Skip to main content

A YANG Data Model for Open Shortest Path First (OSPF) Topology
draft-ogondio-nmop-ospf-topology-00

Document Type Active Internet-Draft (individual)
Authors Oscar Gonzalez de Dios , Samier Barguil , Victor Lopez
Last updated 2024-06-04
RFC stream (None)
Intended RFC status (None)
Formats
Yang Validation 0 errors, 0 warnings
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ogondio-nmop-ospf-topology-00
nmop                                                       O. G. D. Dios
Internet-Draft                                                Telefonica
Intended status: Standards Track                           S. B. Giraldo
Expires: 6 December 2024                                        V. Lopez
                                                                   Nokia
                                                             4 June 2024

     A YANG Data Model for Open Shortest Path First (OSPF) Topology
                  draft-ogondio-nmop-ospf-topology-00

Abstract

   This document defines a YANG data model for representing an
   abstracted view of a network topology that contains Open Shortest
   Path First (OSPF) information.  This document augments the 'ietf-
   network' data model by adding OSPF concepts and explains how the data
   model can be used to represent the OSPF topology.

   The YANG data model defined in this document conforms to the Network
   Management Datastore Architecture (NMDA).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 6 December 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights

Dios, et al.             Expires 6 December 2024                [Page 1]
Internet-Draft             OSPF Topology YANG                  June 2024

   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Terminology and Notations . . . . . . . . . . . . . . . .   3
     1.2.  Requirements Language . . . . . . . . . . . . . . . . . .   3
     1.3.  Tree Diagram  . . . . . . . . . . . . . . . . . . . . . .   3
     1.4.  Prefix in Data Node Names . . . . . . . . . . . . . . . .   3
   2.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . .   4
     2.1.  Relationship with the OSPF YANG Model . . . . . . . . . .   5
     2.2.  Relationship with Digital Map . . . . . . . . . . . . . .   5
   3.  YANG Data Model for OSPF Topology . . . . . . . . . . . . . .   6
   4.  RFC8345 Limitations for the OSPF Modeling . . . . . . . . . .   7
   5.  OSPF Topology Tree Diagram  . . . . . . . . . . . . . . . . .   7
   6.  YANG Model for OSPF topology  . . . . . . . . . . . . . . . .   8
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
   9.  Implementation Status . . . . . . . . . . . . . . . . . . . .  15
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  15
     10.2.  Informative References . . . . . . . . . . . . . . . . .  16
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  17
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  17

1.  Introduction

   Network operators perform the capacity planning for their networks
   and run regular what-if scenarios analysis based on representations
   of the real network.  Those what-if analysis and capacity planning
   processes require, among other information, a topological view
   (domains, nodes, links, network interconnection) of the deployed
   network.

   This document defines a YANG data model representing an abstracted
   view of a network topology containing Open Shortest Path First
   (OSPF).  It covers the topology of IP/MPLS networks running OSPF as
   Interior Gateway Protocol (IGP) protocol.  The proposed YANG model
   augments the "A YANG Data Model for Network Topologies" [RFC8345] and
   "A YANG Data Model for Layer 3 Topologies" [RFC8346] by adding OSPF
   concepts.  It is worth to highlight that the Yang model can also be
   used together with [RFC8795] and
   [I-D.draft-ietf-teas-yang-l3-te-topo] when Traffic engineering
   characteristics are required in the topological view.

Dios, et al.             Expires 6 December 2024                [Page 2]
Internet-Draft             OSPF Topology YANG                  June 2024

   This YANG data model can be used to export the OSPF related topology
   directly from a network controller to Operation Support System (OSS)
   tools or to a higher level controller.

   Note that the YANG model is in this document strictly adheres to the
   concepts (and the YANG module) in "A YANG Data Model for Network
   Topologies" [RFC8345] and "A YANG Data Model for Layer 3 Topologies"
   [RFC8346].  While investigating the OSFP topology, some limitations
   have discovered in [RFC8345], regarding how the digital map can be
   represented.  Those limitations (and potential improvements) are
   covered in [I-D.draft-havel-nmop-digital-map].

   This document explains the scope and purpose of the OSPF topology
   model and how the topology and service models fit together.  The YANG
   data model defined in this document conforms to the Network
   Management Datastore Architecture [RFC8342].

1.1.  Terminology and Notations

   This document assumes that the reader is familiar with OSPF and the
   contents of [RFC8345].  The document uses terms from those documents.

   The terminology for describing YANG data models is found in
   [RFC7950], [RFC8795] and [RFC8346].

   The term Digital Twin, Digital Map, Digital Map Modelling, Digital
   Map Model, Digital Map Data, and Topology are specified in
   [I-D.draft-havel-nmop-digital-map].

1.2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119], [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

1.3.  Tree Diagram

   Authors include a simplified graphical representation of the data
   model specified in Section 4 of this document.  The meaning of the
   symbols in these diagrams is defined in [RFC8340].

1.4.  Prefix in Data Node Names

   In this document, names of data nodes and other data model objects
   are prefixed using the standard prefix associated with the
   corresponding YANG imported modules, as shown in the following table.

Dios, et al.             Expires 6 December 2024                [Page 3]
Internet-Draft             OSPF Topology YANG                  June 2024

              +========+=======================+===========+
              | Prefix | Yang Module           | Reference |
              +========+=======================+===========+
              | ospfnt | ietf-l3-ospf-topology | RFCXXX    |
              +--------+-----------------------+-----------+
              | yang   | ietf-yang-types       | [RFC6991] |
              +--------+-----------------------+-----------+

                 Table 1: Prefixes and corresponding YANG
                                 modules

   RFC Editor Note: Please replace XXXX with the RFC number assigned to
   this document.  Please remove this note.

2.  Use Cases

   Use cases for this document are the same than explained in
   [I-D.draft-ogondio-nmop-isis-topology].  Here are included for
   completeness and discussion.  Future versions may consider removing
   them.

   This information is required in the IP/MPLS planning process to
   properly assess the required network resources to meet the traffic
   demands in normal and failure scenarios.  Network operators perform
   the capacity planning for their networks and run regular what-if
   scenarios analysis based on representations of the real network.
   Those what-if analysis and capacity planning processes require, among
   other information, a topological view (domains, nodes, links, network
   interconnection) of the deployed network.

   The standardization of an abstracted view of the OSPF topology model
   as NorthBound Interface (NBI) of Software Defined Networking (SDN)
   controllers allows the unified query of the OSFP topology in order to
   inject this information into third party tools covering specialized
   cases.

   The OSFP topological model should export enough OSFP information to
   permit these tools to simulate the IP routing.  By mapping the
   traffic demand, ideally at the IP flow level, to the topology, we can
   simulate the traffic growth, evaluating this way its effect on the
   routing and quality of service.  That is, simulating how IP-level
   traffic demands would be forwarded, after OSPF convergence is
   reached, and from there estimating, using appropriate mathematical
   models, related KPIs like the occupation in the links or end-to-end
   latencies.

   In summary, the network-wide view of the OSFP topology enables
   multiple use cases:

Dios, et al.             Expires 6 December 2024                [Page 4]
Internet-Draft             OSPF Topology YANG                  June 2024

   *  Network design: verifying that the actual deployed OSFP network
      conforms to the planned design.

   *  Capacity planning.  Dimensioning or redesign of the IP
      infrastructure to satisfy target KPI metrics under existing or
      forecasted traffic demands.

   *  What-if analysis.  Estimation of the network KPIs in modified
      network situations.  For instance, failure situations, traffic
      anomaly situations, addition or deletion of new adjacencies, IGP
      weight reconfigurations, etc.

   *  Failure analysis.  Systematic and massive test of the network
      under multiple simulated failure situations, evaluating the
      network fault tolerance properties, and using mathematical models
      to derive statistical network availability metrics.

2.1.  Relationship with the OSPF YANG Model

   [RFC9129] specifies a YANG data model that can be used to configure
   and manage the OSPF protocol on network elements.  This data model
   covers the configuration of an OSPF routing protocol instance, as
   well as the retrieval of OSPF operational states.  [RFC9129] is still
   expected to be used for individual network elements configuration and
   monitoring.  On the other hand, the proposed YANG model in this
   document covers the abstracted view of the entire network topology
   containing OSPF.  As such, this model is aimed at being available via
   the NBI of an SDN controller.

2.2.  Relationship with Digital Map

   As described in [I-D.draft-havel-nmop-digital-map], the Digital Map
   provides the core multi-layer topology model and data for the digital
   twin and connects them to the other digital twin models and data.

   The Digital Map Modelling defines the core topological entities,
   their role in the network, core properties, and relationships both
   inside each layer and between the layers.

   The Digital Map Model is a basic topological model that is linked to
   other functional parts of the digital twin and connects them all:
   configuration, maintenance, assurance (KPIs, status, health,
   symptoms), Traffic Engineering (TE), different behaviors and actions,
   simulation, emulation, mathematical abstractions, AI algorithms, etc.

Dios, et al.             Expires 6 December 2024                [Page 5]
Internet-Draft             OSPF Topology YANG                  June 2024

   As such the IGP topology of the Digital Map (in this case, OSPF) is
   just one of the layers of the Digital Map, for specific user (the
   network operator in charge of the IGP) for specific IGP use cases as
   described before.

3.  YANG Data Model for OSPF Topology

   The abstract (base) network data model is defined in the "ietf-
   network" module of [RFC8345].  The OSPF-topology builds on the
   network data model defined in the "ietf-network" module [RFC8345],
   augmenting the nodes with OSPF information, which anchor the links
   and are contained in nodes.

   There is a set of parameters and augmentations that are included at
   the node level.  Each parameter and description are detailed
   following:

   *  Network-types: Its presence identifies the OSPF topology type.
      Thus, the network type MUST be ospf-topology.

   *  OSPF timer attributes: Identifies the node timer attributes
      configured in the network element.  They are wait timer, rapid
      delay, slow delay, and the timer type (linear or exponential back-
      off).

   *  OSPF status: contains the neighbours' information.

   The following figure is based on the Figure 1 from [RFC8346], where
   the example-ospf-topology is replaced with ietf-l3-ospf-topology and
   where arrows show how the modules augment each other.

Dios, et al.             Expires 6 December 2024                [Page 6]
Internet-Draft             OSPF Topology YANG                  June 2024

                         +-----------------------------+
                         |  +-----------------------+  |
                         |  |      ietf-network     |  |
                         |  +----------^------------+  |
                         |             |               |
                         |  +-----------------------+  |
                         |  | ietf-network-topology |  |
                         |  +----------+------------+  |
                         +-------------^---------------+
                                       |
                                       |
                          +------------^-------------+
                          | ietf-l3-unicast-topology |
                          +------------^-------------+
                                       |
                                       |
                           +-----------^-----------+
                           | ietf-l3-ospf-topology |
                           +-----------------------+

                  Figure 1: OSPF Topology module structure

   A second set of parameters, along with augmentations, is included at
   the link and termination point level.  Each parameter is listed as
   follows:

   *  Interface-type

   *  Area ID

   *  Metric

   *  Passive mode

4.  RFC8345 Limitations for the OSPF Modeling

   There are some limitations in the [RFC8345] that are explained in
   more detail in [I-D.draft-havel-nmop-digital-map].  The current
   version of the ietf-l3-ospf-topology module is based on the current
   version of [RFC8345].

5.  OSPF Topology Tree Diagram

   Figure 2 below shows the tree diagram of the YANG data model defined
   in module ietf-l3-ospf-topology.yang (Section 6).

Dios, et al.             Expires 6 December 2024                [Page 7]
Internet-Draft             OSPF Topology YANG                  June 2024

   module: ietf-l3-ospf-topology
     augment /nw:networks/nw:network/nw:network-types:
       +--rw ospfv2-topology!
     augment /nw:networks/nw:network/nw:node/
       l3t:l3-node-attributes:
       +--rw ospf-timer-attributes
          +--rw wait-timer?    uint32
          +--rw rapid-delay?   uint32
          +--rw slow-delay?    uint32
          +--rw timer-type?    enumeration
     augment /nw:networks/nw:network/nt:link/
       l3t:l3-link-attributes:
       +--rw ospfv2-termination-point-attributes
          +--rw interface-type?   identityref
          +--rw area-id?          area-id-type
          +--rw metric?           uint64
          +--rw is-passive?       boolean
     augment /nw:networks/nw:network/nw:node/nt:termination-point/
       l3t:l3-termination-point-attributes:
       +--rw ospfv2-termination-point-attributes
          +--rw interface-type?   identityref
          +--rw area-id?          area-id-type
          +--rw metric?           uint64
          +--rw is-passive?       boolean

                    Figure 2: OSPF Topology tree diagram

6.  YANG Model for OSPF topology

   Following the YANG model is presented.

   <CODE BEGINS> file "ietf-l3-ospf-topology@2024-06-12.yang"
   module ietf-l3-ospf-topology {
     yang-version 1.1;
     namespace
       "urn:ietf:params:xml:ns:yang:ietf-l3-ospf-topology";
     prefix "ospfnt";
     import ietf-yang-types {
             prefix "yang";
         }
     import ietf-network {
       prefix "nw";
     }
     import ietf-network-topology {
       prefix "nt";
     }
     import ietf-l3-unicast-topology {
       prefix "l3t";

Dios, et al.             Expires 6 December 2024                [Page 8]
Internet-Draft             OSPF Topology YANG                  June 2024

     }

     organization
       "IETF NMOP (Network Management Operations) Working Group";
     contact
       "WG Web:  <https://datatracker.ietf.org/wg/opsawg/>
       WG List:  <mailto:opsawg@ietf.org>

       Editor:   Oscar Gonzalez de Dios
                 <mailto:oscar.gonzalezdedios@telefonica.com>
       Editor:   Samier Barguil
                 <mailto:samier.barguilgiraldo.ext@telefonica.com>
       Editor:   Victor Lopez
                 <mailto:victor.lopez@nokia.com>";
     description
       "This module defines a model for Layer 3 OSPF
        topologies.

        Copyright (c) 2024 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

     revision 2022-03-07 {
       description
         "Initial version";
       reference
         "RFC XXXX: A YANG Data Model for Open Shortest Path First
          (OSPF) Topology"; }

     typedef area-id-type {
       type yang:dotted-quad;
       description
         "An identifier for the OSPFv2 area.";
       reference
            "RFC 2328: OSPF Version 2";
     }

     identity inf-type {

Dios, et al.             Expires 6 December 2024                [Page 9]
Internet-Draft             OSPF Topology YANG                  June 2024

       description
         "Identity for the OSPF interface type.";
       reference
            "RFC 2328: OSPF Version 2";
     }

     identity nbma {
       base inf-type;
       description
         "Identity for the NBMA interface.";
       reference
            "RFC 2328: OSPF Version 2";
     }

     identity p2mp {
       base inf-type;
       description
         "Identity for the p2mp interface.";
       reference
            "RFC 2328: OSPF Version 2";
     }
     identity p2mp-over-lan {
       base inf-type;
       description
         "Identity for the p2mp-over-lan interface.";
       reference
            "RFC 2328: OSPF Version 2";
     }

     identity p2p {
       base inf-type;
       description
         "Identity for the p2p interface.";
       reference
            "RFC 2328: OSPF Version 2";
     }

     grouping ospfv2-topology-type {
       description "Identifies the topology type to be OSPF v2.";
       container ospfv2-topology {
         presence "indicates OSPF v2 topology";
         description
           "The presence of the container node indicates OSPF v2
           topology";
       }
     }

     grouping ospfv2-node-attributes {

Dios, et al.             Expires 6 December 2024               [Page 10]
Internet-Draft             OSPF Topology YANG                  June 2024

       description "OSPF v2 node scope attributes";
       container ospf-timer-attributes {
         description
           "Contains OSPFv2 node timer attributes";
         leaf wait-timer {
           type uint32;
           units msec;
           description
             "The amount of time to wait without detecting SPF
             trigger events before going back to the rapid delay.";
           reference
            "RFC 8541: SPF Impact on IGP Micro-loops";
         }
         leaf rapid-delay {
           type uint32;
           units msec;
           description
             "The amount of time to wait before running SPF after
             the initial SPF trigger event.";
           reference
            "RFC 8541: SPF Impact on IGP Micro-loops";
         }
         leaf slow-delay {
           type uint32;
           units msec;
           description
             "The amount of time to wait before running an SPF.";
           reference
            "RFC 8541: SPF Impact on IGP Micro-loops";
         }
         leaf timer-type {
           type enumeration {
             enum LINEAR_BACKOFF {
               description
                 "The link state routing protocol uses linear
                  back-off.";
             }
             enum EXPONENTIAL_BACKOFF {
               description
                 "The link state routing protocol uses exponential
                  back-off.";
             }
           }
           description
             "The timer mode that is utilised by the SPF algorithm.";
           reference
            "RFC 8541: SPF Impact on IGP Micro-loops";
         }

Dios, et al.             Expires 6 December 2024               [Page 11]
Internet-Draft             OSPF Topology YANG                  June 2024

       }
     }

     grouping ospfv2-termination-point-attributes {
       description "OSPF termination point scope attributes";
       container ospfv2-termination-point-attributes {
         description
           "Indicates the termination point from the
                 which the OSPF is configured. A termination
                 point can be a physical port, an interface, etc.";
         leaf interface-type {
           type identityref {
             base inf-type ;
           }
           description
             "OSPF interface type.";
           reference
             "RFC 2328: OSPF Version 2";
         }
         leaf area-id {
           type area-id-type;
           description
             "An identifier for the OSPFv2 area.";
           reference
             "RFC 2328: OSPF Version 2";
         }
         leaf metric {
           type uint64;
           description
             "OSFP Protocol metric";
           reference
             "RFC 2328: OSPF Version 2";
         }
         leaf is-passive{
           type boolean;
           description
             "Interface passive mode";
           reference
             "RFC 2328: OSPF Version 2";
         }
       }
     }

     augment "/nw:networks/nw:network/nw:network-types" {
       description
         "Introduces new network type for L3 Unicast topology";
       uses ospfv2-topology-type;
     }

Dios, et al.             Expires 6 December 2024               [Page 12]
Internet-Draft             OSPF Topology YANG                  June 2024

     augment "/nw:networks/nw:network/nw:node/"
       +"l3t:l3-node-attributes" {
       when
       "/nw:networks/nw:network/nw:network-types/"
         +"ospfnt:ospfv2-topology" {
         description
           "Augmentation parameters apply only for networks with
           OSPF topology";
       }
       description
           "OSPF node-level attributes ";
       uses ospfv2-node-attributes;
     }

     augment "/nw:networks/nw:network/"
         + "nt:link/l3t:l3-link-attributes" {
       when "/nw:networks/nw:network/nw:network-types/"
         +"ospfnt:ospfv2-topology" {
         description
           "Augmentation parameters apply only for networks with
           OSFP topology";
       }
       description "Augments topology link configuration";
       uses ospfv2-termination-point-attributes;
     }

     augment "/nw:networks/nw:network/nw:node/"
         +"nt:termination-point/l3t:l3-termination-point-attributes" {
       when "/nw:networks/nw:network/nw:network-types/"
         +"ospfnt:ospfv2-topology" {
         description
           "Augmentation parameters apply only for networks with
           OSFP topology";
       }
       description "Augments topology termination point configuration";
       uses ospfv2-termination-point-attributes;
     }
   }
   <CODE ENDS>

                    Figure 3: OSPF Topology YANG module

Dios, et al.             Expires 6 December 2024               [Page 13]
Internet-Draft             OSPF Topology YANG                  June 2024

7.  Security Considerations

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF {!RFC6241}} or RESTCONF [RFC8040].  The lowest NETCONF
   layer is the secure transport layer, and the mandatory-to-implement
   secure transport is Secure Shell (SSH) [RFC6242].  The lowest
   RESTCONF layer is HTTPS, and the mandatory-to-implement secure
   transport is TLS [RFC8446].

   The Network Configuration Access Control Model (NACM) [RFC8341]
   provides the means to restrict access for particular NETCONF or
   RESTCONF users to a preconfigured subset of all available NETCONF or
   RESTCONF protocol operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to these data nodes without proper protection can have a negative
   effect on network operations.

8.  IANA Considerations

   This document registers the following namespace URIs in the IETF XML
   registry [RFC3688]:

   --------------------------------------------------------------------
   URI: urn:ietf:params:xml:ns:yang:ietf-l3-ospf-topology
   Registrant Contact: The IESG.
   XML: N/A, the requested URI is an XML namespace.
   --------------------------------------------------------------------

   This document registers the following YANG module in the YANG Module
   Names registry [RFC6020]:

   --------------------------------------------------------------------
   name:         ietf-l3-ospf-topology
   namespace:    urn:ietf:params:xml:ns:yang:ietf-l3-ospf-topology
   maintained by IANA: N
   prefix:       ietf-l3-ospf-topology
   reference:    RFC XXXX
   --------------------------------------------------------------------

Dios, et al.             Expires 6 December 2024               [Page 14]
Internet-Draft             OSPF Topology YANG                  June 2024

9.  Implementation Status

   This section will be used to track the status of the implementations
   of the model.  It is aimed at being removed if the document becomes
   RFC.

10.  References

10.1.  Normative References

   [I-D.draft-havel-nmop-digital-map]
              Havel, O., Claise, B., de Dios, O. G., Elhassany, A.,
              Graf, T., and M. Boucadair, "Modeling the Digital Map
              based on RFC 8345: Sharing Experience and Perspectives",
              Work in Progress, Internet-Draft, draft-havel-nmop-
              digital-map-00, 3 March 2024,
              <https://datatracker.ietf.org/doc/html/draft-havel-nmop-
              digital-map-00>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/rfc/rfc2119>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/rfc/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/rfc/rfc6020>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/rfc/rfc6242>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/rfc/rfc6991>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/rfc/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/rfc/rfc8040>.

Dios, et al.             Expires 6 December 2024               [Page 15]
Internet-Draft             OSPF Topology YANG                  June 2024

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/rfc/rfc8340>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/rfc/rfc8341>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/rfc/rfc8342>.

   [RFC8345]  Clemm, A., Medved, J., Varga, R., Bahadur, N.,
              Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
              Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
              2018, <https://www.rfc-editor.org/rfc/rfc8345>.

   [RFC8346]  Clemm, A., Medved, J., Varga, R., Liu, X.,
              Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model
              for Layer 3 Topologies", RFC 8346, DOI 10.17487/RFC8346,
              March 2018, <https://www.rfc-editor.org/rfc/rfc8346>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/rfc/rfc8446>.

   [RFC8795]  Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
              O. Gonzalez de Dios, "YANG Data Model for Traffic
              Engineering (TE) Topologies", RFC 8795,
              DOI 10.17487/RFC8795, August 2020,
              <https://www.rfc-editor.org/rfc/rfc8795>.

   [RFC9129]  Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem,
              "YANG Data Model for the OSPF Protocol", RFC 9129,
              DOI 10.17487/RFC9129, October 2022,
              <https://www.rfc-editor.org/rfc/rfc9129>.

10.2.  Informative References

   [I-D.draft-ietf-teas-yang-l3-te-topo]
              Liu, X., Bryskin, I., Beeram, V. P., Saad, T., Shah, H.
              C., and O. G. de Dios, "YANG Data Model for Layer 3 TE

Dios, et al.             Expires 6 December 2024               [Page 16]
Internet-Draft             OSPF Topology YANG                  June 2024

              Topologies", Work in Progress, Internet-Draft, draft-ietf-
              teas-yang-l3-te-topo-16, 2 March 2024,
              <https://datatracker.ietf.org/doc/html/draft-ietf-teas-
              yang-l3-te-topo-16>.

   [I-D.draft-ogondio-nmop-isis-topology]
              de Dios, O. G., Barguil, S., Lopez, V., Ceccarelli, D.,
              and B. Claise, "A YANG Data Model for Intermediate System
              to intermediate System (IS-IS) Topology", Work in
              Progress, Internet-Draft, draft-ogondio-nmop-isis-
              topology-00, 4 March 2024,
              <https://datatracker.ietf.org/doc/html/draft-ogondio-nmop-
              isis-topology-00>.

Acknowledgments

   This work is partially supported by the European Commission under
   Horizon 2020 ALLEGRO project.

Authors' Addresses

   Oscar González de Dios
   Telefonica
   Email: oscar.gonzalezdedios@telefonica.com

   Samier Barguil Giraldo
   Nokia
   Email: samier.barguil_giraldo@nokia.com

   Victor Lopez
   Nokia
   Email: victor.lopez@nokia.com

Dios, et al.             Expires 6 December 2024               [Page 17]