Skip to main content

Generating Password-based Keys Using the GOST Algorithms
draft-pkcs5-gost-03

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 9337.
Author Karelina Ekaterina
Last updated 2022-03-21 (Latest revision 2022-01-28)
RFC stream Independent Submission
Formats
IETF conflict review conflict-review-pkcs5-gost, conflict-review-pkcs5-gost, conflict-review-pkcs5-gost, conflict-review-pkcs5-gost, conflict-review-pkcs5-gost, conflict-review-pkcs5-gost
Stream ISE state Response to Review Needed
Consensus boilerplate Unknown
Document shepherd Eliot Lear
IESG IESG state Became RFC 9337 (Informational)
Telechat date (None)
Responsible AD (None)
Send notices to rfc-ise@rfc-editor.org
draft-pkcs5-gost-03
Network Working Group                                 E.K. Karelina, Ed.
Internet-Draft                                                  InfoTeCS
Intended status: Informational                             21 March 2022
Expires: 22 September 2022

        Generating Password-based Keys Using the GOST Algorithms
                          draft-pkcs5-gost-03

Abstract

   This document specifies how to use the Password-Based Cryptography
   Specification version 2.1 (PKCS #5) defined in [RFC8018] to generate
   password- based keys in conjunction with the Russian national
   standard GOST algorithms.

   PKCS #5 applies a pseudorandom function (a cryptographic hash,
   cipher, or HMAC) to the input password along with a salt value and
   repeats the process many times to produce a derived key.

   This specification is developed outside the IETF and is published to
   facilitate interoperable implementations that wish to support the
   GOST algorithms.  This document does not imply IETF endorsement of
   the cryptographic algorithms used in this document.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 22 September 2022.

Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Karelina                Expires 22 September 2022               [Page 1]
Internet-Draft          GOST Password-based Keys              March 2022

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Conventions Used in This Document . . . . . . . . . . . . . .   3
   3.  Basic Terms and Definitions . . . . . . . . . . . . . . . . .   3
   4.  Algorithm For Generating a Key From a Password  . . . . . . .   4
   5.  Data Encryption . . . . . . . . . . . . . . . . . . . . . . .   5
     5.1.  GOST R 34.12-2015 Data Encryption . . . . . . . . . . . .   5
       5.1.1.  Encryption  . . . . . . . . . . . . . . . . . . . . .   5
       5.1.2.  Decryption  . . . . . . . . . . . . . . . . . . . . .   6
   6.  Message Authentication  . . . . . . . . . . . . . . . . . . .   8
     6.1.  MAC Generation  . . . . . . . . . . . . . . . . . . . . .   8
     6.2.  MAC Verification  . . . . . . . . . . . . . . . . . . . .   8
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  11
   Appendix A.  Identifiers and Parameters . . . . . . . . . . . . .  11
     A.1.  PBKDF2  . . . . . . . . . . . . . . . . . . . . . . . . .  11
     A.2.  PBES2 . . . . . . . . . . . . . . . . . . . . . . . . . .  12
     A.3.  Identifier and Parameters of Gost34.12-2015 Encryption
           Scheme  . . . . . . . . . . . . . . . . . . . . . . . . .  12
     A.4.  PBMAC1  . . . . . . . . . . . . . . . . . . . . . . . . .  14
   Appendix B.  PBKDF2 HMAC_GOSTR3411 Test Vectors . . . . . . . . .  15
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   This document supplements [RFC8018].  It provides a specification of
   usage of GOST R 34.12-2015 encryption algorithms and the GOST R
   34.11-2012 hashing functions in the information systems [GostPkcs5].
   The methods described in this document are designed to generate key
   information using the user's password and protect information using
   the generated keys.

Karelina                Expires 22 September 2022               [Page 2]
Internet-Draft          GOST Password-based Keys              March 2022

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Basic Terms and Definitions

   Throughout this document, the following notations are used:

    +==========+======================================================+
    +==========+======================================================+
    | P        | a password encoded as a Unicode UTF-8 string         |
    +----------+------------------------------------------------------+
    | S        | a random initializing value                          |
    +----------+------------------------------------------------------+
    | c        | a number of iterations of algorithm, a positive      |
    |          | integer                                              |
    +----------+------------------------------------------------------+
    | dkLen    | a length in octets of derived key, a positive        |
    |          | integer                                              |
    +----------+------------------------------------------------------+
    | DK       | a derived key of length dkLen                        |
    +----------+------------------------------------------------------+
    | B_n      | a set of all octet strings of length n, n >= 0; if n |
    |          | = 0, then the set B_n consists of an empty string of |
    |          | length 0                                             |
    +----------+------------------------------------------------------+
    | A||C     | a concatenation of two octet strings A, C, i.e., a   |
    |          | vector from B_(|A|+|C|), where the left subvector    |
    |          | from B_(|A|) is equal to the vector A and the right  |
    |          | subvector from B_(|C|) is equal to the vector C: A = |
    |          | (a_(n_1),...,a_1) in B_(n_1) and C = (c_(n_2),...,   |
    |          | c_1) in B_(n_2), res = (a_(n_1),...,a_1,c_(n_2),..., |
    |          | c_1) in B_(n_1 + n_2);                               |
    +----------+------------------------------------------------------+
    | \xor     | a bit-wise exclusive-or of two octet strings of the  |
    |          | same length                                          |
    +----------+------------------------------------------------------+
    | MSB^n_r: | a truncating of an octet string to size r by         |
    | B_n ->   | removing the least significant n-r octets:           |
    | B_r      | MSB^n_r(a_n,...,a_(n-r+1),a_(n-r),...,a_1)           |
    |          | =(a_n,...,a_(n-r+1));                                |
    +----------+------------------------------------------------------+
    | LSB^n_r: | a truncating of a octet string to size r by removing |
    | B_n ->   | the most significant n-r octets:                     |

Karelina                Expires 22 September 2022               [Page 3]
Internet-Draft          GOST Password-based Keys              March 2022

    | B_r      | LSB^n_r(a_n,...,a_(n-r+1),a_(n-r),...,a_1)           |
    |          | =(a_r,...,a_1)                                       |
    +----------+------------------------------------------------------+
    | Int(i)   | a four-octet encoding of the integer i =< 2^32:      |
    |          | (i_1, i_2, i_3, i_4) in B_4, i = i_1 + 2^8 * i_2 +   |
    |          | 2^16 * i_3 + 2^24 * i_4                              |
    +----------+------------------------------------------------------+
    | b[i, j]  | a substring extraction operator: extracts octets i   |
    |          | through j, 0 =< i =< j.                              |
    +----------+------------------------------------------------------+
    | CEIL(x)  | the smallest integer greater than, or equal to, x    |
    +----------+------------------------------------------------------+

                                  Table 1

   This document uses the following abbreviations and symbols:

     +================+==============================================+
     +================+==============================================+
     | HMAC_GOSTR3411 | Hashed-based Message Authentication Code.  A |
     |                | function for calculating a message           |
     |                | authentication code, based on the GOST R     |
     |                | 34.11-2012 hash function ([RFC6986]) with    |
     |                | 512-bit output in accordance with [RFC2104]. |
     +----------------+----------------------------------------------+

                                  Table 2

4.  Algorithm For Generating a Key From a Password

   The DK key is calculated by means of a key derivation function
   PBKDF2(P, S, c, dkLen) [RFC8018], section 5.2 using the
   HMAC_GOSTR3411 function as the PRF pseudo-random function:

      DK = PBKDF2(P,S,c,dkLen).

   The PBKDF2 function is defined as the following algorithm:

   1.  If dkLen > (2^32 - 1) * 64, output "derived key too long" and
       stop.

   2.  Calculate n = CEIL(dkLen / 64).

   3.  Calculate a set of values for each i from 1 to n:

          U_1(i) = HMAC_GOSTR3411 (P, S || INT (i))

          U_2(i) = HMAC_GOSTR3411 (P, U_1(i))

Karelina                Expires 22 September 2022               [Page 4]
Internet-Draft          GOST Password-based Keys              March 2022

          ...

          U_c(i) = HMAC_GOSTR3411 (P, U_{c-1}(i))

          T(i) = U_1(i) \xor U_2(i) \xor ... \xor U_c(i)

   4.  Concatenate the octet strings T(i) and extract the first dkLen
       octets to produce a derived key DK:

          DK = MSB^{n * 64}_dkLen(T(1)||T(2)||...||T(n))

5.  Data Encryption

5.1.  GOST R 34.12-2015 Data Encryption

   Data encryption using the DK key is carried out in accordance with
   the PBES2 scheme (see [RFC8018], section 6.2) using GOST R 34.12-2015
   in CTR_ACPKM mode (see [RFC8645]).

5.1.1.  Encryption

   The encryption process for PBES2 consists of the following steps:

   1.  Select the random value S of length from 8 to 32 octets.

   2.  Select the iteration count c depending on the conditions of use.
       The minimum allowable value for the parameter is 1000.

   3.  Set the value dkLen = 32.

   4.  Apply the key derivation function to the password P, the random
       value S and the iteration count c to produce a derived key DK of
       length dkLen octets in accordance with the algorithm from
       Section 4.  Generate the sequence T(1) and truncate it to 32
       octets, i.e.,

          DK = PBKDF2(P,S,c,32) = MSB^64_32(T(1)).

   5.  Generate the random value ukm of size n, where n takes a value of
       12 or 16 octets, depending on the selected encryption algorithm:

          GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

          GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

   6.  Set the value S' = ukm[1..n-8]

Karelina                Expires 22 September 2022               [Page 5]
Internet-Draft          GOST Password-based Keys              March 2022

   7.  For id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-
       kuznyechik-ctracpkm algorithms (see Appendix A.3) encrypt the
       message M with GOST R 34.12-2015 algorithm with the derived key
       DK and the random value S' to produce a ciphertext C.

   8.  For id-gostr3412-2015-magma-ctracpkm-omac and id-gostr3412-2015-
       kuznyechik-ctracpkm-omac algorithms (see Appendix A.3) encrypt
       the message M with GOST R 34.12-2015 algorithm with the derived
       key DK and the ukm in accordance with the following steps:

          - Generate two keys from the derived key DK using the
          KDF_TREE_GOSTR3411_2012_256 algorithm (see [RFC7836]):

             encryption key K(1)

             MAC key K(2).

          Input parameters for the KDF_TREE_GOSTR3411_2012_256 algorithm
          take the folowing values:

             K_in = DK

             label = "kdf tree" (8 octets)

             seed = ukm[n-7..n]

             R = 1

          The input string label above is encoded using ASCII.

          - Compute MAC for the message M using the K(2) key.  Append
          the computed MAC value to the message M: M||MAC.

          - Encrypt the resulting octet string with MAC with GOST R
          34.12-2015 algorithm with the derived key K(1) and the random
          value S' to produce a ciphertext C.

   9.  Serialize the parameters S, c, ukm as algorithm parameters in
       accordance with Appendix A.

5.1.2.  Decryption

   The decryption process for PBES2 consists of the following steps:

   1.  Set the value dkLen = 32.

Karelina                Expires 22 September 2022               [Page 6]
Internet-Draft          GOST Password-based Keys              March 2022

   2.  Apply the key derivation function PBKDF2 to the password P, the
       random value S and the iteration count c to produce a derived key
       DK of length dkLen octets in accordance with the algorithm from
       Section 4.  Generate the sequence T(1) and truncate it to 32
       octets, i.e., DK = PBKFD2(P,S,c,32) = MSB^64_32(T(1)).

   3.  Set the value S' = ukm[1..n-8], where n is the size of ukm in
       octets.

   4.  For id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-
       kuznyechik-ctracpkm algorithms (see Appendix A.3) decrypt the
       ciphertext C with GOST R 34.12-2015 algorithm with the derived
       key DK and the random value S' to produce the message M.

   5.  For id-gostr3412-2015-magma-ctracpkm-omac and id-gostr3412-2015-
       kuznyechik-ctracpkm-omac algorithms (see Appendix A.3) decrypt
       the ciphertext C with GOST R 34.12-2015 algorithm with the
       derived key DK and the ukm in accordance with the following
       steps:

          - Generate two keys from the derived key DK using the
          KDF_TREE_GOSTR3411_2012_256 algorithm:

             encryption key K(1)

             MAC key K(2).

          Input parameters for the KDF_TREE_GOSTR3411_2012_256 algorithm
          take the folowing values:

             K_in = DK

             label = "kdf tree" (8 octets)

             seed = ukm[n-7..n]

             R = 1

          The input string label above is encoded using ASCII.

          - Decrypt the ciphertext C with GOST R 34.12-2015 algorithm
          with the derived key K(1) and the random value S' to produce
          the plaintext.  The last k octets of the text are the message
          authentication code MAC', where k depends on the selected
          encryption algorithm.

          - Compute MAC for the text[1..m - k] using the K(2) key, where
          m is the size of text.

Karelina                Expires 22 September 2022               [Page 7]
Internet-Draft          GOST Password-based Keys              March 2022

          - Compare the original message authentication code MAC and the
          receiving message authentication code MAC'.  If the sizes or
          values do not match, the message is distorted.

6.  Message Authentication

   PBMAC1 scheme is used for message authentication (see [RFC8018],
   section 7.1).  This scheme bases on the HMAC_GOSTR3411 function.

6.1.  MAC Generation

   The MAC generation operation for PBMAC1 consists of the following
   steps:

   1.  Select the random value S of length from 8 to 32 octets.

   2.  Select the iteration count c depending on the conditions of use.
       The minimum allowable value for the parameter is 1000.

   3.  Set the dkLen to at least 32 octets.  It depends on previous
       parameter values.

   4.  Apply the key derivation function to the password P, the random
       value S and the iteration count c to generate a sequence K of
       length dkLen octets in accordance with the algorithm from
       Section 4.

   5.  Truncate the sequence K to 32 octets to get the derived key DK,
       i.e., DK = LSB^dkLen_32(K).

   6.  Process the message M with the underlying message authentication
       scheme with the derived key DK to generate a message
       authentication code T.

   7.  Save the parameters S, c, ukm as algorithm parameters in
       accordance with Appendix A.

6.2.  MAC Verification

   The MAC verification operation for PBMAC1 consists of the following
   steps:

   1.  Set the dkLen to at least 32 octets.  It depends on previous
       parameter values.

Karelina                Expires 22 September 2022               [Page 8]
Internet-Draft          GOST Password-based Keys              March 2022

   2.  Apply the key derivation function to the password P, the random
       value S and the iteration count c to generate a sequence K of
       length dkLen octets in accordance with the algorithm from
       Section 4.

   3.  Truncate the sequence K to 32 octets to get the derived key DK,
       i.e., DK = LSB^dkLen_32(K).

   4.  Process the message M with the underlying message authentication
       scheme with the derived key DK to generate a message
       authentication code MAC'.

   5.  Compare the original message authentication code MAC and the
       receiving message authentication code MAC'.  If the sizes or
       values do not match, the message is distorted.

7.  Security Considerations

   This entire document is about security.

   For information on security considerations for password-based
   cryptography see [RFC8018].

   Conforming applications MUST use unique values for ukm and S.

   It is RECOMMENDED to use the value of parameter c equal to 2000 for
   generating the derived key in PBKDF2 algorithm.

   It is RECOMMENDED to use the value of parameter S equal to 32 octets
   for generating the derived key in PBKDF2 algorithm.

   It is RECOMMENDED to use the exact algorithm parameters in symmetric
   algorithms "Magma" and "Kuznyechik".  They are defined in
   Appendix A.3.

8.  IANA Considerations

   This document makes no requests for IANA action.

9.  References

9.1.  Normative References

Karelina                Expires 22 September 2022               [Page 9]
Internet-Draft          GOST Password-based Keys              March 2022

   [GostPkcs5]
              Karelina, E., Pianov, S., and A. Davletshina, "Information
              technology. Cryptographic Data Security. Password-based
              key security.", R 1323565.1.xxx-2022 (work in progress).
              Federal Agency on Technical Regulating and Metrology (In
              Russian).

   [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
              DOI 10.17487/RFC2104, February 1997,
              <https://www.rfc-editor.org/info/rfc2104>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC6986]  Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:
              Hash Function", RFC 6986, DOI 10.17487/RFC6986, August
              2013, <https://www.rfc-editor.org/info/rfc6986>.

   [RFC7801]  Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
              "Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
              <https://www.rfc-editor.org/info/rfc7801>.

   [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
              Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
              on the Cryptographic Algorithms to Accompany the Usage of
              Standards GOST R 34.10-2012 and GOST R 34.11-2012",
              RFC 7836, DOI 10.17487/RFC7836, March 2016,
              <https://www.rfc-editor.org/info/rfc7836>.

   [RFC8018]  Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:
              Password-Based Cryptography Specification Version 2.1",
              RFC 8018, DOI 10.17487/RFC8018, January 2017,
              <https://www.rfc-editor.org/info/rfc8018>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8645]  Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric
              Keys", RFC 8645, DOI 10.17487/RFC8645, August 2019,
              <https://www.rfc-editor.org/info/rfc8645>.

   [RFC8891]  Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:
              Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,
              September 2020, <https://www.rfc-editor.org/info/rfc8891>.

Karelina                Expires 22 September 2022              [Page 10]
Internet-Draft          GOST Password-based Keys              March 2022

9.2.  Informative References

   [RFC6070]  Josefsson, S., "PKCS #5: Password-Based Key Derivation
              Function 2 (PBKDF2) Test Vectors", RFC 6070,
              DOI 10.17487/RFC6070, January 2011,
              <https://www.rfc-editor.org/info/rfc6070>.

Appendix A.  Identifiers and Parameters

   This section defines ASN.1 syntax for the key derivation functions,
   the encryption schemes, the message authentication scheme, and
   supporting techniques ([RFC8018]).

   rsadsi OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 113549 }
   pkcs OBJECT IDENTIFIER ::= { rsadsi 1 }
   pkcs-5 OBJECT IDENTIFIER ::= { pkcs 5 }

A.1.  PBKDF2

   The object identifier id-PBKDF2 identifies the PBKDF2 key derivation
   function:

   id-PBKDF2 OBJECT IDENTIFIER ::= { pkcs-5 12 }

   The parameters field associated with this OID in an
   AlgorithmIdentifier SHALL have type PBKDF2-params:

   PBKDF2-params ::= SEQUENCE
   {
       salt            CHOICE
       {
           specified       OCTET STRING,
           otherSource     AlgorithmIdentifier {{PBKDF2-SaltSources}}
       },
       iterationCount  INTEGER (1000..MAX),
       keyLength       INTEGER (32..MAX) OPTIONAL,
       prf             AlgorithmIdentifier {{PBKDF2-PRFs}}
   }

   The fields of type PBKDF2-params have the following meanings:

      - salt contains the random value S in OCTET STRING.

      - iterationCount specifies the iteration count c.

Karelina                Expires 22 September 2022              [Page 11]
Internet-Draft          GOST Password-based Keys              March 2022

      - keyLength is the length of the derived key in octets.  It is
      optional field for PBES2 sheme since it is always 32 octets.  It
      MUST be present for PBMAC1 sheme and MUST be at least 32 octets
      since the HMAC_GOSTR3411 function has a variable key size.

      - prf identifies the pseudorandom function.  The identifier value
      MUST be id-tc26-hmac-gost-3411-12-512, the parameters value must
      be NULL:

   id-tc26-hmac-gost-3411-12-512 OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) reg7(7)
       tk26(1) algorithms(1) hmac(4) 512(2)
   }

A.2.  PBES2

   The object identifier id-PBES2 identifies the PBES2 encryption
   scheme:

   id-PBES2 OBJECT IDENTIFIER ::= { pkcs-5 13 }

   The parameters field associated with this OID in an
   AlgorithmIdentifier SHALL have type PBES2-params:

   PBES2-params ::= SEQUENCE
   {
       keyDerivationFunc   AlgorithmIdentifier { { PBES2-KDFs } },
       encryptionScheme    AlgorithmIdentifier { { PBES2-Encs } }
   }

   The fields of type PBES2-params have the following meanings:

      - keyDerivationFunc identifies the key derivation function in
      accordance with Appendix A.1.

      - encryptionScheme identifies the encryption scheme in with
      Appendix A.3.

A.3.  Identifier and Parameters of Gost34.12-2015 Encryption Scheme

   The Gost34.12-2015 encryption algorithm identifier SHALL take one of
   the following values:

Karelina                Expires 22 September 2022              [Page 12]
Internet-Draft          GOST Password-based Keys              March 2022

   id-gostr3412-2015-magma-ctracpkm OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-magma(1) mode-ctracpkm(1)
   }

   In case of use id-gostr3412-2015-magma-ctracpkm identifier the data
   is encrypted by the GOST R 34.12-2015 Magma cipher in CTR_ACPKM mode
   in accordance with [RFC8645].  The block size is 64 bits, the section
   size is fixed within a specific protocol based on the requirements of
   the system capacity and the key lifetime.

   id-gostr3412-2015-magma-ctracpkm-omac OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-magma(1) mode-ctracpkm-omac(2)
   }

   In case of use id-gostr3412-2015-magma-ctracpkm-omac identifier the
   data is encrypted by the GOST R 34.12-2015 Magma cipher in CTR_ACPKM
   mode in accordance with [RFC8645], and MAC is computed by the GOST R
   34.12-2015 Magma cipher in MAC mode (MAC size is 64 bits).  The block
   size is 64 bits, the section size is fixed within a specific protocol
   based on the requirements of the system capacity and the key
   lifetime.

   id-gostr3412-2015-kuznyechik-ctracpkm OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-kuznyechik(2) mode-ctracpkm(1)
   }

   In case of use id-gostr3412-2015-kuznyechik-ctracpkm identifier the
   data is encrypted by the GOST R 34.12-2015 Kuznyechik cipher in
   CTR_ACPKM mode in accordance with [RFC8645].  The block size is 128
   bits, the section size is fixed within a specific protocol based on
   the requirements of the system capacity and the key lifetime.

   id-gostr3412-2015-kuznyechik-ctracpkm-omac OBJECT IDENTIFIER ::=
   {
       iso(1) member-body(2) ru(643) rosstandart(7)
       tc26(1) algorithms(1) cipher(5)
       gostr3412-2015-kuznyechik(2) mode-ctracpkm-omac(2)
   }

Karelina                Expires 22 September 2022              [Page 13]
Internet-Draft          GOST Password-based Keys              March 2022

   In case of use id-gostr3412-2015-kuznyechik-ctracpkm-omac identifier
   the data is encrypted by the GOST R 34.12-2015 Kuznyechik cipher in
   CTR_ACPKM mode in accordance with [RFC8645], and MAC is computed by
   the GOST R 34.12-2015 Kuznyechik cipher in MAC mode (MAC size is 128
   bits).  The block size is 128 bits, the section size is fixed within
   a specific protocol based on the requirements of the system capacity
   and the key lifetime.

   The parameters field in an AlgorithmIdentifier SHALL have type
   Gost3412-15-Encryption-Parameters:

   Gost3412-15-Encryption-Parameters ::= SEQUENCE
   {
       ukm OCTET STRING
   }

   The field of type Gost3412-15-Encryption-Parameters have the
   following meanings:

      - ukm MUST be present and MUST contain n octets.  Its value
      depends on the selected encryption algorithm:

         GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

         GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

A.4.  PBMAC1

   The object identifier id-PBMAC1 identifies the PBMAC1 message
   authentication scheme:

   id-PBMAC1 OBJECT IDENTIFIER ::= { pkcs-5 14 }

   The parameters field associated with this OID in an
   AlgorithmIdentifier SHALL have type PBMAC1-params:

   PBMAC1-params ::=  SEQUENCE
   {
       keyDerivationFunc AlgorithmIdentifier { { PBMAC1-KDFs } },
       messageAuthScheme AlgorithmIdentifier { { PBMAC1-MACs } }
   }

   The fields of type PBMAC1-params have the following meanings:

      - keyDerivationFunc is identifier and parameters of key derivation
      function in accordance with Appendix A.1

Karelina                Expires 22 September 2022              [Page 14]
Internet-Draft          GOST Password-based Keys              March 2022

      - messageAuthScheme is identifier and parameters of HMAC_GOSTR3411
      algorithm.

Appendix B.  PBKDF2 HMAC_GOSTR3411 Test Vectors

   These test vectors are formed by analogy with test vectors from
   [RFC6070].  The input strings below are encoded using ASCII.  The
   sequence "\0" (without quotation marks) means a literal ASCII NULL
   value (1 octet).  "DK" refers to the Derived Key.

   Input:
       P = "password" (8 octets)
       S = "salt" (4 octets)
       c = 1
       dkLen = 64

   Output:
       DK = 64 77 0a f7 f7 48 c3 b1 c9 ac 83 1d bc fd 85 c2
            61 11 b3 0a 8a 65 7d dc 30 56 b8 0c a7 3e 04 0d
            28 54 fd 36 81 1f 6d 82 5c c4 ab 66 ec 0a 68 a4
            90 a9 e5 cf 51 56 b3 a2 b7 ee cd db f9 a1 6b 47

   Input:
       P = "password" (8 octets)
       S = "salt" (4 octets)
       c = 2
       dkLen = 64

   Output:
       DK = 5a 58 5b af df bb 6e 88 30 d6 d6 8a a3 b4 3a c0
            0d 2e 4a eb ce 01 c9 b3 1c 2c ae d5 6f 02 36 d4
            d3 4b 2b 8f bd 2c 4e 89 d5 4d 46 f5 0e 47 d4 5b
            ba c3 01 57 17 43 11 9e 8d 3c 42 ba 66 d3 48 de

   Input:
       P = "password" (8 octets)
       S = "salt" (4 octets)
       c = 4096
       dkLen = 64

   Output:
       DK = e5 2d eb 9a 2d 2a af f4 e2 ac 9d 47 a4 1f 34 c2
            03 76 59 1c 67 80 7f 04 77 e3 25 49 dc 34 1b c7
            86 7c 09 84 1b 6d 58 e2 9d 03 47 c9 96 30 1d 55
            df 0d 34 e4 7c f6 8f 4e 3c 2c da f1 d9 ab 86 c3

   Input:
       P = "password" (8 octets)

Karelina                Expires 22 September 2022              [Page 15]
Internet-Draft          GOST Password-based Keys              March 2022

       S = "salt" (4 octets)
       c = 16777216
       dkLen = 64

   Output:
       DK = 49 e4 84 3b ba 76 e3 00 af e2 4c 4d 23 dc 73 92
            de f1 2f 2c 0e 24 41 72 36 7c d7 0a 89 82 ac 36
            1a db 60 1c 7e 2a 31 4e 8c b7 b1 e9 df 84 0e 36
            ab 56 15 be 5d 74 2b 6c f2 03 fb 55 fd c4 80 71

   Input:
       P = "passwordPASSWORDpassword" (24 octets)
       S = "saltSALTsaltSALTsaltSALTsaltSALTsalt" (36 octets)
       c = 4096
       dkLen = 100

   Output:
       DK = b2 d8 f1 24 5f c4 d2 92 74 80 20 57 e4 b5 4e 0a
            07 53 aa 22 fc 53 76 0b 30 1c f0 08 67 9e 58 fe
            4b ee 9a dd ca e9 9b a2 b0 b2 0f 43 1a 9c 5e 50
            f3 95 c8 93 87 d0 94 5a ed ec a6 eb 40 15 df c2
            bd 24 21 ee 9b b7 11 83 ba 88 2c ee bf ef 25 9f
            33 f9 e2 7d c6 17 8c b8 9d c3 74 28 cf 9c c5 2a
            2b aa 2d 3a

   Input:
       P = "pass\0word" (9 octets)
       S = "sa\0lt" (5 octets)
       c = 4096
       dkLen = 64

   Output:
       DK = 50 df 06 28 85 b6 98 01 a3 c1 02 48 eb 0a 27 ab
            6e 52 2f fe b2 0c 99 1c 66 0f 00 14 75 d7 3a 4e
            16 7f 78 2c 18 e9 7e 92 97 6d 9c 1d 97 08 31 ea
            78 cc b8 79 f6 70 68 cd ac 19 10 74 08 44 e8 30

Author's Address

   Karelina Ekaterina (editor)
   InfoTeCS
   2B stroenie 1, ul. Otradnaya
   Moscow
   127273
   Russian Federation
   Phone: +7 (495) 737-61-92
   Email: Ekaterina.Karelina@infotecs.ru

Karelina                Expires 22 September 2022              [Page 16]