Skip to main content

Composite Signatures For Use In Internet PKI
draft-ounsworth-pq-composite-sigs-12

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Replaced".
Authors Mike Ounsworth , John Gray , Massimiliano Pala , Jan Klaußner
Last updated 2024-02-11
Replaced by draft-ietf-lamps-pq-composite-sigs, draft-ietf-lamps-pq-composite-sigs, draft-ietf-lamps-pq-composite-sigs
RFC stream (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ounsworth-pq-composite-sigs-12
LAMPS                                                       M. Ounsworth
Internet-Draft                                                   J. Gray
Intended status: Standards Track                                 Entrust
Expires: 11 August 2024                                          M. Pala
                                                               CableLabs
                                                            J. Klaussner
                                                            D-Trust GmbH
                                                         8 February 2024

              Composite Signatures For Use In Internet PKI
                  draft-ounsworth-pq-composite-sigs-12

Abstract

   The migration to post-quantum cryptography is unique in the history
   of modern digital cryptography in that neither the old outgoing nor
   the new incoming algorithms are fully trusted to protect data for the
   required data lifetimes.  The outgoing algorithms, such as RSA and
   elliptic curve, may fall to quantum cryptanalysis, while the incoming
   post-quantum algorithms face uncertainty about both the underlying
   mathematics as well as hardware and software implementations that
   have not had sufficient maturing time to rule out classical
   cryptanalytic attacks and implementation bugs.

   Cautious implementers may wish to layer cryptographic algorithms such
   that an attacker would need to break all of them in order to
   compromise the data being protected using either a Post-Quantum /
   Traditional Hybrid, Post-Quantum / Post-Quantum Hybrid, or
   combinations thereof.  This document, and its companions, defines a
   specific instantiation of hybrid paradigm called "composite" where
   multiple cryptographic algorithms are combined to form a single key
   or signature such that they can be treated as a single atomic object
   at the protocol level.

   This document defines the structures CompositeSignaturePublicKey,
   CompositeSignaturePrivateKey and CompositeSignatureValue, which are
   sequences of the respective structure for each component algorithm.
   Composite signature algorithm identifiers are specified in this
   document which represent the explicit combinations of the underlying
   component algorithms.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

Ounsworth, et al.        Expires 11 August 2024                 [Page 1]
Internet-Draft              PQ Composite Sigs              February 2024

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 11 August 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Changes in version -12  . . . . . . . . . . . . . . . . . . .   3
   2.  Changes in version -11  . . . . . . . . . . . . . . . . . . .   3
   3.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   5
     3.2.  Composite Design Philosophy . . . . . . . . . . . . . . .   6
     3.3.  Composite Signatures  . . . . . . . . . . . . . . . . . .   6
       3.3.1.  Composite KeyGen  . . . . . . . . . . . . . . . . . .   7
       3.3.2.  Composite Sign  . . . . . . . . . . . . . . . . . . .   7
       3.3.3.  Composite Verify  . . . . . . . . . . . . . . . . . .   9
     3.4.  OID Concatenation . . . . . . . . . . . . . . . . . . . .  11
     3.5.  PreHashing the Message  . . . . . . . . . . . . . . . . .  13
     3.6.  Algorithm Selection Criteria  . . . . . . . . . . . . . .  13
   4.  Composite Signature Structures  . . . . . . . . . . . . . . .  14
     4.1.  pk-CompositeSignature . . . . . . . . . . . . . . . . . .  14
     4.2.  CompositeSignaturePublicKey . . . . . . . . . . . . . . .  15
     4.3.  CompositeSignaturePrivateKey  . . . . . . . . . . . . . .  15
     4.4.  Encoding Rules  . . . . . . . . . . . . . . . . . . . . .  16
     4.5.  Key Usage Bits  . . . . . . . . . . . . . . . . . . . . .  17
   5.  Composite Signature Structures  . . . . . . . . . . . . . . .  17
     5.1.  sa-CompositeSignature . . . . . . . . . . . . . . . . . .  17

Ounsworth, et al.        Expires 11 August 2024                 [Page 2]
Internet-Draft              PQ Composite Sigs              February 2024

     5.2.  CompositeSignatureValue . . . . . . . . . . . . . . . . .  18
   6.  Algorithm Identifiers . . . . . . . . . . . . . . . . . . . .  18
     6.1.  Notes on id-MLDSA44-RSA2048-PSS-SHA256  . . . . . . . . .  21
     6.2.  Notes on id-MLDSA65-RSA3072-PSS-SHA512  . . . . . . . . .  22
   7.  ASN.1 Module  . . . . . . . . . . . . . . . . . . . . . . . .  22
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  30
     8.1.  Object Identifier Allocations . . . . . . . . . . . . . .  30
       8.1.1.  Module Registration - SMI Security for PKIX Module
               Identifier  . . . . . . . . . . . . . . . . . . . . .  30
       8.1.2.  Object Identifier Registrations - SMI Security for PKIX
               Algorithms  . . . . . . . . . . . . . . . . . . . . .  30
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  33
     9.1.  Policy for Deprecated and Acceptable Algorithms . . . . .  33
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  33
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  33
     10.2.  Informative References . . . . . . . . . . . . . . . . .  35
   Appendix A.  Samples  . . . . . . . . . . . . . . . . . . . . . .  37
     A.1.  Explicit Composite Signature Examples . . . . . . . . . .  37
       A.1.1.  MLDSA44-ECDSA-P256-SHA256 Public Key  . . . . . . . .  38
       A.1.2.  MLDSA44-ECDSA-P256 Private Key  . . . . . . . . . . .  38
       A.1.3.  MLDSA44-ECDSA-P256 Self-Signed X509 Certificate . . .  40
   Appendix B.  Implementation Considerations  . . . . . . . . . . .  42
     B.1.  FIPS certification  . . . . . . . . . . . . . . . . . . .  42
     B.2.  Backwards Compatibility . . . . . . . . . . . . . . . . .  42
       B.2.1.  Parallel PKIs . . . . . . . . . . . . . . . . . . . .  43
       B.2.2.  Hybrid Extensions (Keys and Signatures) . . . . . . .  44
   Appendix C.  Intellectual Property Considerations . . . . . . . .  44
   Appendix D.  Contributors and Acknowledgements  . . . . . . . . .  44
     D.1.  Making contributions  . . . . . . . . . . . . . . . . . .  45
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  45

1.  Changes in version -12

   *  Fixed the ASN.1 module pk-CompositeSignature Information Object
      Class so it now compiles

2.  Changes in version -11

   *  Remove ambiguity and made it clear that all component signature
      MUST be verified

   *  Added language to ensure that component keys MUST not be used in
      any other context

   *  Changed the content of the OID artifact to the DER encoded OID

   *  Reduced number of pre-hashing algorithm by removing SHA384 and
      SHAKE and replacing those with SHA512

Ounsworth, et al.        Expires 11 August 2024                 [Page 3]
Internet-Draft              PQ Composite Sigs              February 2024

   *  Updated the prototype OIDs since the changes in this draft are not
      compatible with version -10

   *  Fixed other nits

3.  Introduction

   During the transition to post-quantum cryptography, there will be
   uncertainty as to the strength of cryptographic algorithms; we will
   no longer fully trust traditional cryptography such as RSA, Diffie-
   Hellman, DSA and their elliptic curve variants, but we will also not
   fully trust their post-quantum replacements until they have had
   sufficient scrutiny and time to discover and fix implementation bugs.
   Unlike previous cryptographic algorithm migrations, the choice of
   when to migrate and which algorithms to migrate to, is not so clear.
   Even after the migration period, it may be advantageous for an
   entity's cryptographic identity to be composed of multiple public-key
   algorithms.

   Cautious implementers may wish to combine cryptographic algorithms
   such that an attacker would need to break all of them in order to
   compromise the data being protected.  Such mechanisms are referred to
   as Post-Quantum / Traditional Hybrids
   [I-D.driscoll-pqt-hybrid-terminology].

   PQ/T Hybrid cryptography can, in general, provide solutions to two
   migration problems:

   *  Algorithm strength uncertainty: During the transition period, some
      post-quantum signature and encryption algorithms will not be fully
      trusted, while also the trust in legacy public key algorithms will
      start to erode.  A relying party may learn some time after
      deployment that a public key algorithm has become untrustworthy,
      but in the interim, they may not know which algorithm an adversary
      has compromised.

   *  Ease-of-migration: During the transition period, systems will
      require mechanisms that allow for staged migrations from fully
      classical to fully post-quantum-aware cryptography.

   *  Safeguard against faulty algorithm implementations and compromised
      keys: Even for long known algorithms there is a non-negligible
      risk of severe implementation faults.  Latest examples are the
      ROCA attack and ECDSA psychic signatures.  Using more than one
      algorithms will mitigate these risks.

Ounsworth, et al.        Expires 11 August 2024                 [Page 4]
Internet-Draft              PQ Composite Sigs              February 2024

   This document defines a specific instantiation of the PQ/T Hybrid
   paradigm called "composite" where multiple cryptographic algorithms
   are combined to form a single signature such that it can be treated
   as a single atomic algorithm at the protocol level.  Composite
   algorithms address algorithm strength uncertainty because the
   composite algorithm remains strong so long as one of its components
   remains strong.  Concrete instantiations of composite signature
   algorithms are provided based on ML-DSA, Falcon, RSA and ECDSA.
   Backwards compatibility is not directly covered in this document, but
   is the subject of Appendix B.2.

   This document is intended for general applicability anywhere that
   digital signatures are used within PKIX and CMS structures.  For a
   more detailed use-case discussion for composite signatures, the
   reader is encouraged to look at [I-D.vaira-pquip-pqc-use-cases]

3.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The following terms are used in this document:

   ALGORITHM: A standardized cryptographic primitive, as well as any
   ASN.1 structures needed for encoding data and metadata needed to use
   the algorithm.  This document is primarily concerned with algorithms
   for producing digital signatures.

   BER: Basic Encoding Rules (BER) as defined in [X.690].

   CLIENT: Any software that is making use of a cryptographic key.  This
   includes a signer, verifier, encrypter, decrypter.

   COMPONENT ALGORITHM: A single basic algorithm which is contained
   within a composite algorithm.

   COMPOSITE ALGORITHM: An algorithm which is a sequence of two or more
   component algorithms, as defined in Section 4.

   DER: Distinguished Encoding Rules as defined in [X.690].

   LEGACY: For the purposes of this document, a legacy algorithm is any
   cryptographic algorithm currently is use which is not believe to be
   resistant to quantum cryptanalysis.

Ounsworth, et al.        Expires 11 August 2024                 [Page 5]
Internet-Draft              PQ Composite Sigs              February 2024

   PKI: Public Key Infrastructure, as defined in [RFC5280].

   POST-QUANTUM ALGORITHM: Any cryptographic algorithm which is believed
   to be resistant to classical and quantum cryptanalysis, such as the
   algorithms being considered for standardization by NIST.

   PUBLIC / PRIVATE KEY: The public and private portion of an asymmetric
   cryptographic key, making no assumptions about which algorithm.

   SIGNATURE: A digital cryptographic signature, making no assumptions
   about which algorithm.

   STRIPPING ATTACK: An attack in which the attacker is able to
   downgrade the cryptographic object to an attacker-chosen subset of
   original set of component algorithms in such a way that it is not
   detectable by the receiver.  For example, substituting a composite
   public key or signature for a version with fewer components.

3.2.  Composite Design Philosophy

   [I-D.driscoll-pqt-hybrid-terminology] defines composites as:

      _Composite Cryptographic Element_: A cryptographic element that
      incorporates multiple component cryptographic elements of the same
      type in a multi-algorithm scheme.

   Composite keys as defined here follow this definition and should be
   regarded as a single key that performs a single cryptographic
   operation such key generation, signing, verifying, encapsulating, or
   decapsulating -- using its internal sequence of component keys as if
   they form a single key.  This generally means that the complexity of
   combining algorithms can and should be handled by the cryptographic
   library or cryptographic module, and the single composite public key,
   private key, and ciphertext can be carried in existing fields in
   protocols such as PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280],
   CMS [RFC5652], and the Trust Anchor Format [RFC5914].  In this way,
   composites achieve "protocol backwards-compatibility" in that they
   will drop cleanly into any protocol that accepts signature algorithms
   without requiring any modification of the protocol to handle multiple
   keys.

3.3.  Composite Signatures

   Here we define the signature mechanism in which a signature is a
   cryptographic primitive that consists of three algorithms:

   *  KeyGen() -> (pk, sk): A probabilistic key generation algorithm,
      which generates a public key pk and a secret key sk.

Ounsworth, et al.        Expires 11 August 2024                 [Page 6]
Internet-Draft              PQ Composite Sigs              February 2024

   *  Sign(sk, Message) -> (signature): A signing algorithm which takes
      as input a secret key sk and a Message, and outputs a signature

   *  Verify(pk, Message, signature) -> true or false: A verification
      algorithm which takes as input a public key, a Message and
      signature and outputs true if the signature and public key can be
      used to verify the message.  Thus it proves the Message was signed
      with the secret key associated with the public key and verifies
      the integrity of the Message.  If the signature and public key
      cannot verify the Message, it returns false.

   A composite signature allows two or more underlying signature
   algorithms to be combined into a single cryptographic signature
   operation and can be used for applications that require signatures.

3.3.1.  Composite KeyGen

   The KeyGen() -> (pk, sk) of a composite signature algorithm will
   perform the KeyGen() of the respective component signature algorithms
   and it produces a composite public key pk as per Section 4.2 and a
   composite secret key sk is per Section 4.3.  The component keys MUST
   be uniquely generated for each component key of a Composite and MUST
   NOT be used in any other keys or as a standalone key.

3.3.2.  Composite Sign

   Generation of a composite signature involves applying each component
   algorithm's signature process to the input message according to its
   specification, and then placing each component signature value into
   the CompositeSignatureValue structure defined in Section 5.1.

   The following process is used to generate composite signature values.

Ounsworth, et al.        Expires 11 August 2024                 [Page 7]
Internet-Draft              PQ Composite Sigs              February 2024

Sign (sk, Message) -> (signature)
Input:
     K1, K2             Signing private keys for each component. See note below on
                        composite inputs.

     A1, A2             Component signature algorithms. See note below on
                        composite inputs.

     Message            The Message to be signed, an octet string

     HASH               The Message Digest Algorithm used for pre-hashing.  See section
                        on pre-hashing below.

     OID                The Composite Signature String Algorithm Name converted
                        from ASCII to bytes.  See section on OID concatenation
                        below.

Output:
     signature          The composite signature, a CompositeSignatureValue

Signature Generation Process:

   1. Compute a Hash of the Message

         M' = HASH(Message)

   2. Generate the n component signatures independently,
      according to their algorithm specifications.

         S1 := Sign( K1, A1, DER(OID) || M' )
         S2 := Sign( K2, A2, DER(OID) || M' )

   3. Encode each component signature S1 and S2 into a BIT STRING
      according to its algorithm specification.

        signature ::= Sequence { S1, S2 }

   4. Output signature

                Figure 1: Composite Sign(sk, Message)

Ounsworth, et al.        Expires 11 August 2024                 [Page 8]
Internet-Draft              PQ Composite Sigs              February 2024

   Note on composite inputs: the method of providing the list of
   component keys and algorithms is flexible and beyond the scope of
   this pseudo-code.  When passed to the Composite Sign(sk, Message) API
   the sk is a CompositePrivateKey.  It is possible to construct a
   CompositePrivateKey from component keys stored in separate software
   or hardware keystores.  Variations in the process to accommodate
   particular private key storage mechanisms are considered to be
   conformant to this document so long as it produces the same output as
   the process sketched above.

   Since recursive composite public keys are disallowed, no component
   signature may itself be a composite; ie the signature generation
   process MUST fail if one of the private keys K1 or K2 is a composite.

   A composite signature MUST produce, and include in the output, a
   signature value for every component key in the corresponding
   CompositePublicKey, and they MUST be in the same order; ie in the
   output, S1 MUST correspond to K1, S2 to K2.

3.3.3.  Composite Verify

   Verification of a composite signature involves applying each
   component algorithm's verification process according to its
   specification.

   Compliant applications MUST output "Valid signature" (true) if and
   only if all component signatures were successfully validated, and
   "Invalid signature" (false) otherwise.

   The following process is used to perform this verification.

Composite Verify(pk, Message, signature)
Input:
     P1, P2             Public verification keys. See note below on
                        composite inputs.

     Message            Message whose signature is to be verified,
                        an octet string

     signature          CompositeSignatureValue containing the component
                        signature values (S1 and S2) to be verified.

     A1, A2             Component signature algorithms. See note
                        below on composite inputs.

     HASH               The Message Digest Algorithm for pre-hashing.  See
                        section on pre-hashing the message below.

Ounsworth, et al.        Expires 11 August 2024                 [Page 9]
Internet-Draft              PQ Composite Sigs              February 2024

     OID                The Composite Signature String Algorithm Name converted
                        from ASCII to bytes.  See section on OID concatenation
                        below

Output:
    Validity (bool)    "Valid signature" (true) if the composite
                        signature is valid, "Invalid signature"
                        (false) otherwise.

Signature Verification Procedure::
   1. Check keys, signatures, and algorithms lists for consistency.

      If Error during Desequencing, or the sequences have
      different numbers of elements, or any of the public keys
      P1 or P2 and the algorithm identifiers A1 or A2 are
      composite then output "Invalid signature" and stop.

   2. Compute a Hash of the Message

         M' = HASH(Message)

   3. Check each component signature individually, according to its
       algorithm specification.
       If any fail, then the entire signature validation fails.

       if not verify( P1, DER(OID) || M', S1, A1 ) then
            output "Invalid signature"
       if not verify( P2, DER(OID) || M', S2, A2 ) then
            output "Invalid signature"

       if all succeeded, then
        output "Valid signature"

          Figure 2: Composite Verify(pk, Message, signature)

   Note on composite inputs: the method of providing the list of
   component keys and algorithms is flexible and beyond the scope of
   this pseudo-code.  When passed to the Composite Verify(pk, Message,
   signature) API the pk is a CompositePublicKey.  It is possible to
   construct a CompositePublicKey from component keys stored in separate
   software or hardware keystores.  Variations in the process to
   accommodate particular private key storage mechanisms are considered
   to be conformant to this document so long as it produces the same
   output as the process sketched above.

   Since recursive composite public keys are disallowed, no component
   signature may itself be a composite; ie the signature generation
   process MUST fail if one of the private keys K1 or K2 is a composite.

Ounsworth, et al.        Expires 11 August 2024                [Page 10]
Internet-Draft              PQ Composite Sigs              February 2024

3.4.  OID Concatenation

   As mentioned above, the OID input value for the Composite Signature
   Generation and verification process is the DER encoding of the OID
   represented in Hexidecimal bytes.  The following table shows the HEX
   encoding for each Signature AlgorithmID

Ounsworth, et al.        Expires 11 August 2024                [Page 11]
Internet-Draft              PQ Composite Sigs              February 2024

     +=================================+============================+
     | Composite Signature AlgorithmID | DER Encoding to be         |
     |                                 | prepended to each Message  |
     +=================================+============================+
     | id-MLDSA44-RSA2048-PSS-SHA256   | 060B6086480186FA6B50080101 |
     +---------------------------------+----------------------------+
     | id-                             | 060B6086480186FA6B50080102 |
     | MLDSA44-RSA2048-PKCS15-SHA256   |                            |
     +---------------------------------+----------------------------+
     | id-MLDSA44-Ed25519-SHA512       | 060B6086480186FA6B50080103 |
     +---------------------------------+----------------------------+
     | id-MLDSA44-ECDSA-P256-SHA256    | 060B6086480186FA6B50080104 |
     +---------------------------------+----------------------------+
     | id-MLDSA44-ECDSA-               | 060B6086480186FA6B50080105 |
     | brainpoolP256r1-SHA256          |                            |
     +---------------------------------+----------------------------+
     | id-MLDSA65-RSA3072-PSS-SHA512   | 060B6086480186FA6B50080106 |
     +---------------------------------+----------------------------+
     | id-                             | 060B6086480186FA6B50080107 |
     | MLDSA65-RSA3072-PKCS15-SHA512   |                            |
     +---------------------------------+----------------------------+
     | id-MLDSA65-ECDSA-P256-SHA512    | 060B6086480186FA6B50080108 |
     +---------------------------------+----------------------------+
     | id-MLDSA65-ECDSA-               | 060B6086480186FA6B50080109 |
     | brainpoolP256r1-SHA512          |                            |
     +---------------------------------+----------------------------+
     | id-MLDSA65-Ed25519-SHA512       | 060B6086480186FA6B5008010A |
     +---------------------------------+----------------------------+
     | id-MLDSA87-ECDSA-P384-SHA512    | 060B6086480186FA6B5008010B |
     +---------------------------------+----------------------------+
     | id-MLDSA87-ECDSA-               | 060B6086480186FA6B5008010C |
     | brainpoolP384r1-SHA512          |                            |
     +---------------------------------+----------------------------+
     | id-MLDSA87-Ed448-SHA512         | 060B6086480186FA6B5008010D |
     +---------------------------------+----------------------------+
     | id-Falon512-ECDSA-P256-SHA256   | 060B6086480186FA6B5008010E |
     +---------------------------------+----------------------------+
     | id-Falcon512-ECDSA-             | 060B6086480186FA6B5008010F |
     | brainpoolP256r1-SHA256          |                            |
     +---------------------------------+----------------------------+
     | id-Falcon512-Ed25519-SHA512     | 060B6086480186FA6B50080110 |
     +---------------------------------+----------------------------+

             Table 1: Composite Signature OID Concatenations

Ounsworth, et al.        Expires 11 August 2024                [Page 12]
Internet-Draft              PQ Composite Sigs              February 2024

3.5.  PreHashing the Message

   As noted in the composite signature generation process and composite
   signature verification process, the Message should be pre-hashed into
   M' with the digest algorithm specified in the composite signature
   algorithm identifier.  The choice of the digest algorithm was chosen
   with the following criteria:

   1.  For composites paired with RSA or ECDSA, the hashing algorithm
       SHA256 or SHA512 is used as part of the RSA or ECDSA signature
       algorithm and is therefore also used as the composite prehashing
       algorithm.

   2.  For ML-DSA signing a digest of the message is allowed as long as
       the hash function provides at least y bits of classical security
       strength against both collision and second preimage attacks.  For
       MLDSA44 y is 128 bits, MLDSA65 y is 192 bits and for MLDSA87 y is
       256 bits.  Therefore SHA256 is paired with RSA and ECDSA with
       MLDSA44 and SHA512 is paired with RSA and ECDSA with MLDSA65 and
       MLDSA87 to match the appropriate security strength.

   3.  Ed25519 [RFC8032] uses SHA512 internally, therefore SHA512 is
       used to pre-hash the message when Ed25519 is a component
       algorithm.

   4.  Ed448 [RFC8032] uses SHAKE256 internally, but to reduce the set
       of prehashing algorihtms, SHA512 was selected to pre-hash the
       message when Ed448 is a component algorithm.

   5.  TODO: For Falcon signing it is expected prehashing digest
       accomodations will be allowed.

3.6.  Algorithm Selection Criteria

   The composite algorithm combinations defined in this document were
   chosen according to the following guidelines:

   1.  A single RSA combination is provided at a key size of 3072 bits,
       matched with NIST PQC Level 3 algorithms.

   2.  Elliptic curve algorithms are provided with combinations on each
       of the NIST [RFC6090], Brainpool [RFC5639], and Edwards [RFC7748]
       curves.  NIST PQC Levels 1 - 3 algorithms are matched with
       256-bit curves, while NIST levels 4 - 5 are matched with 384-bit
       elliptic curves.  This provides a balance between matching
       classical security levels of post-quantum and traditional
       algorithms, and also selecting elliptic curves which already have
       wide adoption.

Ounsworth, et al.        Expires 11 August 2024                [Page 13]
Internet-Draft              PQ Composite Sigs              February 2024

   3.  NIST level 1 candidates are provided, matched with 256-bit
       elliptic curves, intended for constrained use cases.

   If other combinations are needed, a separate specification should be
   submitted to the IETF LAMPS working group.  To ease implementation,
   these specifications are encouraged to follow the construction
   pattern of the algorithms specified in this document.

   The composite structures defined in this specification allow only for
   pairs of algorithms.  This also does not preclude future
   specification from extending these structures to define combinations
   with three or more components.

4.  Composite Signature Structures

   In order for signatures to be composed of multiple algorithms, we
   define encodings consisting of a sequence of signature primitives
   (aka "component algorithms") such that these structures can be used
   as a drop-in replacement for existing signature fields such as those
   found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS
   [RFC5652].

4.1.  pk-CompositeSignature

   The following ASN.1 Information Object Class is a template to be used
   in defining all composite Signature public key types.

   pk-CompositeSignature {OBJECT IDENTIFIER:id,
     FirstPublicKeyType,SecondPublicKeyType}
       PUBLIC-KEY ::= {
         IDENTIFIER id
         KEY SEQUENCE {
           firstPublicKey BIT STRING (CONTAINING FirstPublicKeyType),
           secondPublicKey BIT STRING (CONTAINING SecondPublicKeyType)
         }
         PARAMS ARE absent
         CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
       }

   As an example, the public key type pk-MLDSA65-ECDSA-P256-SHA256 is
   defined as:

   pk-MLDSA65-ECDSA-P256-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA256,
     OCTET STRING, ECPoint}

   The full set of key types defined by this specification can be found
   in the ASN.1 Module in Section 7.

Ounsworth, et al.        Expires 11 August 2024                [Page 14]
Internet-Draft              PQ Composite Sigs              February 2024

4.2.  CompositeSignaturePublicKey

   Composite public key data is represented by the following structure:

   CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING

   A composite key MUST contain two component public keys.  The order of
   the component keys is determined by the definition of the
   corresponding algorithm identifier as defined in section Section 6.

   Some applications may need to reconstruct the SubjectPublicKeyInfo
   objects corresponding to each component public key.  Table 3 in
   Section 6 provides the necessary mapping between composite and their
   component algorithms for doing this reconstruction.  This also
   motivates the design choice of SEQUENCE OF BIT STRING instead of
   SEQUENCE OF OCTET STRING; using BIT STRING allows for easier
   transcription between CompositeSignaturePublicKey and
   SubjectPublicKeyInfo.

   When the CompositeSignaturePublicKey must be provided in octet string
   or bit string format, the data structure is encoded as specified in
   Section 4.4.

   Component keys of a CompositeSignaturePublicKey MUST NOT be used in
   any other type of key or as a standalone key.

4.3.  CompositeSignaturePrivateKey

   Usecases that require an interoperable encoding for composite private
   keys, such as when private keys are carried in PKCS #12 [RFC7292],
   CMP [RFC4210] or CRMF [RFC4211] MUST use the following structure.

   CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey

   Each element is a OneAsymmetricKey` [RFC5958] object for a component
   private key.

   The parameters field MUST be absent.

   The order of the component keys is the same as the order defined in
   Section 4.2 for the components of CompositeSignaturePublicKey.

Ounsworth, et al.        Expires 11 August 2024                [Page 15]
Internet-Draft              PQ Composite Sigs              February 2024

   When a CompositeSignaturePrivateKey is conveyed inside a
   OneAsymmetricKey structure (version 1 of which is also known as
   PrivateKeyInfo) [RFC5958], the privateKeyAlgorithm field SHALL be set
   to the corresponding composite algorithm identifier defined according
   to Section 6, the privateKey field SHALL contain the
   CompositeSignaturePrivateKey, and the publicKey field MUST NOT be
   present.  Associated public key material MAY be present in the
   CompositeSignaturePrivateKey.

   In some usecases the private keys that comprise a composite key may
   not be represented in a single structure or even be contained in a
   single cryptographic module; for example if one component is within
   the FIPS boundary of a cryptographic module and the other is not; see
   {sec-fips} for more discussion.  The establishment of correspondence
   between public keys in a CompositeSignaturePublicKey and private keys
   not represented in a single composite structure is beyond the scope
   of this document.

   Component keys of a CompositeSignaturePrivateKey MUST NOT be used in
   any other type of key or as a standalone key.

4.4.  Encoding Rules

   Many protocol specifications will require that the composite public
   key and composite private key data structures be represented by an
   octet string or bit string.

   When an octet string is required, the DER encoding of the composite
   data structure SHALL be used directly.

   CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)

   When a bit string is required, the octets of the DER encoded
   composite data structure SHALL be used as the bits of the bit string,
   with the most significant bit of the first octet becoming the first
   bit, and so on, ending with the least significant bit of the last
   octet becoming the last bit of the bit string.

   CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)

   In the interests of simplicity and avoiding compatibility issues,
   implementations that parse these structures MAY accept both BER and
   DER.

Ounsworth, et al.        Expires 11 August 2024                [Page 16]
Internet-Draft              PQ Composite Sigs              February 2024

4.5.  Key Usage Bits

   For protocols such as X.509 [RFC5280] that specify key usage along
   with the public key, then the composite public key associated with a
   composite signature MUST have a signing-type key usage.

   If the keyUsage extension is present in a Certification Authority
   (CA) certificate that indicates a composite key, then any combination
   of the following values MAY be present:

   digitalSignature;
   nonRepudiation;
   keyCertSign; and
   cRLSign.

   If the keyUsage extension is present in an End Entity (EE)
   certificate that indicates a composite key, then any combination of
   the following values MAY be present:

   digitalSignature; and
   nonRepudiation;

5.  Composite Signature Structures

5.1.  sa-CompositeSignature

   The ASN.1 algorithm object for a composite signature is:

   sa-CompositeSignature {
     OBJECT IDENTIFIER:id,
       PUBLIC-KEY:publicKeyType }
       SIGNATURE-ALGORITHM ::= {
           IDENTIFIER id
           VALUE CompositeSignatureValue
           PARAMS ARE absent
           PUBLIC-KEYS { publicKeyType }
       }

   The following is an explanation how SIGNATURE-ALGORITHM elements are
   used to create Composite Signatures:

Ounsworth, et al.        Expires 11 August 2024                [Page 17]
Internet-Draft              PQ Composite Sigs              February 2024

    +=============================+===================================+
    | SIGNATURE-ALGORITHM element | Definition                        |
    +=============================+===================================+
    | IDENTIFIER                  | The Object ID used to identify    |
    |                             | the composite Signature Algorithm |
    +-----------------------------+-----------------------------------+
    | VALUE                       | The Sequence of BIT STRINGS for   |
    |                             | each component signature value    |
    +-----------------------------+-----------------------------------+
    | PARAMS                      | Parameters are absent             |
    +-----------------------------+-----------------------------------+
    | PUBLIC-KEYS                 | The composite key required to     |
    |                             | produce the composite signature   |
    +-----------------------------+-----------------------------------+

                                  Table 2

5.2.  CompositeSignatureValue

   The output of the composite signature algorithm is the DER encoding
   of the following structure:

   CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING

   Where each BIT STRING within the SEQUENCE is a signature value
   produced by one of the component keys.  It MUST contain one signature
   value produced by each component algorithm, and in the same order as
   specified in the object identifier.

   The choice of SEQUENCE SIZE (2) OF BIT STRING, rather than for
   example a single BIT STRING containing the concatenated signature
   values, is to gracefully handle variable-length signature values by
   taking advantage of ASN.1's built-in length fields.

6.  Algorithm Identifiers

   This section defines the algorithm identifiers for explicit
   combinations.  For simplicity and prototyping purposes, the signature
   algorithm object identifiers specified in this document are the same
   as the composite key object Identifiers.  A proper implementation
   should not presume that the object ID of a composite key will be the
   same as its composite signature algorithm.

   This section is not intended to be exhaustive and other authors may
   define others composite signature algorithms so long as they are
   compatible with the structures and processes defined in this and
   companion public and private key documents.

Ounsworth, et al.        Expires 11 August 2024                [Page 18]
Internet-Draft              PQ Composite Sigs              February 2024

   Some use-cases desire the flexibility for clients to use any
   combination of supported algorithms, while others desire the rigidity
   of explicitly-specified combinations of algorithms.

   The following table summarizes the details for each explicit
   composite signature algorithms:

   The OID referenced are TBD for prototyping only, and the following
   prefix is used for each:

   replace <CompSig> with the String "2.16.840.1.114027.80.8.1"

   Therefore <CompSig>.1 is equal to 2.16.840.1.114027.80.8.1.1

   Signature public key types:

Ounsworth, et al.        Expires 11 August 2024                [Page 19]
Internet-Draft              PQ Composite Sigs              February 2024

   +=============================+============+=========+=======================+======+
   |Composite Signature          |OID         |First    |Second Algorithm       |Pre-  |
   |AlgorithmID                  |            |Algorithm|                       |Hash  |
   +=============================+============+=========+=======================+======+
   |id-MLDSA44-RSA2048-PSS-SHA256|<CompSig>.1 |MLDSA44  |SHA256WithRSAPSS       |SHA256|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-                          |<CompSig>.2 |MLDSA44  |SHA256WithRSAEncryption|SHA256|
   |MLDSA44-RSA2048-PKCS15-SHA256|            |         |                       |      |
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA44-Ed25519-SHA512    |<CompSig>.3 |MLDSA44  |Ed25519                |SHA512|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA44-ECDSA-P256-SHA256 |<CompSig>.4 |MLDSA44  |SHA256withECDSA        |SHA256|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA44-ECDSA-            |<CompSig>.5 |MLDSA44  |SHA256withECDSA        |SHA256|
   |brainpoolP256r1-SHA256       |            |         |                       |      |
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA65-RSA3072-PSS-SHA512|<CompSig>.6 |MLDSA65  |SHA512WithRSAPSS       |SHA512|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-                          |<CompSig>.7 |MLDSA65  |SHA512WithRSAEncryption|SHA512|
   |MLDSA65-RSA3072-PKCS15-SHA512|            |         |                       |      |
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA65-ECDSA-P256-SHA512 |<CompSig>.8 |MLDSA65  |SHA512withECDSA        |SHA512|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA65-ECDSA-            |<CompSig>.9 |MLDSA65  |SHA512withECDSA        |SHA512|
   |brainpoolP256r1-SHA512       |            |         |                       |      |
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA65-Ed25519-SHA512    |<CompSig>.10|MLDSA65  |Ed25519                |SHA512|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA87-ECDSA-P384-SHA512 |<CompSig>.11|MLDSA87  |SHA512withECDSA        |SHA512|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA87-ECDSA-            |<CompSig>.12|MLDSA87  |SHA512withECDSA        |SHA512|
   |brainpoolP384r1-SHA512       |            |         |                       |      |
   +-----------------------------+------------+---------+-----------------------+------+
   |id-MLDSA87-Ed448-SHA512      |<CompSig>.13|MLDSA87  |Ed448                  |SHA512|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-Falon512-ECDSA-P256-SHA256|<CompSig>.14|Falcon512|SHA256withECDSA        |SHA256|
   +-----------------------------+------------+---------+-----------------------+------+
   |id-Falcon512-ECDSA-          |<CompSig>.15|Falcon512|SHA256withECDSA        |SHA256|
   |brainpoolP256r1-SHA256       |            |         |                       |      |
   +-----------------------------+------------+---------+-----------------------+------+
   |id-Falcon512-Ed25519-SHA512  |<CompSig>.16|Falcon512|Ed25519                |SHA512|
   +-----------------------------+------------+---------+-----------------------+------+

                  Table 3: Composite Signature Algorithms

Ounsworth, et al.        Expires 11 August 2024                [Page 20]
Internet-Draft              PQ Composite Sigs              February 2024

   The table above contains everything needed to implement the listed
   explicit composite algorithms.  See the ASN.1 module in section
   Section 7 for the explicit definitions of the above Composite
   signature algorithms.

   Full specifications for the referenced algorithms can be found as
   follows:

   *  _MLDSA_: [I-D.ietf-lamps-dilithium-certificates] and
      [FIPS.204-ipd]

   *  _ECDSA_: [RFC5480]

   *  _Ed25519 / Ed448_: [RFC8410]

   *  _Falcon_: TBD

   *  _RSAES-PKCS-v1_5_: [RFC8017]

   *  _RSASSA-PSS_: [RFC8017]

6.1.  Notes on id-MLDSA44-RSA2048-PSS-SHA256

   Use of RSA-PSS [RFC8017] deserves a special explanation.

   The RSA component keys MUST be generated at the 2048-bit security
   level in order to match with ML-DSA-44

   As with the other composite signature algorithms, when id-
   MLDSA44-RSA2048-PSS-SHA256 is used in an AlgorithmIdentifier, the
   parameters MUST be absent. id-MLDSA44-RSA2048-PSS-SHA256 SHALL
   instantiate RSA-PSS with the following parameters:

                  +==========================+=========+
                  | RSA-PSS Parameter        | Value   |
                  +==========================+=========+
                  | Mask Generation Function | mgf1    |
                  +--------------------------+---------+
                  | Mask Generation params   | SHA-256 |
                  +--------------------------+---------+
                  | Message Digest Algorithm | SHA-256 |
                  +--------------------------+---------+

                     Table 4: RSA-PSS 2048 Parameters

   where:

   *  Mask Generation Function (mgf1) is defined in [RFC8017]

Ounsworth, et al.        Expires 11 August 2024                [Page 21]
Internet-Draft              PQ Composite Sigs              February 2024

   *  SHA-256 is defined in [RFC6234].

6.2.  Notes on id-MLDSA65-RSA3072-PSS-SHA512

   The RSA component keys MUST be generated at the 3072-bit security
   level in order to match with ML-DSA-65.

   As with the other composite signature algorithms, when id-
   MLDSA65-RSA3072-PSS-SHA512 is used in an AlgorithmIdentifier, the
   parameters MUST be absent. id-MLDSA65-RSA3072-PSS-SHA512 SHALL
   instantiate RSA-PSS with the following parameters:

                  +==========================+=========+
                  | RSA-PSS Parameter        | Value   |
                  +==========================+=========+
                  | Mask Generation Function | mgf1    |
                  +--------------------------+---------+
                  | Mask Generation params   | SHA-512 |
                  +--------------------------+---------+
                  | Message Digest Algorithm | SHA-512 |
                  +--------------------------+---------+

                     Table 5: RSA-PSS 3072 Parameters

   where:

   *  Mask Generation Function (mgf1) is defined in [RFC8017]

   *  SHA-512 is defined in [RFC6234].

7.  ASN.1 Module

   <CODE STARTS>

      Composite-Signatures-2023
         { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027)
           algorithm(80) id-composite-signatures-2023 (TBDMOD) }

   DEFINITIONS IMPLICIT TAGS ::= BEGIN

   EXPORTS ALL;

   IMPORTS
     PUBLIC-KEY, SIGNATURE-ALGORITHM, AlgorithmIdentifier{}
       FROM AlgorithmInformation-2009  -- RFC 5912 [X509ASN1]
         { iso(1) identified-organization(3) dod(6) internet(1)
           security(5) mechanisms(5) pkix(7) id-mod(0)

Ounsworth, et al.        Expires 11 August 2024                [Page 22]
Internet-Draft              PQ Composite Sigs              February 2024

           id-mod-algorithmInformation-02(58) }

     SubjectPublicKeyInfo
       FROM PKIX1Explicit-2009
         { iso(1) identified-organization(3) dod(6) internet(1)
           security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-pkix1-explicit-02(51) }

     OneAsymmetricKey
       FROM AsymmetricKeyPackageModuleV1
         { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
           pkcs-9(9) smime(16) modules(0)
           id-mod-asymmetricKeyPkgV1(50) }

     RSAPublicKey, ECPoint
       FROM PKIXAlgs-2009
         { iso(1) identified-organization(3) dod(6)
           internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-pkix1-algorithms2008-02(56) }

     sa-rsaSSA-PSS
       FROM PKIX1-PSS-OAEP-Algorithms-2009
          {iso(1) identified-organization(3) dod(6) internet(1) security(5)
          mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-rsa-pkalgs-02(54)}

   ;

   --
   -- Object Identifiers
   --

   -- Defined in ITU-T X.690
   der OBJECT IDENTIFIER ::=
     {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}

   --
   -- Signature Algorithm
   --

   --
   -- Composite Signature basic structures
   --

   CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING

Ounsworth, et al.        Expires 11 August 2024                [Page 23]
Internet-Draft              PQ Composite Sigs              February 2024

   CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING
                                   CompositeSignaturePublicKey ENCODED BY der)

   CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING
                                   CompositeSignaturePublicKey ENCODED BY der)

   CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey

   CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING

   -- Composite Signature Value is just a sequence of OCTET STRINGS

   --   CompositeSignaturePair{FirstSignatureValue, SecondSignatureValue} ::=
   --     SEQUENCE {
   --      signaturevalue1 FirstSignatureValue,
   --      signaturevalue2 SecondSignatureValue }

      -- An Explicit Compsite Signature is a set of Signatures which
      -- are composed of OCTET STRINGS
   --   ExplicitCompositeSignatureValue ::= CompositeSignaturePair {
   --       OCTET STRING,OCTET STRING}

   --
   -- Information Object Classes
   --

   pk-CompositeSignature {OBJECT IDENTIFIER:id,
     FirstPublicKeyType,SecondPublicKeyType}
       PUBLIC-KEY ::= {
         IDENTIFIER id
         KEY SEQUENCE {
           firstPublicKey BIT STRING (CONTAINING FirstPublicKeyType),
           secondPublicKey BIT STRING (CONTAINING SecondPublicKeyType)
         }
         PARAMS ARE absent
         CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
       }

   sa-CompositeSignature{OBJECT IDENTIFIER:id,
      PUBLIC-KEY:publicKeyType }
         SIGNATURE-ALGORITHM ::=  {
            IDENTIFIER id
            VALUE CompositeSignatureValue
            PARAMS ARE absent
            PUBLIC-KEYS {publicKeyType}
         }

Ounsworth, et al.        Expires 11 August 2024                [Page 24]
Internet-Draft              PQ Composite Sigs              February 2024

   -- TODO: OID to be replaced by IANA
   id-MLDSA44-RSA2048-PSS-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 1 }

   pk-MLDSA44-RSA2048-PSS-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-RSA2048-PSS-SHA256,
     OCTET STRING, RSAPublicKey}

   sa-MLDSA44-RSA2048-PSS-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-RSA2048-PSS-SHA256,
          pk-MLDSA44-RSA2048-PSS-SHA256 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA44-RSA2048-PKCS15-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 2 }

   pk-MLDSA44-RSA2048-PKCS15-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15-SHA256,
     OCTET STRING, RSAPublicKey}

   sa-MLDSA44-RSA2048-PKCS15-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-RSA2048-PKCS15-SHA256,
          pk-MLDSA44-RSA2048-PKCS15-SHA256 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA44-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 3 }

   pk-MLDSA44-Ed25519-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-Ed25519-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA44-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-Ed25519-SHA512,
          pk-MLDSA44-Ed25519-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA44-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 4 }

Ounsworth, et al.        Expires 11 August 2024                [Page 25]
Internet-Draft              PQ Composite Sigs              February 2024

   pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256,
     OCTET STRING, ECPoint}

   sa-MLDSA44-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-ECDSA-P256-SHA256,
          pk-MLDSA44-ECDSA-P256-SHA256 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 5 }

   pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
     OCTET STRING, ECPoint}

   sa-MLDSA44-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
          pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA65-RSA3072-PSS-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 6 }

   pk-MLDSA65-RSA3072-PSS-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-RSA3072-PSS-SHA512,
     OCTET STRING, RSAPublicKey}

   sa-MLDSA65-RSA3072-PSS-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-RSA3072-PSS-SHA512,
          pk-MLDSA65-RSA3072-PSS-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA65-RSA3072-PKCS15-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 7 }

   pk-MLDSA65-RSA3072-PKCS15-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15-SHA512,
     OCTET STRING, RSAPublicKey}

Ounsworth, et al.        Expires 11 August 2024                [Page 26]
Internet-Draft              PQ Composite Sigs              February 2024

   sa-MLDSA65-RSA3072-PKCS15-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-RSA3072-PKCS15-SHA512,
          pk-MLDSA65-RSA3072-PKCS15-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA65-ECDSA-P256-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 8 }

   pk-MLDSA65-ECDSA-P256-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA65-ECDSA-P256-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-ECDSA-P256-SHA512,
          pk-MLDSA65-ECDSA-P256-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 9 }

   pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
     OCTET STRING, ECPoint}

   sa-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
          pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA65-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 10 }

   pk-MLDSA65-Ed25519-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA65-Ed25519-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA65-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA65-Ed25519-SHA512,

Ounsworth, et al.        Expires 11 August 2024                [Page 27]
Internet-Draft              PQ Composite Sigs              February 2024

          pk-MLDSA65-Ed25519-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA87-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 11 }

   pk-MLDSA87-ECDSA-P384-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA87-ECDSA-P384-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA87-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA87-ECDSA-P384-SHA512,
          pk-MLDSA87-ECDSA-P384-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 12 }

   pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA87-ECDSA-brainpoolP384r1-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
          pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 }

   -- TODO: OID to be replaced by IANA
   id-MLDSA87-Ed448-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 13 }

   pk-MLDSA87-Ed448-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-MLDSA87-Ed448-SHA512,
     OCTET STRING, ECPoint}

   sa-MLDSA87-Ed448-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-MLDSA87-Ed448-SHA512,
          pk-MLDSA87-Ed448-SHA512 }

   -- TODO: OID to be replaced by IANA

Ounsworth, et al.        Expires 11 August 2024                [Page 28]
Internet-Draft              PQ Composite Sigs              February 2024

   id-Falon512-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 14 }

   pk-Falon512-ECDSA-P256-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-Falon512-ECDSA-P256-SHA256,
     OCTET STRING, ECPoint}

   sa-Falon512-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-Falon512-ECDSA-P256-SHA256,
          pk-Falon512-ECDSA-P256-SHA256 }

   -- TODO: OID to be replaced by IANA
   id-Falcon512-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 15 }

   pk-Falcon512-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-Falcon512-ECDSA-brainpoolP256r1-SHA256,
     OCTET STRING, ECPoint}

   sa-Falcon512-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-Falcon512-ECDSA-brainpoolP256r1-SHA256,
          pk-Falcon512-ECDSA-brainpoolP256r1-SHA256 }

   -- TODO: OID to be replaced by IANA
   id-Falcon512-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      entrust(114027) algorithm(80) composite(8) signature(1) 16 }

   pk-Falcon512-Ed25519-SHA512 PUBLIC-KEY ::=
     pk-CompositeSignature{ id-Falcon512-Ed25519-SHA512,
     OCTET STRING, ECPoint}

   sa-Falcon512-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
       sa-CompositeSignature{
          id-Falcon512-Ed25519-SHA512,
          pk-Falcon512-Ed25519-SHA512 }

   END

   <CODE ENDS>

Ounsworth, et al.        Expires 11 August 2024                [Page 29]
Internet-Draft              PQ Composite Sigs              February 2024

8.  IANA Considerations

   IANA is requested to allocate a value from the "SMI Security for PKIX
   Module Identifier" registry [RFC7299] for the included ASN.1 module,
   and allocate values from "SMI Security for PKIX Algorithms" to
   identify the fourteen Algorithms defined within.

8.1.  Object Identifier Allocations

   EDNOTE to IANA: OIDs will need to be replaced in both the ASN.1
   module and in Table 3.

8.1.1.  Module Registration - SMI Security for PKIX Module Identifier

   *  Decimal: IANA Assigned - *Replace TBDMOD*

   *  Description: Composite-Signatures-2023 - id-mod-composite-
      signatures

   *  References: This Document

8.1.2.  Object Identifier Registrations - SMI Security for PKIX
        Algorithms

   *  id-MLDSA44-RSA2048-PSS-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-RSA2048-PSS-SHA256

   *  References: This Document

   *  id-MLDSA44-RSA2048-PKCS15-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-RSA2048-PKCS15-SHA256

   *  References: This Document

   *  id-MLDSA44-Ed25519-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-Ed25519-SHA512

   *  References: This Document

Ounsworth, et al.        Expires 11 August 2024                [Page 30]
Internet-Draft              PQ Composite Sigs              February 2024

   *  id-MLDSA44-ECDSA-P256-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-ECDSA-P256-SHA256

   *  References: This Document

   *  id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

   *  References: This Document

   *  id-MLDSA65-RSA3072-PSS-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-RSA3072-PSS-SHA512

   *  References: This Document

   *  id-MLDSA65-RSA3072-PKCS15-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-RSA3072-PKCS15-SHA512

   *  References: This Document

   *  id-MLDSA65-ECDSA-P256-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-ECDSA-P256-SHA512

   *  References: This Document

   *  id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

   *  References: This Document

Ounsworth, et al.        Expires 11 August 2024                [Page 31]
Internet-Draft              PQ Composite Sigs              February 2024

   *  id-MLDSA65-Ed25519-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA65-Ed25519-SHA512

   *  References: This Document

   *  id-MLDSA87-ECDSA-P384-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA87-ECDSA-P384-SHA512

   *  References: This Document

   *  id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

   *  References: This Document

   *  id-MLDSA87-Ed448-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-MLDSA87-Ed448-SHA512

   *  References: This Document

   *  id-Falon512-ECDSA-P256-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-Falon512-ECDSA-P256-SHA256

   *  References: This Document

   *  id-Falcon512-ECDSA-brainpoolP256r1-SHA256

   *  Decimal: IANA Assigned

   *  Description: id-Falcon512-ECDSA-brainpoolP256r1-SHA256

   *  References: This Document

Ounsworth, et al.        Expires 11 August 2024                [Page 32]
Internet-Draft              PQ Composite Sigs              February 2024

   *  id-Falcon512-Ed25519-SHA512

   *  Decimal: IANA Assigned

   *  Description: id-Falcon512-Ed25519-SHA512

   *  References: This Document

9.  Security Considerations

9.1.  Policy for Deprecated and Acceptable Algorithms

   Traditionally, a public key, certificate, or signature contains a
   single cryptographic algorithm.  If and when an algorithm becomes
   deprecated (for example, RSA-512, or SHA1), then clients performing
   signatures or verifications should be updated to adhere to
   appropriate policies.

   In the composite model this is less obvious since implementers may
   decide that certain cryptographic algorithms have complementary
   security properties and are acceptable in combination even though one
   or both algorithms are deprecated for individual use.  As such, a
   single composite public key or certificate may contain a mixture of
   deprecated and non-deprecated algorithms.

   Since composite algorithms are registered independently of their
   component algorithms, their deprecation can be handled indpendently
   from that of their component algorithms.  For example a cryptographic
   policy might continue to allow id-MLDSA65-ECDSA-P256-SHA256 even
   after ECDH-P256 is deprecated.

10.  References

10.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2986]  Nystrom, M. and B. Kaliski, "PKCS #10: Certification
              Request Syntax Specification Version 1.7", RFC 2986,
              DOI 10.17487/RFC2986, November 2000,
              <https://www.rfc-editor.org/info/rfc2986>.

Ounsworth, et al.        Expires 11 August 2024                [Page 33]
Internet-Draft              PQ Composite Sigs              February 2024

   [RFC4210]  Adams, C., Farrell, S., Kause, T., and T. Mononen,
              "Internet X.509 Public Key Infrastructure Certificate
              Management Protocol (CMP)", RFC 4210,
              DOI 10.17487/RFC4210, September 2005,
              <https://www.rfc-editor.org/info/rfc4210>.

   [RFC4211]  Schaad, J., "Internet X.509 Public Key Infrastructure
              Certificate Request Message Format (CRMF)", RFC 4211,
              DOI 10.17487/RFC4211, September 2005,
              <https://www.rfc-editor.org/info/rfc4211>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
              "Elliptic Curve Cryptography Subject Public Key
              Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
              <https://www.rfc-editor.org/info/rfc5480>.

   [RFC5639]  Lochter, M. and J. Merkle, "Elliptic Curve Cryptography
              (ECC) Brainpool Standard Curves and Curve Generation",
              RFC 5639, DOI 10.17487/RFC5639, March 2010,
              <https://www.rfc-editor.org/info/rfc5639>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [RFC5958]  Turner, S., "Asymmetric Key Packages", RFC 5958,
              DOI 10.17487/RFC5958, August 2010,
              <https://www.rfc-editor.org/info/rfc5958>.

   [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
              Curve Cryptography Algorithms", RFC 6090,
              DOI 10.17487/RFC6090, February 2011,
              <https://www.rfc-editor.org/info/rfc6090>.

   [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and SHA-based HMAC and HKDF)", RFC 6234,
              DOI 10.17487/RFC6234, May 2011,
              <https://www.rfc-editor.org/info/rfc6234>.

   [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
              for Security", RFC 7748, DOI 10.17487/RFC7748, January
              2016, <https://www.rfc-editor.org/info/rfc7748>.

Ounsworth, et al.        Expires 11 August 2024                [Page 34]
Internet-Draft              PQ Composite Sigs              February 2024

   [RFC8032]  Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
              Signature Algorithm (EdDSA)", RFC 8032,
              DOI 10.17487/RFC8032, January 2017,
              <https://www.rfc-editor.org/info/rfc8032>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8410]  Josefsson, S. and J. Schaad, "Algorithm Identifiers for
              Ed25519, Ed448, X25519, and X448 for Use in the Internet
              X.509 Public Key Infrastructure", RFC 8410,
              DOI 10.17487/RFC8410, August 2018,
              <https://www.rfc-editor.org/info/rfc8410>.

   [RFC8411]  Schaad, J. and R. Andrews, "IANA Registration for the
              Cryptographic Algorithm Object Identifier Range",
              RFC 8411, DOI 10.17487/RFC8411, August 2018,
              <https://www.rfc-editor.org/info/rfc8411>.

   [X.690]    ITU-T, "Information technology - ASN.1 encoding Rules:
              Specification of Basic Encoding Rules (BER), Canonical
              Encoding Rules (CER) and Distinguished Encoding Rules
              (DER)", ISO/IEC 8825-1:2015, November 2015.

10.2.  Informative References

   [Bindel2017]
              Bindel, N., Herath, U., McKague, M., and D. Stebila,
              "Transitioning to a quantum-resistant public key
              infrastructure", 2017, <https://link.springer.com/
              chapter/10.1007/978-3-319-59879-6_22>.

   [I-D.becker-guthrie-noncomposite-hybrid-auth]
              Becker, A., Guthrie, R., and M. J. Jenkins, "Non-Composite
              Hybrid Authentication in PKIX and Applications to Internet
              Protocols", Work in Progress, Internet-Draft, draft-
              becker-guthrie-noncomposite-hybrid-auth-00, 22 March 2022,
              <https://datatracker.ietf.org/doc/html/draft-becker-
              guthrie-noncomposite-hybrid-auth-00>.

   [I-D.driscoll-pqt-hybrid-terminology]
              D, F., "Terminology for Post-Quantum Traditional Hybrid
              Schemes", Work in Progress, Internet-Draft, draft-
              driscoll-pqt-hybrid-terminology-01, 20 October 2022,
              <https://datatracker.ietf.org/doc/html/draft-driscoll-pqt-
              hybrid-terminology-01>.

Ounsworth, et al.        Expires 11 August 2024                [Page 35]
Internet-Draft              PQ Composite Sigs              February 2024

   [I-D.guthrie-ipsecme-ikev2-hybrid-auth]
              Guthrie, R., "Hybrid Non-Composite Authentication in
              IKEv2", Work in Progress, Internet-Draft, draft-guthrie-
              ipsecme-ikev2-hybrid-auth-00, 25 March 2022,
              <https://datatracker.ietf.org/doc/html/draft-guthrie-
              ipsecme-ikev2-hybrid-auth-00>.

   [I-D.hale-pquip-hybrid-signature-spectrums]
              Bindel, N., Hale, B., Connolly, D., and F. D, "Hybrid
              signature spectrums", Work in Progress, Internet-Draft,
              draft-hale-pquip-hybrid-signature-spectrums-01, 6 November
              2023, <https://datatracker.ietf.org/doc/html/draft-hale-
              pquip-hybrid-signature-spectrums-01>.

   [I-D.ietf-lamps-dilithium-certificates]
              Massimo, J., Kampanakis, P., Turner, S., and B.
              Westerbaan, "Internet X.509 Public Key Infrastructure:
              Algorithm Identifiers for Dilithium", Work in Progress,
              Internet-Draft, draft-ietf-lamps-dilithium-certificates-
              01, 6 February 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-lamps-
              dilithium-certificates-01>.

   [I-D.massimo-lamps-pq-sig-certificates]
              Massimo, J., Kampanakis, P., Turner, S., and B.
              Westerbaan, "Algorithms and Identifiers for Post-Quantum
              Algorithms", Work in Progress, Internet-Draft, draft-
              massimo-lamps-pq-sig-certificates-00, 8 July 2022,
              <https://datatracker.ietf.org/doc/html/draft-massimo-
              lamps-pq-sig-certificates-00>.

   [I-D.ounsworth-pq-composite-kem]
              Ounsworth, M. and J. Gray, "Composite KEM For Use In
              Internet PKI", Work in Progress, Internet-Draft, draft-
              ounsworth-pq-composite-kem-01, 13 March 2023,
              <https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-
              composite-kem-01>.

   [I-D.pala-klaussner-composite-kofn]
              Pala, M. and J. Klaußner, "K-threshold Composite
              Signatures for the Internet PKI", Work in Progress,
              Internet-Draft, draft-pala-klaussner-composite-kofn-00, 15
              November 2022, <https://datatracker.ietf.org/doc/html/
              draft-pala-klaussner-composite-kofn-00>.

   [I-D.vaira-pquip-pqc-use-cases]
              Vaira, A., Brockhaus, H., Railean, A., Gray, J., and M.
              Ounsworth, "Post-quantum cryptography use cases", Work in

Ounsworth, et al.        Expires 11 August 2024                [Page 36]
Internet-Draft              PQ Composite Sigs              February 2024

              Progress, Internet-Draft, draft-vaira-pquip-pqc-use-cases-
              00, 23 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-vaira-pquip-
              pqc-use-cases-00>.

   [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
              Identifiers for the Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
              2002, <https://www.rfc-editor.org/info/rfc3279>.

   [RFC7292]  Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,
              and M. Scott, "PKCS #12: Personal Information Exchange
              Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,
              <https://www.rfc-editor.org/info/rfc7292>.

   [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
              Kivinen, "Internet Key Exchange Protocol Version 2
              (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
              2014, <https://www.rfc-editor.org/info/rfc7296>.

   [RFC7299]  Housley, R., "Object Identifier Registry for the PKIX
              Working Group", RFC 7299, DOI 10.17487/RFC7299, July 2014,
              <https://www.rfc-editor.org/info/rfc7299>.

   [RFC8017]  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
              "PKCS #1: RSA Cryptography Specifications Version 2.2",
              RFC 8017, DOI 10.17487/RFC8017, November 2016,
              <https://www.rfc-editor.org/info/rfc8017>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC8551]  Schaad, J., Ramsdell, B., and S. Turner, "Secure/
              Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
              Message Specification", RFC 8551, DOI 10.17487/RFC8551,
              April 2019, <https://www.rfc-editor.org/info/rfc8551>.

Appendix A.  Samples

A.1.  Explicit Composite Signature Examples

Ounsworth, et al.        Expires 11 August 2024                [Page 37]
Internet-Draft              PQ Composite Sigs              February 2024

A.1.1.  MLDSA44-ECDSA-P256-SHA256 Public Key

   -----BEGIN PUBLIC KEY-----
   MIIFfzANBgtghkgBhvprUAgBBAOCBWwAMIIFZwSCBSAA9DTYoQys3PVrayi9zTam
   kTzpqf6vuNI5+UaMENvnrq3Rps5LmiQ5gSXaQMu0HYjVpCEQVQWl/8nbJavELelk
   gCVn528ndGBQUChAnffxhRdxgaFmOb2SEySTnHIh6QO1UFPO2kGiGx9zU6F9xZGK
   FZFBm8B076UvRHCbaw+BTvu4o+Kg1irOFRPI3hLN4ku3si2nwWSZNhDoiLaPTfJe
   7TRziBznEyrnSV3I2Xn7QdKxIWUFOwPXWBnnk/FGG/A2HdxGpiqIWxZ0gNLNcb+j
   Cz6CWZSJhoOLoJWdOD5zyojPPrH5iFIGM96p0PZ4mv5PhmZDPA/RTIg/PcG1rywn
   OJYqAsazntGyEhHEFLRe8QYOVEbiBuv20tNzkFaaulQRdW+boStcW8NefSkKG/9D
   FgGnyR87W4Z/ieHEyIva4FBamvRm60xrblAyI0Z7II4l7LTStDzL/ghFq06RVria
   au+mY5laq8rAGmRbWkUxNeKeGOVHxjGFYB3uaAkHef0o7tSMMkCSSjiDQlNk5ReQ
   xgJMkuTRE7YRN1bDXv/0uPPjg7zfa3M0tMCD9wTXFhIk04HDLVV5WAsH0EK6Nytd
   gqnsjGCwfZb2+Fw/QytBei50DUBHpIG3da4dBrxcaRTMiQPzPzL8FaDascE0ZIJM
   9ilKvxgq02ryEHLGALFN8eZD1r6zq43KFlRzaynWBWqJ27MiUzK2dk8oC+dH5cz6
   +xGXAhLJ+MipoO9k9dLg8re3dOAufsKaY5DLuuluo7dO6IF7rG9xblbiIzWpyfu3
   7kJvUdwk36QzsQNGsxpELk65LaWYnaebV7wKyIaaniLysuNCG0dIcAicxRNLgpX9
   jic5pi+BzlJI1IuPk+DqOG57pNnU7lTg3op08MUslNyeUH5yaag8DNsLG7uZHzvx
   jcqffaqcqS+v6FVmbV2tDF07jn8a754Fnn/QNgsNcdfw9Ov4w7Ty+q5nT2wg2Lsg
   bAuzN6b6FiWEuHHMw/I5aIL5cLj2GUpjHtlUHL4KEHpxZ2J5jbBgeqpTWEy1TuPQ
   R34lryVASmue/kmk2liah6wNK5RXlGa8uidBm7RT8b5SkIMsrosLx9KpC5lKobzn
   8ttK1NSy0ZuMDw9wtnePUbROGjEuw5Na/K1VgO68dATj/7rscvz7C+ZuQORrt88X
   +OZmoyw+fEDWAocDnhzI6rJIHLPB0p+rSJ8iSKZpFZYeIy+CD0t6E98RJQHll8BJ
   lLyJiMT0xAyelOMzrCJayHxD01aLw6LLOddFbiIRMq4lni5Ha4noWmdO2C80xy3A
   jskUEK5sbD8KFl910JUHwaGvb/gDCqW+n10mRa9+cB0tRVjo5OZeSiB01Bkagu7a
   f+bRv2i8cBa2ZoGVyW3xFFFhIkHzLgHaU+RLaGwJDe0qxKtwKYz5c/YpAsH+lodM
   NV2E/PzHtNY+sg0PijblN6IVO+yiLkxJspKIjf0I1+s8hczhz3QkLRed7dU2nvID
   puJQfgraKyS6rawlqLyWo66/PDtdd3tngw50wnDNZik0hz/usDc6o7IN5J9ha7XO
   0vZQluMb9R5l+W6RLD2nRd4mlKVqm/Yfq0R8PKoIh8f7uLVk1kbN4prkfpsokvqR
   rli5h4URG7WCNvp4bg/i1Ix/CEEjH56LRj83dhVB0O6WXorrZMAChQShMhwnEgeS
   USaB5au7xRAM+9fWvF9cmju3hXSTT1zv0owyoSgp36OHcy2HzwZXxA7YWtRDbhMX
   BEEEkSZvSVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMh
   EPbQ/KPspugi6gkrLFhcmy/OiA== -----END PUBLIC KEY-----

A.1.2.  MLDSA44-ECDSA-P256 Private Key

   -----BEGIN PRIVATE KEY----- MIIPmQIBADANBgtghkgBhvprUAgBBASCD4Mwgg9/
   BIIPAAD0NNihDKzc9WtrKL3N NqaRPOmp/
   q+40jn5RowQ2+euyt08tCb8n+fyXPTeYUqTRyok4CwyZDOBvRgzjQPo
   ViTIHTQcWno6KkNnRaLLCmpapjHbTJvbRoBb09RllNQwzuM4KaISDYuwUNikESKz
   ZUGAIGIyMiSHReImUtAkEkTGgcQEBIAGIsQ2ZoiERQpEJVsGKRzDiCEHaYnEjBJA
   MeSmKFkIKiAXYUoYaZQkhkEWYSSFLQkkYgoEKiICZhMAIuDEAMu2YJu2aBmXjQCC
   ASMEBVAoaFkiAJhEUcySIaAIEQgyISMTbBM4JqLESIMmRWDISQkHTplGahiQTMQY
   JpQ2ZKQGgWMUaNCEkdAmZQHBKdJAShG0TYCikCNCcNLAcYkgQiOhcUHCZYCGROQo
   YOEkZiRGkFnGiAsoYEsIYCOxaFQSAYy4EYIYRsQYRNuUSNooaUQGIMg0DdioAAsQ
   RYMghgSlUNK4gVLACQgRSAkxDIs0QhEoRoKEQMMoMMSmTWNEDqOkMRw2AWSgUAQR
   MaSiYAgmkeFGbtuIhFRAcSQyUWMYZIKEQNo0KkmkgVsiEcMGJJQgMko2JFKGMBmQ
   RQzHhBsAASQZbNEQcVCGYZkIjkMYKpJChKEUhQSRgCTEIaEkkYSUQeMmkmSibGK0

Ounsworth, et al.        Expires 11 August 2024                [Page 38]
Internet-Draft              PQ Composite Sigs              February 2024

   TBopYAAmgVogBmIkauGADBKHKAoVQRhCYhoXUsCYgOCYJRDFgYsCLAuiEFE0ghEo
   UQwSAUK2AUSAKMQobSMmcRQVbEQUDgA0MNwEhEjEaAQTaAKCjAMEcAyBSVgUZkAS
   jUIQkWTCCRQVcAA2KllIAAIRQoLELRuzaCIRiZkGbNpIgYBIAQggIuOUTIzCMCI3
   BoIIBcuEBYLIgMmEcZmkkEAwMEGSZRKXQKIEkcGERIFCCeEyIouYaQoEhsM2jdBI
   JhS5YBAycSEEkOSAiGIYJgiQbVKkYZLIARmXTBvJjRIWYMI0RBGUkdQmZuO0QaOg
   gcQGjNI4EFIyBVREAsMkIRoBClRIbgMUgVFIUgNCcVGmhBC3kdtEBBw0EVlEiRsC
   YuKYCZumMFwyCMmCaYAoCgAWLBFAIqBELAGxcBoJQlKmYKCWgMKEUYQGZMqiDMqm
   JRnHIJEoaAJHgByhBBIpCeQiBNAYSSEQQNKUUaMyMYs2DnQ5Y0NY1PJ+TCmdgiin
   NmiycZW2gsYQVPr8uCyDiEcLELhhZoHkFkvKWQP2Y1iviJ+tgiKFSwbMipJmOq/I
   hovLcLpcDIwxtiwJPsGtozGSuMwx/Se6MpI3omJT/z9a3fwV8gLxcbNiWw2UjB3N
   3/BPb7Jr4F7Fu+9G4nwZI4kK4LRJ4/zgcqb0Jq/2vhLIoEQ5TpHdn2KSqrY4nHH7
   Hmh74HaXrY7JHqUgj2xVwZQuW09AnjIpy7NQW8I3oNkRxf2YNqIM6pIgAHDDNbkS
   FeJVp+5EhxmUTDgOwGM3kZg4enFT13auoY8iCbt8PhO3STSpo+A2he1wlmodsBvr
   h42v9TpKJJW/2w0IB432RGbjCW0jiIJa5FO1jh3eH822vLnVs9VescBszHDjQRu3
   +fyxFIAc/0jYYTgIFfrPqEwXZC2FA3UfpqQE7KtjTv2gN64E0/hSuBTrH2NG9Pvt
   zlj04xtjMqiI3vULH9nTRcufSF/xO3POtty3zvEdBf/d+v9DKn7q6qaAB4rW6j4r
   O9+WwiSowZ2lYv7vQnHT90bVKn0jHGGcHgfAlSNg7ecWBL8k+iL/U7zeAUAl9FNT
   44X1eNYZZcy8MqjGiQSTIHFAQd3v93gflbAQVHC/6KDnn1OxbrhOgft2VgjjqggQ
   W/jFfO/TDmaLvS3Igxsgud2H3byHOSLh2nd2bHm8yXXVUMJ3otg2/x8KnDS4Du/b
   ORJSskflf0zUkfiDILHGm48bwYsvDxXc7rnIvqI7B4rrH2DzcG5Ve/kYUtOikvXu
   hx01JbV2xQQfIvGWjpZWoG9GticpP3ZyRzMDSuPudiLBjVhQ0lutNvzuLclqGTVX
   LshLtF1oF5nmFQTi/GExi4oUZ4ckD2V5om/fcG9Wdnn/IFVAqO0DM0SzCw1kdKbP
   X97j9nOmgrrT9lnI4O5cQckjvfvGrbbM4oRNW7aInwA/SpYaXt+BnvkEt/BXTuQx lg/
   g7asWzUSEqKoxM2wC5E8FqiupKMqKrdZP8wRpOrv2KikVMg9d9PM4GrCVcjKI
   Xv1fyZW/H3eugnrr8/Po9J8RZkkqBUTVMXPAIju63yuqcMvU1AQRyiMo8BcdFRo4
   hufRFe2K7APSGybKE5LgVALUGZ70GUl85bYVjnLslcHeZdySnXo82H+HNTM8UqKc
   9BXGAJS+1Zb12fgTemZO/5PBfcgS+axLiRwUCSZDA/Hlev86OgHsjnRt3JjuNfX0
   L3bHZ+9DTzRADJnm7Lyj7ylKlUuvoH+7WaPMmBiduXuuQ/k1iLOMq0TZa/T31UtP
   izx6M9+1+SirJS0Dzgy5XDSCfc/I0u/lUtf1kynwSmAlLSG7YAbt1Ua/2k+5CW31
   UZZdaw2HSVGFnT2PwSlXRnlq+FEdXVbzJA39oS/CNEOM/qdnRL8cU4rU40Xn0sm+
   egIjYlKjKml1Dg+hVFuYvk7tY+ZUEk8mOuTFlsB1f125X80L5EnhYOeTHpn+muEt
   GyoMCpdBwxV5AoQi/5DhzPqO8IPUwsjXHRKONcP2s6ibUC58HqkCmocTRJApAu9K
   GZQnmcXwrSvV09AMhND3oNTIRup+pi1TSfETZGyYqouPJNgf5/3rzICwrxBfBz3c
   +CDn0ELMhADS9lBQ2iLENSTYE9jCaoX+RFKQJIkJWd1GMHs6xoyNxSf9udsShyyS
   aXPor4zprUON9lhzh4wcTZT9gsgkb1TesKRzkUe4/uzeDcAr2K3QgRq4H5a2F4Vt
   ZJ13x+9sSrnAqPF8YMmwHEmky6Ny/m37lGKAbupMfW/vopEyQf4G9F7bqgiTJVPX
   MmsvnYL0UF4LcQ5t22Vw4B1DVkrJ0itoQxFJHl4k1KFIv1k4XYVviKgmLHaNWhQo
   N3rVN8sRQ+adm39D4ckB+btqNbD10hUxDiuJcouslXcYl8AoLJ82PdfItIbECKdA
   zbF8HAKTMHHsexPls0BrDOrgH/Y/tvp2Gmgup56OwQNq2Hpnxnh2yNV64yk1A9Sm
   4UhGenN0vIo2Ro3+RKo1pAEf6MJG7ZeLGb4xFiDfSweKQaIEtDuR86rw/AYGXlfu
   OXJaNWeMDNmu/WltbjSWflpIpIKYFF8sdhkHfQpTX/XUaVZR93rS4ChtORKha+UL
   /56l2DFTItDoOJ4R05PAgq6LEGz5Nr/dCRoAcpsXyj28BS3iD215llxthHMWdB6l
   LUBX4IjSn+ZG8EeDCRy3E5ZBAPQ02KEMrNz1a2sovc02ppE86an+r7jSOflGjBDb
   566t0abOS5okOYEl2kDLtB2I1aQhEFUFpf/J2yWrxC3pZIAlZ+dvJ3RgUFAoQJ33
   8YUXcYGhZjm9khMkk5xyIekDtVBTztpBohsfc1OhfcWRihWRQZvAdO+lL0Rwm2sP
   gU77uKPioNYqzhUTyN4SzeJLt7Itp8FkmTYQ6Ii2j03yXu00c4gc5xMq50ldyNl5
   +0HSsSFlBTsD11gZ55PxRhvwNh3cRqYqiFsWdIDSzXG/ows+glmUiYaDi6CVnTg+
   c8qIzz6x+YhSBjPeqdD2eJr+T4ZmQzwP0UyIPz3Bta8sJziWKgLGs57RshIRxBS0

Ounsworth, et al.        Expires 11 August 2024                [Page 39]
Internet-Draft              PQ Composite Sigs              February 2024

   XvEGDlRG4gbr9tLTc5BWmrpUEXVvm6ErXFvDXn0pChv/QxYBp8kfO1uGf4nhxMiL
   2uBQWpr0ZutMa25QMiNGeyCOJey00rQ8y/4IRatOkVa4mmrvpmOZWqvKwBpkW1pF
   MTXinhjlR8YxhWAd7mgJB3n9KO7UjDJAkko4g0JTZOUXkMYCTJLk0RO2ETdWw17/
   9Ljz44O832tzNLTAg/cE1xYSJNOBwy1VeVgLB9BCujcrXYKp7IxgsH2W9vhcP0Mr
   QXoudA1AR6SBt3WuHQa8XGkUzIkD8z8y/BWg2rHBNGSCTPYpSr8YKtNq8hByxgCx
   TfHmQ9a+s6uNyhZUc2sp1gVqiduzIlMytnZPKAvnR+XM+vsRlwISyfjIqaDvZPXS
   4PK3t3TgLn7CmmOQy7rpbqO3TuiBe6xvcW5W4iM1qcn7t+5Cb1HcJN+kM7EDRrMa
   RC5OuS2lmJ2nm1e8CsiGmp4i8rLjQhtHSHAInMUTS4KV/Y4nOaYvgc5SSNSLj5Pg
   6jhue6TZ1O5U4N6KdPDFLJTcnlB+cmmoPAzbCxu7mR878Y3Kn32qnKkvr+hVZm1d
   rQxdO45/Gu+eBZ5/0DYLDXHX8PTr+MO08vquZ09sINi7IGwLszem+hYlhLhxzMPy
   OWiC+XC49hlKYx7ZVBy+ChB6cWdieY2wYHqqU1hMtU7j0Ed+Ja8lQEprnv5JpNpY
   moesDSuUV5RmvLonQZu0U/G+UpCDLK6LC8fSqQuZSqG85/LbStTUstGbjA8PcLZ3
   j1G0ThoxLsOTWvytVYDuvHQE4/+67HL8+wvmbkDka7fPF/jmZqMsPnxA1gKHA54c
   yOqySByzwdKfq0ifIkimaRWWHiMvgg9LehPfESUB5ZfASZS8iYjE9MQMnpTjM6wi
   Wsh8Q9NWi8OiyznXRW4iETKuJZ4uR2uJ6FpnTtgvNMctwI7JFBCubGw/ChZfddCV
   B8Ghr2/4Awqlvp9dJkWvfnAdLUVY6OTmXkogdNQZGoLu2n/m0b9ovHAWtmaBlclt
   8RRRYSJB8y4B2lPkS2hsCQ3tKsSrcCmM+XP2KQLB/paHTDVdhPz8x7TWPrIND4o2
   5TeiFTvsoi5MSbKSiI39CNfrPIXM4c90JC0Xne3VNp7yA6biUH4K2iskuq2sJai8
   lqOuvzw7XXd7Z4MOdMJwzWYpNIc/7rA3OqOyDeSfYWu1ztL2UJbjG/UeZflukSw9
   p0XeJpSlapv2H6tEfDyqCIfH+7i1ZNZGzeKa5H6bKJL6ka5YuYeFERu1gjb6eG4P
   4tSMfwhBIx+ei0Y/N3YVQdDull6K62TAAoUEoTIcJxIHklEmgeWru8UQDPvX1rxf
   XJo7t4V0k09c79KMMqEoKd+jh3Mth88GV8QO2FrUQ24TFwR5MHcCAQEEIOu1IEuD
   uM16fyp4k0FSfEP+H1ka3o07lfZmk56nHuiloAoGCCqGSM49AwEHoUQDQgAEkSZv
   SVDhZlBXhAkaTBxlrRt624URpHlDVrd0njnPiR92XNs+NTjjvAImETMhEPbQ/KPs
   pugi6gkrLFhcmy/OiA== -----END PRIVATE KEY-----

A.1.3.  MLDSA44-ECDSA-P256 Self-Signed X509 Certificate

   -----BEGIN CERTIFICATE-----
   MIIP9zCCBhigAwIBAgIUUFXlmVgQD4nQC6Tzr4OlRKxVYYQwDQYLYIZIAYb6a1AI
   AQQwEjEQMA4GA1UEAwwHb3FzdGVzdDAeFw0yMzEyMTkxOTIzNDBaFw0yNDEyMTgx
   OTIzNDBaMBIxEDAOBgNVBAMMB29xc3Rlc3QwggV/MA0GC2CGSAGG+mtQCAEEA4IF
   bAAwggVnBIIFIAD0NNihDKzc9WtrKL3NNqaRPOmp/q+40jn5RowQ2+eurdGmzkua
   JDmBJdpAy7QdiNWkIRBVBaX/ydslq8Qt6WSAJWfnbyd0YFBQKECd9/GFF3GBoWY5
   vZITJJOcciHpA7VQU87aQaIbH3NToX3FkYoVkUGbwHTvpS9EcJtrD4FO+7ij4qDW
   Ks4VE8jeEs3iS7eyLafBZJk2EOiIto9N8l7tNHOIHOcTKudJXcjZeftB0rEhZQU7
   A9dYGeeT8UYb8DYd3EamKohbFnSA0s1xv6MLPoJZlImGg4uglZ04PnPKiM8+sfmI
   UgYz3qnQ9nia/k+GZkM8D9FMiD89wbWvLCc4lioCxrOe0bISEcQUtF7xBg5URuIG 6/
   bS03OQVpq6VBF1b5uhK1xbw159KQob/0MWAafJHztbhn+J4cTIi9rgUFqa9Gbr
   TGtuUDIjRnsgjiXstNK0PMv+CEWrTpFWuJpq76ZjmVqrysAaZFtaRTE14p4Y5UfG
   MYVgHe5oCQd5/Sju1IwyQJJKOINCU2TlF5DGAkyS5NETthE3VsNe//S48+ODvN9r
   czS0wIP3BNcWEiTTgcMtVXlYCwfQQro3K12CqeyMYLB9lvb4XD9DK0F6LnQNQEek
   gbd1rh0GvFxpFMyJA/M/MvwVoNqxwTRkgkz2KUq/GCrTavIQcsYAsU3x5kPWvrOr
   jcoWVHNrKdYFaonbsyJTMrZ2TygL50flzPr7EZcCEsn4yKmg72T10uDyt7d04C5+
   wppjkMu66W6jt07ogXusb3FuVuIjNanJ+7fuQm9R3CTfpDOxA0azGkQuTrktpZid
   p5tXvArIhpqeIvKy40IbR0hwCJzFE0uClf2OJzmmL4HOUkjUi4+T4Oo4bnuk2dTu
   VODeinTwxSyU3J5QfnJpqDwM2wsbu5kfO/GNyp99qpypL6/oVWZtXa0MXTuOfxrv
   ngWef9A2Cw1x1/D06/jDtPL6rmdPbCDYuyBsC7M3pvoWJYS4cczD8jlogvlwuPYZ

Ounsworth, et al.        Expires 11 August 2024                [Page 40]
Internet-Draft              PQ Composite Sigs              February 2024

   SmMe2VQcvgoQenFnYnmNsGB6qlNYTLVO49BHfiWvJUBKa57+SaTaWJqHrA0rlFeU
   Zry6J0GbtFPxvlKQgyyuiwvH0qkLmUqhvOfy20rU1LLRm4wPD3C2d49RtE4aMS7D
   k1r8rVWA7rx0BOP/uuxy/PsL5m5A5Gu3zxf45majLD58QNYChwOeHMjqskgcs8HS
   n6tInyJIpmkVlh4jL4IPS3oT3xElAeWXwEmUvImIxPTEDJ6U4zOsIlrIfEPTVovD
   oss510VuIhEyriWeLkdriehaZ07YLzTHLcCOyRQQrmxsPwoWX3XQlQfBoa9v+AMK
   pb6fXSZFr35wHS1FWOjk5l5KIHTUGRqC7tp/5tG/aLxwFrZmgZXJbfEUUWEiQfMu
   AdpT5EtobAkN7SrEq3ApjPlz9ikCwf6Wh0w1XYT8/Me01j6yDQ+KNuU3ohU77KIu
   TEmykoiN/QjX6zyFzOHPdCQtF53t1Tae8gOm4lB+CtorJLqtrCWovJajrr88O113
   e2eDDnTCcM1mKTSHP+6wNzqjsg3kn2Frtc7S9lCW4xv1HmX5bpEsPadF3iaUpWqb
   9h+rRHw8qgiHx/u4tWTWRs3imuR+myiS+pGuWLmHhREbtYI2+nhuD+LUjH8IQSMf
   notGPzd2FUHQ7pZeiutkwAKFBKEyHCcSB5JRJoHlq7vFEAz719a8X1yaO7eFdJNP XO/
   SjDKhKCnfo4dzLYfPBlfEDtha1ENuExcEQQSRJm9JUOFmUFeECRpMHGWtG3rb
   hRGkeUNWt3SeOc+JH3Zc2z41OOO8AiYRMyEQ9tD8o+ym6CLqCSssWFybL86IoyEw
   HzAdBgNVHQ4EFgQUhcS/LyOtUFUrF+FJxoSERDrtcXQwDQYLYIZIAYb6a1AIAQQD
   ggnIADCCCcMDggl1AMX5C7IKC8y1AX2ANKQWQWycGovPVFkiv+qctjfWt0jaErT1
   XnR80WfR3XX1rIIZ6jG1ulkLdUGx2tFcu8Qeb0umxvYWYC6htzvGw+bjxcRm0DES
   d+bkwWIBzdK23b9WqBNLqvzNccgAPXvP6PwrLxCz+sEnWcCDDqgeHphbYf3vzedR
   uMvIsRYqGO09qt/tWu3JG5nwGiX+6t/YFgE5knii3sXdlHWZQ+nSAnekc2sgtCV4
   cA0Lg01kBi+AZGelNuVK3EtgKJ0VTP5DQn5D1dLn/RGbqlMngsNs4xUlIFyvnJ8l
   UZp6+VtfE2fWRDW4yQ4ob4Ed2KEWMtWa1GaFtIfUjDGyqYLwMOJUjE5fmhLxioqS pk/
   cST+AaK5iNZzlDRC220hGOIOsiyf7UQKw+bFTENVqyXrYgTmns9zg+mc5KeZj
   hE6IMFMtkQyJnRVWUL1eRviu1JL90Tcmvw1gvKdGFPDe4A7FWx0tDyAVY1wVd/sd
   Lylt5QvBaIqgrtc4rDeS5pHGNdgy3zsi1YYpet5pyfQwZCtmqRggBDTCmH7nTfrV
   rXDbsUm0euCK+YMwbi6DbpDV5mQrUqDX1MGk0RFDzlKRtTWrvxhhCVLgV/l/ZVgi
   bEuFQg6POuCn0IA2jFJyza2TK8p82RAZbcvtM8XdJVhM0okKIRyi/8lw2kbX/p5L
   l7vMmD0xPOezi2FQMxev9460Seb6FtOlvFptsLoTw4grUTQHl9brftzPAhVmUBBY
   wGffj4rl70m5fHZzL3YXpxkr4jlqG8tKJc9370Emh9xXV4KMuo2Us+vnRUN+9QeX
   tvDaG70jX3+760hTl4qDqMWfXY1nXhCeHWGCCmn2Yq8ULdYtIjZIMcHCXAvy68jv
   7vkM5xQzDdgRMXop1Pj3aZLRI0boQ4OuR16sxmmpPUIGanfmDbvrdBBNucNcDYDy
   BU5QpuCEZ8yHs94TSWLO9KP9i+IlL35TGG2zIbwbhI15HKOWzZU9ncoC2BOF6zhw
   u60tdBvy5O8pinjMBQKVDPMbrIKjfCUK4f0YQ1/Bk4ssPogQNk3sRYJqWZ0MvElk
   q3674KpN0OVB/kJFdAB1Uqpk4ARnZ7SsO8B/6u7rRNdthHSRsu4Fhe31EE0VUoUh
   x3GQM/7gTk9El2jDBlZxwEpPEtTqARgp0ad6EJnMcIW0PEKr56HUFqfxKVjJWagV
   fhtKzskghDS5lRpDY3vPq1Cq8qSl1ojcij5zm0BxI/cJIjh41RnW5D3kjt3r3Fzo
   an4pPZkXzZm9/iGAoFAy7BThfg4PXVq2BMCNZPdASQjIiPEWklylW9iX+g/12iCV
   Gy7F/JOG0SOH5/2d12gRDDiwn6k1KDwKPDa9htaPBGaNNXLIpr/Wb68GtTkNs1TG
   e7Sf9aigE9BtTGgeniJ1Gn/aV9LGQFqRRQsnqB98bMKABZi0RjZ9yebLj6lwSFXU
   pTdq/YNnBGwAmOm/HXzksOHJOjh20iDPhLjfMB6Fi+XkWVZ0TWzV2ZwOtM56tY+a
   QoauIHR30QYtGZMI38HpVeLSj+iNUEKbE6kY5c69Bjalwa1pCqb9aP5VnKOkMA+3
   qQ6c2ggxgudchBSXK/BZw4n4l7IvHu9wEMvsVh9mt/SAGkK53k28RDkNtX7+jfJR 5/
   q7Qp626ts6Sc8rG6BmZoJIJnUXjeOcqlAoDXYRGuxCw6Jm91DL9j4t3m0bQhub
   hUt9diovZ/hw2hOng+xT/oSVvauPHFpxSUu3NVcncjIljD+0U3y6cn9VnE7oFNSU
   G3HadJlVTZncMrWYo954Wt3cwNA1Opcq+5Tlu76laOWJ/4eRcvOwmxrKZHUW8Tmu
   qPPsAOTagFmMxOBkLzIaq39SZxHkw61SdJxXlKAtmZYnNvwT2NGpauF6P6G0FHAO
   Ucfu/DDpAdKZ/GGpVxC2ttfDCzO3iya139M5fbg32RpI0q18swYFhUAqszdAPihc
   4lpCGw9JdrO8i1JhB+IORJegJRPs08DYUNv7nzSbOi03iYY/QHtGw7ka5AGLfkY8
   ajiLzlXwI2xMB6XBqUsAH2VxTRPJ3N/kGTzFvhiGBOYx8+jO/FqEa5E8+cafU+kW m9/
   RCpumizdVzrH5MiFh0NI9iUegdHs+hDW6GDpA3VpGi5MmmeE6Ck8UyOzDNnY9

Ounsworth, et al.        Expires 11 August 2024                [Page 41]
Internet-Draft              PQ Composite Sigs              February 2024

   t53b9QxuwiYgDdw9z0KpYtGt7tRGd0qDARky8uRQZ6HFS4sNXlUFiAG9ko62CFTD
   WCALXmhtqvPcjfiDDL6qMRLevi31YnhAua/Kb0Mhja+KDM/UwRIVaB3WHhulzn7U
   pFQG0vVnwb0+VWhKsrWVJaJw1Eg9tmy5HJBsnmne+A2qG1ehBFCWJtV2MvyK8H9G
   BxaJbq7PpPlte9ID53apvkhyvag843Ar/pOiTc8J6xncJa6w+mVViUi47/ZkZCkU
   lipgCv1ZqZhQG/CERDxACulTa+0S8nO+g5CBpW6cuQVa052nRV/qhVUkQ9yzm0Pw
   vUOftuX9b/W5QXas/ysUwPAeGd2XPBmK5lByyYaW14d6GBJGmyNYv7vjrbL1xeJr
   smjnaRPipOvwEh6IE1OdsrlqfjG27+aXgfZWbCW28DAeTK7ilLB3ubyvPcoTrmX3
   DxM7OKF+MT6PAtqSM92l76PfECvyUfv/Rf+cSF/CleTIM7xfe7IOwgxPPdMEw2rH
   uS/CeJMsdBW8DwQyRcgK5h17zyaRqztATSAQK3MQ/B2f7MoXf3Z9oLpgqyBT7aiL
   /XdYk8UipIyuRK4Y9Cj2UNc3DgYhzFPQY9SO3gO483uC8Tqc2IyoKaGsNS1rWY/W
   rleqqraEmlMN9NToAa4ftZvqdWQLqH7sJcCQ1EzfbrkyrTKgjRmvRyA4n3t9Yjry
   k+ZI3xkgrUj90xfETb+Vx/JrbegfbfZ70w7yTRnSDB01cbQP4rjI2uGZVRCxXJal
   XRtaOUey+c0ZeIRp2aPrYP2DesL0Fmlc/ooSRgC8f+QHJU/7Js+WYuK8MVK/vil9
   J9FgwoCJImfRzkA9KXYaix/f4XgvFLopb6kAszAff5Zmpcq72gwWv+nEE/3M78PO
   zs9k5+wt65W3h4zelAIUM5hfgmJj4vvq53AeZP42AhcSV+bgsPg2xGM0Im7WAQ0P
   IScqN1pepq7T9/0eMEhRdXiKj5ufub/Nztfc+Ao8RVVidXt8oMnv9vf8FxgfLkpj
   dn6Mjq7Y5OXz9AAAAAAAAAAAAAAAAAAAAAAAAAAOHy09A0gAMEUCIQDD13F6CblJ
   Ll2dp7GZtR5tyKObPtvUc1s16fP3g7xhvgIga8IVcv0k6DUIApPztCsP/UByrm8k
   1nbSe/5A4mF87n0= -----END CERTIFICATE-----

Appendix B.  Implementation Considerations

B.1.  FIPS certification

   One of the primary design goals of this specification is for the
   overall composite algorithm to be able to be considered FIPS-approved
   even when one of the component algorithms is not.

   Implementors seeking FIPS certification of a composite Signature
   algorithm where only one of the component algorithms has been FIPS-
   validated or FIPS-approved should credit the FIPS-validated component
   algorithm with full security strength, the non-FIPS-validated
   component algorith with zero security, and the overall composite
   should be considered full strength and thus FIPS-approved.

   The authors wish to note that this gives composite algorithms great
   future utility both for future cryptographic migrations as well as
   bridging across jurisdictions; for example defining composite
   algorithms which combine FIPS cryptography with cryptography from a
   different national standards body.

B.2.  Backwards Compatibility

   The term "backwards compatibility" is used here to mean something
   more specific; that existing systems as they are deployed today can
   interoperate with the upgraded systems of the future.  This draft
   explicitly does not provide backwards compatibility, only upgraded
   systems will understand the OIDs defined in this document.

Ounsworth, et al.        Expires 11 August 2024                [Page 42]
Internet-Draft              PQ Composite Sigs              February 2024

   If backwards compatibility is required, then additional mechanisms
   will be needed.  Migration and interoperability concerns need to be
   thought about in the context of various types of protocols that make
   use of X.509 and PKIX with relation to digital signature objects,
   from online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2
   [RFC7296], to non-negotiated asynchronous protocols such as S/MIME
   signed email [RFC8551], document signing such as in the context of
   the European eIDAS regulations [eIDAS2014], and publicly trusted code
   signing [codeSigningBRsv2.8], as well as myriad other standardized
   and proprietary protocols and applications that leverage CMS
   [RFC5652] signed structures.  Composite simplifies the protocol
   design work because it can be implemented as a signature algorithm
   that fits into existing systems.

B.2.1.  Parallel PKIs

   We present the term "Parallel PKI" to refer to the setup where a PKI
   end entity possesses two or more distinct public keys or certificates
   for the same identity (name), but containing keys for different
   cryptographic algorithms.  One could imagine a set of parallel PKIs
   where an existing PKI using legacy algorithms (RSA, ECC) is left
   operational during the post-quantum migration but is shadowed by one
   or more parallel PKIs using pure post quantum algorithms or composite
   algorithms (legacy and post-quantum).

   Equipped with a set of parallel public keys in this way, a client
   would have the flexibility to choose which public key(s) or
   certificate(s) to use in a given signature operation.

   For negotiated protocols, the client could choose which public key(s)
   or certificate(s) to use based on the negotiated algorithms, or could
   combine two of the public keys for example in a non-composite hybrid
   method such as [I-D.becker-guthrie-noncomposite-hybrid-auth] or
   [I-D.guthrie-ipsecme-ikev2-hybrid-auth].  Note that it is possible to
   use the signature algorithms defined in Section 6 as a way to carry
   the multiple signature values generated by one of the non-composite
   public mechanism in protocols where it is easier to support the
   composite signature algorithms than to implement such a mechanism in
   the protocol itself.  There is also nothing precluding a composite
   public key from being one of the components used within a non-
   composite authentication operation; this may lead to greater
   convenience in setting up parallel PKI hierarchies that need to
   service a range of clients implementing different styles of post-
   quantum migration strategies.

   For non-negotiated protocols, the details for obtaining backwards
   compatibility will vary by protocol, but for example in CMS
   [RFC5652], the inclusion of multiple SignerInfo objects is often

Ounsworth, et al.        Expires 11 August 2024                [Page 43]
Internet-Draft              PQ Composite Sigs              February 2024

   already treated as an OR relationship, so including one for each of
   the signer's parallel PKI public keys would, in many cases, have the
   desired effect of allowing the receiver to choose one they are
   compatible with and ignore the others, thus achieving full backwards
   compatibility.

B.2.2.  Hybrid Extensions (Keys and Signatures)

   The use of Composite Crypto provides the possibility to process
   multiple algorithms without changing the logic of applications, but
   updating the cryptographic libraries: one-time change across the
   whole system.  However, when it is not possible to upgrade the crypto
   engines/libraries, it is possible to leverage X.509 extensions to
   encode the additional keys and signatures.  When the custom
   extensions are not marked critical, although this approach provides
   the most backward-compatible approach where clients can simply ignore
   the post-quantum (or extra) keys and signatures, it also requires all
   applications to be updated for correctly processing multiple
   algorithms together.

Appendix C.  Intellectual Property Considerations

   The following IPR Disclosure relates to this draft:

   https://datatracker.ietf.org/ipr/3588/

Appendix D.  Contributors and Acknowledgements

   This document incorporates contributions and comments from a large
   group of experts.  The Editors would especially like to acknowledge
   the expertise and tireless dedication of the following people, who
   attended many long meetings and generated millions of bytes of
   electronic mail and VOIP traffic over the past year in pursuit of
   this document:

   Scott Fluhrer (Cisco Systems), Daniel Van Geest (ISARA), Britta Hale,
   Tim Hollebeek (Digicert), Panos Kampanakis (Cisco Systems), Richard
   Kisley (IBM), Serge Mister (Entrust), Francois Rousseau, Falko
   Strenzke and Felipe Ventura (Entrust)

   We are grateful to all, including any contributors who may have been
   inadvertently omitted from this list.

   This document borrows text from similar documents, including those
   referenced below.  Thanks go to the authors of those documents.
   "Copying always makes things easier and less error prone" -
   [RFC8411].

Ounsworth, et al.        Expires 11 August 2024                [Page 44]
Internet-Draft              PQ Composite Sigs              February 2024

D.1.  Making contributions

   Additional contributions to this draft are welcome.  Please see the
   working copy of this draft at, as well as open issues at:

   https://github.com/EntrustCorporation/draft-ounsworth-composite-sigs

Authors' Addresses

   Mike Ounsworth
   Entrust Limited
   2500 Solandt Road -- Suite 100
   Ottawa, Ontario  K2K 3G5
   Canada
   Email: mike.ounsworth@entrust.com

   John Gray
   Entrust Limited
   2500 Solandt Road -- Suite 100
   Ottawa, Ontario  K2K 3G5
   Canada
   Email: john.gray@entrust.com

   Massimiliano Pala
   CableLabs
   858 Coal Creek Circle
   Louisville, Colorado,  80027
   United States of America
   Email: director@openca.org

   Jan Klaussner
   D-Trust GmbH
   Kommandantenstr. 15
   10969 Berlin
   Germany
   Email: jan.klaussner@d-trust.net

Ounsworth, et al.        Expires 11 August 2024                [Page 45]