Hybrid Two-Step Performance Measurement Method
draft-mirsky-ippm-hybrid-two-step-02

Document Type Active Internet-Draft (individual)
Last updated 2018-10-17
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
IPPM Working Group                                             G. Mirsky
Internet-Draft                                                 ZTE Corp.
Intended status: Standards Track                            W. Lingqiang
Expires: April 20, 2019                                          G. Zhui
                                                         ZTE Corporation
                                                        October 17, 2018

             Hybrid Two-Step Performance Measurement Method
                  draft-mirsky-ippm-hybrid-two-step-02

Abstract

   Development of, and advancements in, automation of network operations
   brought new requirements for measurement methodology.  Among them is
   the ability to collect instant network state as the packet being
   processed by the networking elements along its path through the
   domain.  This document introduces a new hybrid measurement method,
   referred to as hybrid two-step, as it separates the act of measuring
   and/or calculating the performance metric from the act of collecting
   and transporting network state.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 20, 2019.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Mirsky, et al.           Expires April 20, 2019                 [Page 1]
Internet-Draft               Hybrid Two-Step                October 2018

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Conventions used in this document . . . . . . . . . . . . . .   3
     2.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
     2.2.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   3.  Problem Overview  . . . . . . . . . . . . . . . . . . . . . .   3
   4.  Theory of Operation . . . . . . . . . . . . . . . . . . . . .   4
     4.1.  Operation of the HTS Ingress Node . . . . . . . . . . . .   5
     4.2.  Operation of the HTS Transient Node . . . . . . . . . . .   7
     4.3.  Operation of the HTS Egress Node  . . . . . . . . . . . .   8
     4.4.  Considerations for HTS Timers . . . . . . . . . . . . . .   8
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   9
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction

   Successful resolution of challenges of automated network operation,
   as part of, for example, overall service orchestration or data center
   operation, relies on a timely collection of accurate information that
   reflects the state of network elements on an unprecedented scale.
   Because performing the analysis and act upon the collected
   information requires considerable computing and storage resources,
   the network state information is unlikely to be processed by the
   network elements themselves but will be relayed into the data storage
   facilities, e.g., data lakes.  The process of producing, collecting
   network state information also referred to in this document as
   network telemetry, and transporting it for post-processing should
   work equally well with data flows or injected in the network test
   packets.  RFC 7799 [RFC7799] describes a combination of elements of
   passive and active measurement as a hybrid measurement.

   Several technical methods have been proposed to enable collection of
   network state information instantaneous to the packet processing,
Show full document text