 2019
Show full document text