Exploiting Packet Replication and Elimination in Complex Tracks in 6TiSCH LLNs
draft-papadopoulos-6tisch-pre-reqs-00

Document Type Active Internet-Draft (individual)
Last updated 2017-07-03
Stream (None)
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
6TiSCH                                              G. Papadopoulos, Ed.
Internet-Draft                                              N. Montavont
Intended status: Informational                            IMT Atlantique
Expires: January 3, 2018                                      P. Thubert
                                                                   Cisco
                                                            July 2, 2017

   Exploiting Packet Replication and Elimination in Complex Tracks in
                              6TiSCH LLNs
                 draft-papadopoulos-6tisch-pre-reqs-00

Abstract

   6TiSCH Packet Replication and Elimination mechanism consists in
   duplicating data packets into several paths in the network to
   increase reliability and provide low jitter.  Over a wireless medium,
   this technique can take advantage of communication overhearing, when
   parallel transmissions over two adjacent paths are scheduled.  This
   document presents the concept and details the required changes to the
   current specifications that will be necessary to enable this.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 3, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Papadopoulos, et al.     Expires January 3, 2018                [Page 1]
Internet-Draft        Address Protection ND for LLN            July 2017

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Tracks  . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Tracks Overview . . . . . . . . . . . . . . . . . . . . .   3
     3.2.  Complex Tracks  . . . . . . . . . . . . . . . . . . . . .   3
   4.  Packet Replication and Elimination principles . . . . . . . .   3
     4.1.  Packet Replication  . . . . . . . . . . . . . . . . . . .   4
     4.2.  Packet Elimination  . . . . . . . . . . . . . . . . . . .   5
     4.3.  Promiscuous Overhearing . . . . . . . . . . . . . . . . .   5
   5.  Requirements  . . . . . . . . . . . . . . . . . . . . . . . .   6
     5.1.  Requirements Related to Alternative Parent Selection  . .   6
     5.2.  Requirements Related to Promiscuous Overhearing . . . . .   6
     5.3.  Requirements Related to Cells without ACKs  . . . . . . .   7
     5.4.  Requirements Related to Packet Elimination  . . . . . . .   7
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     8.1.  Informative references  . . . . . . . . . . . . . . . . .   8
     8.2.  Other Informative References  . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

   Some applications (such as Wireless Industrial IoT) require robust
   communications framework that guarantees data packet delivery in a
   given delay.  For example, a periodic process may need to be repeated
   identically every time.  To reach this ambition, the network must not
   only be reliable but also deterministic.

   A deterministic network ensures that the transported data packet will
   be carried out in a pre-defined and in a tight window of time,
   whatever the quality of the wireless links and the network
   congestion.  The goal of such network is to exhibit ultra-low jitter
   performance, i.e., close to 0.  IEEE std. 802.15.4 [IEEE802154-2015]
Show full document text