Bidirectional Forwarding Detection (BFD) in Segment Routing Networks Using MPLS Dataplane
draft-mirsky-spring-bfd-00

The information below is for an old version of the document
Document Type Active Internet-Draft (individual)
Last updated 2017-05-08
Stream (None)
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
SPRING Working Group                                           G. Mirsky
Internet-Draft                                                 ZTE Corp.
Intended status: Standards Track                             May 8, 2017
Expires: November 9, 2017

  Bidirectional Forwarding Detection (BFD) in Segment Routing Networks
                          Using MPLS Dataplane
                       draft-mirsky-spring-bfd-00

Abstract

   Segment Routing architecture leverages the paradigm of source
   routing.  It can be realized in the Multiprotocol Label Switching
   (MPLS) network without any change to the data plane.  A segment is
   encoded as an MPLS label and an ordered list of segments is encoded
   as a stack of labels.  Bidirectional Forwarding Detection (BFD) is
   expected to monitor any kind of paths between systems.  This document
   defines how to use Label Switched Path Ping to bootstrap and control
   path in reverse direction of a BFD session on the Segment Routing
   network over MPLS dataplane.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 9, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Mirsky                  Expires November 9, 2017                [Page 1]
Internet-Draft             BFD in SPRING MPLS                   May 2017

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Conventions used in this document . . . . . . . . . . . .   2
       1.1.1.  Terminology . . . . . . . . . . . . . . . . . . . . .   2
       1.1.2.  Requirements Language . . . . . . . . . . . . . . . .   3
   2.  Bootstrapping BFD session over Segment Routed tunnel  . . . .   3
   3.  Use BFD Reverse Path TLV over Segment Routed MPLS tunnel  . .   4
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   5
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   5
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   5
   7.  Normative References  . . . . . . . . . . . . . . . . . . . .   5
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .   7

1.  Introduction

   [RFC5880], [RFC5881], and [RFC5883] established the Bidirectional
   Forwarding Detection (BFD) protocol for IP networks.  [RFC5884] and
   [RFC7726] set rules of using BFD Asynchronous mode over Multiprotocol
   Label Switching (MPLS) Label Switched Path (LSP).  These latter
   standards implicitly assume that the egress BFD peer, which is the
   egress Label Edge Router (LER), will use the shortest path route
   regardless of the path the ingress LER uses to send BFD control
   packets towards it.

   This document defines use of LSP Ping for Segment Routing networks
   over MPLS dataplane [I-D.ietf-mpls-spring-lsp-ping] to bootstrap and
   control path of a BFD session from the egress to ingress LER.

1.1.  Conventions used in this document

1.1.1.  Terminology

   BFD: Bidirectional Forwarding Detection

   FEC: Forwarding Equivalence Class

   MPLS: Multiprotocol Label Switching

   LSP: Label Switching Path

   LER: Label Edge Router

Mirsky                  Expires November 9, 2017                [Page 2]
Internet-Draft             BFD in SPRING MPLS                   May 2017

1.1.2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].

2.  Bootstrapping BFD session over Segment Routed tunnel

   As discussed in [I-D.ietf-mpls-spring-lsp-ping] introduction of
   Segment Routing network domains with an MPLS data plane adds three
   new sub-TLVs that MAY be used with Target Forwarding Equivalence
Show full document text